Primality Tests

- PRIMES asks if a number N is a prime.
- The classic algorithm tests if $k \mid N$ for $k=2,3, \ldots, \sqrt{N}$.
- But it runs in $\Omega\left(2^{\left(\log _{2} N\right) / 2}\right)$ steps.

The Fermat Test for Primality

Fermat's "little" theorem (p. 493) suggests the following primality test for any given number N :
1: Pick a number a randomly from $\{1,2, \ldots, N-1\}$;
2: if $a^{N-1} \not \equiv 1 \bmod N$ then
3: return " N is composite";
4: else
5: return " N is (probably) a prime";
6: end if

The Fermat Test for Primality (concluded)

- Carmichael numbers are composite numbers that will pass the Fermat test for all $a \in\{1,2, \ldots, N-1\}$. ${ }^{\text {a }}$
- The Fermat test will return " N is a prime" for all Carmichael numbers N.
- Unfortunately, there are infinitely many Carmichael numbers. ${ }^{\text {b }}$
- In fact, the number of Carmichael numbers less than N exceeds $N^{2 / 7}$ for N large enough.
- So the Fermat test is an incorrect algorithm for Primes.

[^0]
Square Roots Modulo a Prime

- Equation $x^{2} \equiv a \bmod p$ has at most two (distinct) roots by Lemma 64 (p. 498).
- The roots are called square roots.
- Numbers a with square roots and $\operatorname{gcd}(a, p)=1$ are called quadratic residues.
* They are

$$
1^{2} \bmod p, 2^{2} \bmod p, \ldots,(p-1)^{2} \bmod p
$$

- We shall show that a number either has two roots or has none, and testing which is the case is trivial. ${ }^{\text {a }}$

[^1]
Euler's Test

Lemma 69 (Euler) Let p be an odd prime and $a \neq 0 \bmod p$.

1. If

$$
a^{(p-1) / 2} \equiv 1 \bmod p,
$$

then $x^{2} \equiv a \bmod p$ has two roots.
2. If

$$
a^{(p-1) / 2} \not \equiv 1 \bmod p,
$$

then

$$
a^{(p-1) / 2} \equiv-1 \bmod p
$$

and $x^{2} \equiv a \bmod p$ has no roots.

The Proof (continued)

- Let r be a primitive root of p.
- Fermat's "little" theorem says $r^{p-1} \equiv 1 \bmod p$, so

$$
r^{(p-1) / 2}
$$

is a square root of 1 .

- In particular,

$$
r^{(p-1) / 2} \equiv 1 \text { or }-1 \bmod p
$$

- But as r is a primitive root, $r^{(p-1) / 2} \not \equiv 1 \bmod p$.
- Hence $r^{(p-1) / 2} \equiv-1 \bmod p$.

The Proof (continued)

- Let $a=r^{k} \bmod p$ for some k.
- Suppose $a^{(p-1) / 2} \equiv 1 \bmod p$.
- Then

$$
1 \equiv a^{(p-1) / 2} \equiv r^{k(p-1) / 2} \equiv\left[r^{(p-1) / 2}\right]^{k} \equiv(-1)^{k} \bmod p
$$

- So k must be even.

The Proof (continued)

- Suppose $a=r^{2 j} \bmod p$ for some $1 \leq j \leq(p-1) / 2$.
- Then

$$
a^{(p-1) / 2} \equiv r^{j(p-1)} \equiv 1 \bmod p
$$

- The two distinct roots of a are

$$
r^{j},-r^{j}\left(\equiv r^{j+(p-1) / 2} \bmod p\right) .
$$

- If $r^{j} \equiv-r^{j} \bmod p$, then $2 r^{j} \equiv 0 \bmod p$, which implies $r^{j} \equiv 0 \bmod p$, a contradiction as r is a primitive root.

