
The Circuit Complexity of P

Proposition 80 All languages in P have polynomial

circuits.

• Let L ∈ P be decided by a TM in time p(n).

• By Corollary 35 (p. 319), there is a circuit with

O(p(n)2) gates that accepts L ∩ { 0, 1 }n.
• The size of that circuit depends only on L and the

length of the input.

• The size of that circuit is polynomial in n.
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Polynomial Circuits vs. P

• Is the converse of Proposition 80 true?

– Do polynomial circuits accept only languages in P?

• No.

• Polynomial circuits can accept undecidable languages!a

aSee p. 268 of the textbook.
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BPP’s Circuit Complexity: Adleman’s Theorem

Theorem 81 (Adleman, 1978) All languages in BPP

have polynomial circuits.

• Our proof will be nonconstructive in that only the

existence of the desired circuits is shown.

– Recall our proof of Theorem 16 (p. 212).

– Something exists if its probability of existence is

nonzero.

• It is not known how to efficiently generate circuit Cn.

– If the construction of Cn can be made efficient, then

P = BPP, an unlikely result.
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The Proof

• Let L ∈ BPP be decided by a precise polynomial-time

NTM N by clear majority.

• We shall prove that L has polynomial circuits C0, C1, . . ..

– These deterministic circuits do not err.

• Suppose N runs in time p(n), where p(n) is a

polynomial.

• Let An = { a1, a2, . . . , am }, where ai ∈ { 0, 1 }p(n).
• Each ai ∈ An represents a sequence of nondeterministic

choices (i.e., a computation path) for N .

• Pick m = 12(n+ 1).
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The Proof (continued)

• Let x be an input with |x | = n.

• Circuit Cn simulates N on x with all sequences of

choices in An and then takes the majority of the m

outcomes.a

– Note that each An yields a circuit.

• As N with ai is a polynomial-time deterministic TM, it

can be simulated by polynomial circuits of size O(p(n)2).

– See the proof of Proposition 80 (p. 626).

aAs m is even, there may be no clear majority. Still, the probability

of that happening is very small and does not materially affect our general

conclusion. Thanks to a lively class discussion on December 14, 2010.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 630



The Circuit

�
�

�
�

�
� �

�

�������� 
����

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 631



The Proof (continued)

• The size of Cn is therefore O(mp(n)2) = O(np(n)2).

– This is a polynomial.

• We now confirm the existence of an An making Cn

correct on all n-bit inputs.

• Call ai bad if it leads N to an error (a false positive or a

false negative) for x.

• Select An uniformly randomly.
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The Proof (continued)

• For each x ∈ { 0, 1 }n, 1/4 of the computations of N are

erroneous.

• Because the sequences in An are chosen randomly and

independently, the expected number of bad ai’s is m/4.a

• Also note after fixing the input x, the circuit is a

function of the random bits.

aSo the proof will not work for NP. Contributed by Mr. Ching-Hua

Yu (D00921025) on December 11, 2012.
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The Proof (continued)

• By the Chernoff bound (p. 605), the probability that the

number of bad ai’s is m/2 or more is at most

e−m/12 < 2−(n+1).

• The error probability of using the majority rule is thus

< 2−(n+1)

for each x ∈ { 0, 1 }n.
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The Proof (continued)

• The probability that there is an x such that An results

in an incorrect answer is

< 2n2−(n+1) = 2−1.

– Recall the union bound (Boole’s inequality):

prob[A ∪B ∪ · · · ] ≤ prob[A ] + prob[B ] + · · · .
• We just showed that at least half of the random An are

correct.

• So with probability ≥ 0.5, a random An produces a

correct Cn for all inputs of length n.

– Of course, verifying this fact may take a long time.
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The Proof (concluded)

• Because this probability exceeds 0, an An that makes

majority vote work for all inputs of length n exists.

• Hence a correct Cn exists.a

• We have used the probabilistic methodb popularized

by Erdős (1947).c

• This result answers the question on p. 537 with a “yes.”

aQuine (1948), “To be is to be the value of a bound variable.”
bA counting argument in the probabilistic language.
cSzele (1943) and Turán (1934) were earlier.
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Leonard Adlemana (1945–)

aTuring Award (2002).

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 637



Paul Erdős (1913–1996)

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 638



Cryptography
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Whoever wishes to keep a secret

must hide the fact that he possesses one.

— Johann Wolfgang von Goethe (1749–1832)
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Cryptography

• Alice (A) wants to send a message to Bob (B) over a

channel monitored by Eve (eavesdropper).

• The protocol should be such that the message is known

only to Alice and Bob.

• The art and science of keeping messages secure is

cryptography.

Alice �
Eve

Bob
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Encryption and Decryption

• Alice and Bob agree on two algorithms E and D—the

encryption and the decryption algorithms.

• Both E and D are known to the public in the analysis.

• Alice runs E and wants to send a message x to Bob.

• Bob operates D.
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Encryption and Decryption (concluded)

• Privacy is assured in terms of two numbers e, d, the

encryption and decryption keys.

• Alice sends y = E(e, x) to Bob, who then performs

D(d, y) = x to recover x.

• x is called plaintext, and y is called ciphertext.a

aBoth “zero” and “cipher” come from the same Arab word.
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Some Requirements

• D should be an inverse of E given e and d.

• D and E must both run in (probabilistic) polynomial

time.

• Eve should not be able to recover x from y without

knowing d.

– As D is public, d must be kept secret.

– e may or may not be a secret.
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Degree of Security

• Perfect secrecy: After a ciphertext is intercepted by

the enemy, the a posteriori probabilities of the plaintext

that this ciphertext represents are identical to the a

priori probabilities of the same plaintext before the

interception.

– The probability that plaintext P occurs is

independent of the ciphertext C being observed.

– So knowing C yields no advantage in recovering P .
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Degree of Security (concluded)

• Such systems are said to be informationally secure.

• A system is computationally secure if breaking it is

theoretically possible but computationally infeasible.
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Conditions for Perfect Secrecya

• Consider a cryptosystem where:

– The space of ciphertext is as large as that of keys.

– Every plaintext has a nonzero probability of being

used.

• It is perfectly secure if and only if the following hold.

– A key is chosen with uniform distribution.

– For each plaintext x and ciphertext y, there exists a

unique key e such that E(e, x) = y.

aShannon (1949).
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The One-Time Pada

1: Alice generates a random string r as long as x;

2: Alice sends r to Bob over a secret channel;

3: Alice sends x⊕ r to Bob over a public channel;

4: Bob receives y;

5: Bob recovers x := y ⊕ r;

aMauborgne & Vernam (1917); Shannon (1949). It was allegedly used

for the hotline between Russia and the U.S.
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Analysis

• The one-time pad uses e = d = r.

• This is said to be a private-key cryptosystem.

• Knowing x and knowing r are equivalent.

• Because r is random and private, the one-time pad

achieves perfect secrecy.a

• The random bit string must be new for each round of

communication.

• But the assumption of a private channel is problematic.

aSee p. 647.
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Public-Key Cryptographya

• Suppose only d is private to Bob, whereas e is public

knowledge.

• Bob generates the (e, d) pair and publishes e.

• Anybody like Alice can send E(e, x) to Bob.

• Knowing d, Bob can recover x via

D(d,E(e, x)) = x.

aDiffie & Hellman (1976).
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Public-Key Cryptography (concluded)

• The assumptions are complexity-theoretic.

– It is computationally difficult to compute d from e.

– It is computationally difficult to compute x from y

without knowing d.
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Whitfield Diffiea (1944–)

aTuring Award (2016).
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Martin Hellmana (1945–)

aTuring Award (2016).
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Complexity Issues

• Given y and x, it is easy to verify whether E(e, x) = y.

• Hence one can always guess an x and verify.

• Cracking a public-key cryptosystem is thus in NP.

• A necessary condition for the existence of secure

public-key cryptosystems is P �= NP.

• But more is needed than P �= NP.

• For instance, it is not sufficient that D is hard to

compute in the worst case.