The Proof (continued)

- As $1 \leq j \leq(p-1) / 2$, there are $(p-1) / 2$ such a 's.
- Each such $a \equiv r^{2 j} \bmod p$ has 2 distinct square roots.
- The square roots of all these a 's are distinct.
- The square roots of different a's must be different.
- Hence the set of square roots is $\{1,2, \ldots, p-1\}$.
- As a result,

$$
a=r^{2 j} \bmod p, 1 \leq j \leq(p-1) / 2
$$

exhaust all the quadratic residues.

The Proof (concluded)

- Suppose $a=r^{2 j+1} \bmod p$ now.
- Then it has no square roots because all the square roots have been taken.
- Finally,

$$
a^{(p-1) / 2} \equiv\left[r^{(p-1) / 2}\right]^{2 j+1} \equiv(-1)^{2 j+1} \equiv-1 \bmod p
$$

The Legendre Symbol ${ }^{\text {a }}$ and Quadratic Residuacity Test

- By Lemma 69 (p. 560),

$$
a^{(p-1) / 2} \bmod p= \pm 1
$$

for $a \not \equiv 0 \bmod p$.

- For odd prime p, define the Legendre symbol $(a \mid p)$ as

$$
(a \mid p) \triangleq \begin{cases}0, & \text { if } p \mid a \\ 1, & \text { if } a \text { is a quadratic residue modulo } p \\ -1, & \text { if } a \text { is a quadratic nonresidue modulo } p\end{cases}
$$

- It is sometimes pronounced " a over p."

[^2]The Legendre Symbol and Quadratic Residuacity Test (concluded)

- Euler's test (p. 560) implies

$$
a^{(p-1) / 2} \equiv(a \mid p) \bmod p
$$

for any odd prime p and any integer a.

- Note that $(a b \mid p)=(a \mid p)(b \mid p)$.

Gauss's Lemma

Lemma 70 (Gauss) Let p and q be two distinct odd primes. Then $(q \mid p)=(-1)^{m}$, where m is the number of residues in $R \triangleq\{i q \bmod p: 1 \leq i \leq(p-1) / 2\}$ that are greater than $(p-1) / 2$.

- All residues in R are distinct.
- If $i q=j q \bmod p$, then $p \mid(j-i)$ or $p \mid q$.
- But neither is possible.
- No two elements of R add up to p.
- If $i q+j q \equiv 0 \bmod p$, then $p \mid(i+j)$ or $p \mid q$.
- But neither is possible.

The Proof (continued)

- Replace each of the m elements $a \in R$ such that $a>(p-1) / 2$ by $p-a$.
- This is equivalent to performing $-a \bmod p$.
- Call the resulting set of residues R^{\prime}.
- All numbers in R^{\prime} are at most $(p-1) / 2$.
- In fact, $R^{\prime}=\{1,2, \ldots,(p-1) / 2\}$ (see illustration next page).
- Otherwise, two elements of R would add up to $p,{ }^{\text {a }}$ which has been shown to be impossible.

[^3]

The Proof (concluded)

- Alternatively, $R^{\prime}=\{ \pm i q \bmod p: 1 \leq i \leq(p-1) / 2\}$, where exactly m of the elements have the minus sign.
- Take the product of all elements in the two representations of R^{\prime}.
- So

$$
[(p-1) / 2]!\equiv(-1)^{m} q^{(p-1) / 2}[(p-1) / 2]!\bmod p
$$

- Because $\operatorname{gcd}([(p-1) / 2]!, p)=1$, the above implies

$$
1=(-1)^{m} q^{(p-1) / 2} \bmod p .
$$

Legendre's Law of Quadratic Reciprocity ${ }^{\text {a }}$

- Let p and q be two distinct odd primes.
- The next result says $(p \mid q)$ and $(q \mid p)$ are distinct if and only if both p and q are $3 \bmod 4$.