• It should be hard in “most” or “average” cases.
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One-Way Functions

A function f is a one-way function if the following hold.a

1. f is one-to-one.

2. For all x ∈ Σ∗, |x |1/k ≤ |f(x)| ≤ |x |k for some k > 0.

• f is said to be honest.

3. f can be computed in polynomial time.

4. f−1 cannot be computed in polynomial time.

• Exhaustive search works, but it must be slow.

aDiffie & Hellman (1976); Boppana & Lagarias (1986); Grollmann &

Selman (1988); Ko (1985); Ko, Long, & Du (1986); Watanabe (1985);

Young (1983).
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Existence of One-Way Functions (OWFs)

• Even if P �= NP, there is no guarantee that one-way

functions exist.

• No functions have been proved to be one-way.

• Is breaking glass a one-way function?
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Candidates of One-Way Functions

• Modular exponentiation f(x) = gx mod p, where g is a

primitive root of p.

– Discrete logarithm is hard.a

• The RSAb function f(x) = xe mod pq for an odd e

relatively prime to φ(pq).

– Breaking the RSA function is hard.

aConjectured to be 2n
ε
for some ε > 0 in both the worst-case sense

and average sense. Doable in time nO(log n) for finite fields of small char-

acteristic (Barbulescu, et al., 2013). It is in NP in some sense (Grollmann

& Selman, 1988).
bRivest, Shamir, & Adleman (1978).
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Candidates of One-Way Functions (concluded)

• Modular squaring f(x) = x2 mod pq.

– Determining if a number with a Jacobi symbol 1 is a

quadratic residue is hard—the quadratic

residuacity assumption (QRA).a

– Breaking it is as hard as factorization when

p ≡ q ≡ 3 mod 4.b

aDue to Gauss.
bRabin (1979).
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The Secret-Key Agreement Problem

• Exchanging messages securely using a private-key

cryptosystem requires Alice and Bob have the same

key.a

– An example is the r in the one-time pad.b

• How can they agree on the same secret key when the

channel is insecure?

• This is called the secret-key agreement problem.

• It was solved by Diffie and Hellman (1976) using

one-way functions.

aSee p. 649.
bSee p. 648.
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The Diffie-Hellman Secret-Key Agreement Protocol

1: Alice and Bob agree on a large prime p and a primitive

root g of p; {p and g are public.}
2: Alice chooses a large number a at random;

3: Alice computes α = ga mod p;

4: Bob chooses a large number b at random;

5: Bob computes β = gb mod p;

6: Alice sends α to Bob, and Bob sends β to Alice;

7: Alice computes her key βa mod p;

8: Bob computes his key αb mod p;
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Analysis

• The keys computed by Alice and Bob are identical as

βa = gba = gab = αb mod p.

• To compute the common key from p, g, α, β is known as

the Diffie-Hellman problem.

• It is conjectured to be hard.a

• If discrete logarithm is easy, then one can solve the

Diffie-Hellman problem.

– Because a and b can then be obtained by Eve.

• But the other direction is still open.

aThis is the computational Diffie-Hellman assumption (CDH).
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The RSA Function

• Let p, q be two distinct primes.

• The RSA function is xe mod pq for an odd e relatively

prime to φ(pq).

– By Lemma 59 (p. 490),

φ(pq) = pq

(
1− 1

p

)(
1− 1

q

)
= pq − p− q + 1. (16)

• As gcd(e, φ(pq)) = 1, there is a d such that

ed ≡ 1 mod φ(pq),

which can be found by the Euclidean algorithm.a

aOne can think of d as e−1.
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A Public-Key Cryptosystem Based on RSA

• Bob generates p and q.

• Bob publishes pq and the encryption key e, a number

relatively prime to φ(pq).

– The encryption function is

y = xe mod pq.

– Bob calculates φ(pq) by Eq. (16) (p. 662).

– Bob then calculates d such that ed = 1 + kφ(pq) for

some k ∈ Z.
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A Public-Key Cryptosystem Based on RSA
(continued)

• The decryption function is

yd mod pq.