Lemma 71 (Legendre, 1785; Gauss)

$$
(p \mid q)(q \mid p)=(-1)^{\frac{p-1}{2} \frac{q-1}{2}}
$$

[^4]
The Proof (continued)

- Sum the elements of R^{\prime} in the previous proof in $\bmod 2$.
- On one hand, this is just $\sum_{i=1}^{(p-1) / 2} i \bmod 2$.
- On the other hand, the sum equals

$$
\begin{aligned}
& m p+\sum_{i=1}^{(p-1) / 2}\left(i q-p\left\lfloor\frac{i q}{p}\right\rfloor\right) \bmod 2 \\
= & m p+\left(q \sum_{i=1}^{(p-1) / 2} i-p \sum_{i=1}^{(p-1) / 2}\left\lfloor\frac{i q}{p}\right\rfloor\right) \bmod 2 .
\end{aligned}
$$

- m of the $i q \bmod p$ are replaced by $p-i q \bmod p$.
- But signs are irrelevant under mod2.
- m is as in Lemma 70 (p. 568).

The Proof (continued)

- Ignore odd multipliers to make the sum equal

$$
m+\left(\sum_{i=1}^{(p-1) / 2} i-\sum_{i=1}^{(p-1) / 2}\left\lfloor\frac{i q}{p}\right\rfloor\right) \bmod 2 .
$$

- Equate the above with $\sum_{i=1}^{(p-1) / 2} i$ modulo 2.
- Now simplify to obtain

$$
m \equiv \sum_{i=1}^{(p-1) / 2}\left\lfloor\frac{i q}{p}\right\rfloor \bmod 2
$$

The Proof (continued)

- $\sum_{i=1}^{(p-1) / 2}\left\lfloor\frac{i q}{p}\right\rfloor$ is the number of integral points below the line

$$
y=(q / p) x
$$

for $1 \leq x \leq(p-1) / 2$.

- Gauss's lemma (p. 568) says $(q \mid p)=(-1)^{m}$.
- Repeat the proof with p and q reversed.
- Then $(p \mid q)=(-1)^{m^{\prime}}$, where m^{\prime} is the number of integral points above the line $y=(q / p) x$ for $1 \leq y \leq(q-1) / 2$.

The Proof (concluded)

- As a result,

$$
(p \mid q)(q \mid p)=(-1)^{m+m^{\prime}}
$$

- But $m+m^{\prime}$ is the total number of integral points in the $\left[1, \frac{p-1}{2}\right] \times\left[1, \frac{q-1}{2}\right]$ rectangle, which is

$$
\frac{p-1}{2} \frac{q-1}{2} .
$$

Eisenstein's Rectangle

Above, $p=11, q=7, m=7, m^{\prime}=8$.

The Jacobi Symbol ${ }^{\text {a }}$

- The Legendre symbol only works for odd prime moduli.
- The Jacobi symbol $(a \mid m)$ extends it to cases where m is not prime.
- a is sometimes called the numerator and m the denominator.
- Trivially, $(1 \mid m)=1$.
- Define $(a \mid 1)=1$.

[^5]
The Jacobi Symbol (concluded)

- Let $m=p_{1} p_{2} \cdots p_{k}$ be the prime factorization of m.
- When $m>1$ is odd and $\operatorname{gcd}(a, m)=1$, then

$$
(a \mid m) \triangleq \prod_{i=1}^{k}\left(a \mid p_{i}\right) .
$$

- Note that the Jacobi symbol equals ± 1.
- It reduces to the Legendre symbol when m is a prime.

Properties of the Jacobi Symbol

The Jacobi symbol has the following properties when it is defined.

1. $(a b \mid m)=(a \mid m)(b \mid m)$.
2. $\left(a \mid m_{1} m_{2}\right)=\left(a \mid m_{1}\right)\left(a \mid m_{2}\right)$.
3. If $a \equiv b \bmod m$, then $(a \mid m)=(b \mid m)$.
4. $(-1 \mid m)=(-1)^{(m-1) / 2}$ (by Lemma 70 on p. 568).
5. $(2 \mid m)=(-1)^{\left(m^{2}-1\right) / 8}$. ${ }^{\text {a }}$
6. If a and m are both odd, then

$$
(a \mid m)(m \mid a)=(-1)^{(a-1)(m-1) / 4} .
$$

[^6]
Properties of the Jacobi Symbol (concluded)

- Properties 3-6 allow us to calculate the Jacobi symbol without factorization.
- It will also yield the same result as Euler's test ${ }^{\text {a }}$ when m is an odd prime.
- This situation is similar to the Euclidean algorithm.
- Note also that $(a \mid m)=1 /(a \mid m)$ because $(a \mid m)= \pm 1$. ${ }^{\mathrm{b}}$

[^7]${ }^{\text {b }}$ Contributed by Mr. Huang, Kuan-Lin (B96902079, R00922018) on

Calculation of (2200|999)

$$
\begin{aligned}
(2200 \mid 999) & =(202 \mid 999) \\
& =(2 \mid 999)(101 \mid 999) \\
& =(-1)^{\left(999^{2}-1\right) / 8}(101 \mid 999) \\
& =(-1)^{124750}(101 \mid 999)=(101 \mid 999) \\
& =(-1)^{(100)(998) / 4}(999 \mid 101)=(-1)^{24950}(999 \mid 101) \\
& =(999 \mid 101)=(90 \mid 101)=(-1)^{\left(101^{2}-1\right) / 8}(45 \mid 101) \\
& =(-1)^{1275}(45 \mid 101)=-(45 \mid 101) \\
& =-(-1)^{(44)(100) / 4}(101 \mid 45)=-(101 \mid 45)=-(11 \mid 45) \\
& =-(-1)^{(10)(44) / 4}(45 \mid 11)=-(45 \mid 11) \\
& =-(1 \mid 11)=-1 .
\end{aligned}
$$

A Result Generalizing Proposition 10.3 in the Textbook

Theorem 72 The group of set $\Phi(n)$ under multiplication $\bmod n$ has a primitive root if and only if n is either 1, 2, 4, p^{k}, or $2 p^{k}$ for some nonnegative integer k and an odd prime p.

This result is essential in the proof of the next lemma.

The Jacobi Symbol and Primality Test ${ }^{\text {a }}$

Lemma 73 If $(M \mid N) \equiv M^{(N-1) / 2} \bmod N$ for all $M \in \Phi(N)$, then N is a prime. (Assume N is odd.)

- Assume $N=m p$, where p is an odd prime, $\operatorname{gcd}(m, p)=1$, and $m>1$ (not necessarily prime).
- Let $r \in \Phi(p)$ such that $(r \mid p)=-1$.
- The Chinese remainder theorem says that there is an $M \in \Phi(N)$ such that

$$
\begin{aligned}
M & =r \bmod p \\
M & =1 \bmod m .
\end{aligned}
$$

[^8]
The Proof (continued)

- By the hypothesis,

$$
M^{(N-1) / 2}=(M \mid N)=(M \mid p)(M \mid m)=-1 \bmod N .
$$

- Hence

$$
M^{(N-1) / 2}=-1 \bmod m .
$$

- But because $M=1 \bmod m$,

$$
M^{(N-1) / 2}=1 \bmod m,
$$

a contradiction.

The Proof (continued)

- Second, assume that $N=p^{a}$, where p is an odd prime and $a \geq 2$.
- By Theorem 72 (p. 583), there exists a primitive root r modulo p^{a}.
- From the assumption,

$$
M^{N-1}=\left[M^{(N-1) / 2}\right]^{2}=(M \mid N)^{2}=1 \bmod N
$$

for all $M \in \Phi(N)$.

The Proof (continued)

- As $r \in \Phi(N)$ (prove it), we have

$$
r^{N-1}=1 \bmod N
$$

- As r 's exponent modulo $N=p^{a}$ is $\phi(N)=p^{a-1}(p-1)$,

$$
p^{a-1}(p-1) \mid(N-1),
$$

which implies that $p \mid(N-1)$.