• It works because

yd = xed = x1+kφ(pq) = x mod pq

by the Fermat-Euler theorem when gcd(x, pq) = 1

(p. 495).
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A Public-Key Cryptosystem Based on RSA
(continued)

• What if x is not relatively prime to pq?a

• As φ(pq) = (p− 1)(q − 1),

ed = 1 + k(p− 1)(q − 1).

• Say x ≡ 0 mod p.

• Then

yd ≡ xed ≡ 0 ≡ x mod p.

aOf course, one would be unlucky here.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 665



A Public-Key Cryptosystem Based on RSA
(continued)

• On the other hand, either x �≡ 0 mod q or x ≡ 0 mod q.

• If x �≡ 0 mod q, then

yd ≡ xed ≡ xed−1x ≡ xk(p−1)(q−1)x ≡ (
xq−1

)k(p−1)
x

≡ x mod q.

by Fermat’s “little” theorem (p. 493).

• If x ≡ 0 mod q, then

yd ≡ xed ≡ 0 ≡ x mod q.
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A Public-Key Cryptosystem Based on RSA
(concluded)

• By the Chinese remainder theorem (p. 492),

yd ≡ xed ≡ 0 ≡ x mod pq,

even when x is not relatively prime to p.

• When x is not relatively prime to q, the same conclusion

holds.
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The “Security” of the RSA Function

• Factoring pq or calculating d from (e, pq) seems hard.

• Breaking the last bit of RSA is as hard as breaking the

RSA.a

• Recommended RSA key sizes:b

– 1024 bits up to 2010.

– 2048 bits up to 2030.

– 3072 bits up to 2031 and beyond.

aAlexi, Chor, Goldreich, & Schnorr (1988).
bRSA (2003). RSA was acquired by EMC in 2006 for 2.1 billion US

dollars.
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The “Security” of the RSA Function (continued)

• Recall that problem A is “harder than” problem B if

solving A results in solving B.

– Factorization is “harder than” breaking the RSA.

– It is not hard to show that calculating Euler’s phi

functiona is “harder than” breaking the RSA.

– Factorization is “harder than” calculating Euler’s phi

function (see Lemma 59 on p. 490).

– So factorization is harder than calculating Euler’s phi

function, which is harder than breaking the RSA.

aWhen the input is not factorized!
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The “Security” of the RSA Function (concluded)

• Factorization cannot be NP-hard unless NP = coNP.a

• So breaking the RSA is unlikely to imply P = NP.

• But numbers can be factorized efficiently by quantum

computers.b

• RSA was alleged to have received 10 million US dollars

from the government to promote unsecure p and q.c

aBrassard (1979).
bShor (1994).
cMenn (2013).
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Adi Shamir, Ron Rivest, and Leonard Adleman
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Ron Rivesta (1947–)

aTuring Award (2002).
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Adi Shamira (1952–)

aTuring Award (2002).
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A Parallel History

• Diffie and Hellman’s solution to the secret-key

agreement problem led to public-key cryptography.

• In 1973, the RSA public-key cryptosystem was invented

in Britain before the Diffie-Hellman secret-key

agreement scheme.a

aEllis, Cocks, and Williamson of the Communications Electronics Se-

curity Group of the British Government Communications Head Quarters

(GCHQ).
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Is a forged signature the same sort of thing

as a genuine signature,

or is it a different sort of thing?

— Gilbert Ryle (1900–1976),

The Concept of Mind (1949)

“Katherine, I gave him the code.

He verified the code.”

“But did you verify him?”

— The Numbers Station (2013)
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Digital Signaturesa

• Alice wants to send Bob a signed document x.

• The signature must unmistakably identifies the sender.

• Both Alice and Bob have public and private keys

eAlice, eBob, dAlice, dBob.

• Every cryptosystem guarantees D(d,E(e, x)) = x.

• Assume the cryptosystem also satisfies the commutative

property

E(e,D(d, x)) = D(d,E(e, x)). (17)

– E.g., the RSA system satisfies it as (xd)e = (xe)d.

aDiffie & Hellman (1976).
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Digital Signatures Based on Public-Key Systems

• Alice signs x as

(x,D(dAlice, x)).

• Bob receives (x, y) and verifies the signature by checking

E(eAlice, y) = E(eAlice, D(dAlice, x)) = x

based on Eq. (17).

• The claim of authenticity is founded on the difficulty of

inverting EAlice without knowing the key dAlice.
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Blind Signaturesa

• There are applications where the document author

(Alice) and the signer (Bob) are different parties.

• Sender privacy: We do not want Bob to see the

document.

– Anonymous electronic voting systems, digital cash

schemes, anonymous payments, etc.

• Idea: The document is blinded by Alice before it is

signed by Bob.

• The resulting blind signature can be publicly verified

against the original, unblinded document x as before.

aChaum (1983).
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Blind Signatures Based on RSA

Blinding by Alice:

1: Pick r ∈ Z∗
n randomly;

2: Send

x′ = xre mod n

to Bob; {x is blinded by re.}
• Note that r → re mod n is a one-to-one correspondence.

• Hence re mod n is a random number, too.

• As a result, x′ is random and leaks no information, even

if x has any structure.
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Blind Signatures Based on RSA (continued)

Signing by Bob with his private decryption key d:

1: Send the blinded signature

s′ = (x′)d mod n

to Alice;
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Blind Signatures Based on RSA (continued)

The RSA signature of Alice:

1: Alice obtains the signature s = s′r−1 mod n;

• This works because

s ≡ s′r−1 ≡ (x′)dr−1 ≡ (xre)dr−1 ≡ xdred−1 ≡ xd mod n

by the properties of the RSA function.

• Note that only Alice knows r.
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Blind Signatures Based on RSA (concluded)

• Anyone can verify the document was signed by Bob by

checking with Bob’s encryption key e the following:

se ≡ x mod n.

• But Bob does not know s is related to x′ (thus Alice).
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Probabilistic Encryptiona

• A deterministic cryptosystem can be broken if the

plaintext has a distribution that favors the “easy” cases.

• The ability to forge signatures on even a vanishingly

small fraction of strings of some length is a security

weakness if those strings were the probable ones!

• A scheme may also “leak” partial information.

– Parity of the plaintext, e.g.

• The first solution to the problems of skewed distribution

and partial information was based on the QRA.

aGoldwasser & Micali (1982). This paper “laid the framework for

modern cryptography” (2013).
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Shafi Goldwassera (1958–)

aTuring Award (2013).
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Silvio Micalia (1954–)

aTuring Award (2013).
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Goldwasser and Micali
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A Useful Lemma

Lemma 82 Let n = pq be a product of two distinct primes.

Then a number y ∈ Z∗
n is a quadratic residue modulo n if

and only if (y | p) = (y | q) = 1.

• The “only if” part:

– Let x be a solution to x2 = y mod pq.

– Then x2 = y mod p and x2 = y mod q also hold.

– Hence y is a quadratic modulo p and a quadratic

residue modulo q.
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The Proof (concluded)

• The “if” part:

– Let a21 = y mod p and a22 = y mod q.

– Solve

x = a1 mod p,

x = a2 mod q,

for x with the Chinese remainder theorem (p. 492).

– As x2 = y mod p, x2 = y mod q, and gcd(p, q) = 1,

we must have x2 = y mod pq.
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The Jacobi Symbol and Quadratic Residuacity Test

• The Legendre symbol can be used as a test for quadratic

residuacity by Lemma 69 (p. 560).

• Lemma 82 (p. 687) says this is not the case with the

Jacobi symbol in general.

• Suppose n = pq is a product of two distinct primes.

• A number y ∈ Z∗
n with Jacobi symbol (y | pq) = 1 is a

quadratic nonresidue modulo n when

(y | p) = (y | q) = −1,

because (y | pq) = (y | p)(y | q).

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 689



The Setup

• Bob publishes n = pq, a product of two distinct primes,

and a quadratic nonresidue y with Jacobi symbol 1.

• Bob keeps secret the factorization of n.

• Alice wants to send bit string b1b2 · · · bk to Bob.

• Alice encrypts the bits by choosing a random quadratic

residue modulo n if bi is 1 and a random quadratic

nonresidue (with Jacobi symbol 1) otherwise.

• So a sequence of residues and nonresidues are sent.

• Knowing the factorization of n, Bob can efficiently test

quadratic residuacity and thus read the message.
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The Protocol for Alice

1: for i = 1, 2, . . . , k do

2: Pick r ∈ Z∗
n randomly;

3: if bi = 1 then

4: Send r2 mod n; {Jacobi symbol is 1.}
5: else

6: Send r2y mod n; {Jacobi symbol is still 1.}
7: end if

8: end for
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The Protocol for Bob

1: for i = 1, 2, . . . , k do

2: Receive r;

3: if (r | p) = 1 and (r | q) = 1 then

4: bi := 1;

5: else

6: bi := 0;

7: end if

8: end for
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Semantic Security

• This encryption scheme is probabilistic.

• There are a large number of different encryptions of a

given message.

• One is chosen at random by the sender to represent the

message.

– Encryption is a one-to-many mapping.

• This scheme is both polynomially secure and

semantically secure.
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What then do you call proof?

— Henry James (1843–1916),

The Wings of the Dove (1902)

Leibniz knew what a proof is.

Descartes did not.

— Ian Hacking (1973)
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What Is a Proof?

• A proof convinces a party of a certain claim.

– “xn + yn �= zn for all x, y, z ∈ Z
+ and n > 2.”

– “Graph G is Hamiltonian.”

– “xp = x mod p for prime p and p � |x.”
• In mathematics, a proof is a fixed sequence of theorems.

– Think of it as a written examination.

• We will extend a proof to cover a proof process by which

the validity of the assertion is established.

– Recall a job interview or an oral examination.
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Prover and Verifier

• There are two parties to a proof.

– The prover (Peggy).

– The verifier (Victor).

• Given an assertion, the prover’s goal is to convince the

verifier of its validity (completeness).

• The verifier’s objective is to accept only correct

assertions (soundness).

• The verifier usually has an easier job than the prover.

• The setup is similar to the Turing test.a

aTuring (1950).
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Interactive Proof Systems

• An interactive proof for a language L is a sequence of

questions and answers between the two parties.

• At the end of the interaction, the verifier decides

whether the claim is true or false.

• The verifier must be a probabilistic polynomial-time

algorithm.

• The prover runs an exponential-time algorithm.a

– If the prover is not more powerful than the verifier,

no interaction is needed!
aSee the problem to Note 12.3.7 on p. 296 and Proposition 19.1 on

p. 475, both of the textbook, about alternative complexity assumptions

without affecting the definition. Contributed by Mr. Young-San Lin

(B97902055) and Mr. Chao-Fu Yang (B97902052) on December 18, 2012.
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Interactive Proof Systems (concluded)

• The system decides L if the following two conditions

hold for any common input x.

– If x ∈ L, then the probability that x is accepted by

the verifier is at least 1− 2−|x |.

– If x �∈ L, then the probability that x is accepted by

the verifier with any prover replacing the original

prover is at most 2−|x |.

• Neither the number of rounds nor the lengths of the

messages can be more than a polynomial of |x |.
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An Interactive Proof
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IPa

• IP is the class of all languages decided by an interactive

proof system.

• When x ∈ L, the completeness condition can be

modified to require that the verifier accept with

certainty without affecting IP.b

• Similar things cannot be said of the soundness condition

when x �∈ L.

• Verifier’s coin flips can be public.c

aGoldwasser, Micali, & Rackoff (1985).
bGoldreich, Mansour, & Sipser (1987).
cGoldwasser & Sipser (1989).
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The Relations of IP with Other Classes

• NP ⊆ IP.

– IP becomes NP when the verifier is deterministic and

there is only one round of interaction.a

• BPP ⊆ IP.

– IP becomes BPP when the verifier ignores the

prover’s messages.

• IP = PSPACE.b

aRecall Proposition 41 on p. 335.
bShamir (1990).
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