- But this is impossible given that $p \mid N$.

The Proof (continued)

- Third, assume that $N=m p^{a}$, where p is an odd prime, $\operatorname{gcd}(m, p)=1, m>1$ (not necessarily prime), and a is even.
- The proof mimics that of the second case.
- By Theorem 72 (p. 583), there exists a primitive root r modulo p^{a}.
- From the assumption,

$$
M^{N-1}=\left[M^{(N-1) / 2}\right]^{2}=(M \mid N)^{2}=1 \bmod N
$$

for all $M \in \Phi(N)$.

The Proof (continued)

- In particular,

$$
\begin{equation*}
M^{N-1}=1 \bmod p^{a} \tag{15}
\end{equation*}
$$

for all $M \in \Phi(N)$.

- The Chinese remainder theorem says that there is an $M \in \Phi(N)$ such that

$$
\begin{aligned}
M & =r \bmod p^{a} \\
M & =1 \bmod m
\end{aligned}
$$

- Because $M=r \bmod p^{a}$ and Eq. (15),

$$
r^{N-1}=1 \bmod p^{a}
$$

The Proof (concluded)

- As r 's exponent modulo $N=p^{a}$ is $\phi(N)=p^{a-1}(p-1)$,

$$
p^{a-1}(p-1) \mid(N-1),
$$

which implies that $p \mid(N-1)$.

- But this is impossible given that $p \mid N$.

The Number of Witnesses to Compositeness

Theorem 74 (Solovay \& Strassen, 1977) If N is an odd composite, then $(M \mid N) \equiv M^{(N-1) / 2} \bmod N$ for at most half of $M \in \Phi(N)$.

- By Lemma 73 (p. 584) there is at least one $a \in \Phi(N)$ such that $(a \mid N) \not \equiv a^{(N-1) / 2} \bmod N$.
- Let $B \triangleq\left\{b_{1}, b_{2}, \ldots, b_{k}\right\} \subseteq \Phi(N)$ be the set of all distinct residues such that $\left(b_{i} \mid N\right) \equiv b_{i}^{(N-1) / 2} \bmod N$.
- Let $a B \triangleq\left\{a b_{i} \bmod N: i=1,2, \ldots, k\right\}$.
- Clearly, $a B \subseteq \Phi(N)$, too.

The Proof (concluded)

- $|a B|=k$.
- $a b_{i} \equiv a b_{j} \bmod N$ implies $N \mid a\left(b_{i}-b_{j}\right)$, which is impossible because $\operatorname{gcd}(a, N)=1$ and $N>\left|b_{i}-b_{j}\right|$.
- $a B \cap B=\emptyset$ because

$$
\left(a b_{i}\right)^{(N-1) / 2} \equiv a^{(N-1) / 2} b_{i}^{(N-1) / 2} \not \equiv(a \mid N)\left(b_{i} \mid N\right) \equiv\left(a b_{i} \mid N\right) .
$$

- Combining the above two results, we know

$$
\frac{|B|}{\phi(N)} \leq \frac{|B|}{|B \cup a B|}=0.5 .
$$

1: if N is even but $N \neq 2$ then
2: return " N is composite";
3: else if $N=2$ then
4: return " N is a prime";
5: end if
6: Pick $M \in\{2,3, \ldots, N-1\}$ randomly;
7: if $\operatorname{gcd}(M, N)>1$ then
8: return " N is composite";
9: else
10: \quad if $(M \mid N) \equiv M^{(N-1) / 2} \bmod N$ then
11: return " N is (probably) a prime";
12: else
13: return " N is composite";
14: end if
15: end if

Analysis

- The algorithm certainly runs in polynomial time.
- There are no false positives (for Compositeness).
- When the algorithm says the number is composite, it is always correct.

Analysis (concluded)

- The probability of a false negative (again, for COMPOSITENESS) is at most one half.
- Suppose the input is composite.
- By Theorem 74 (p. 591), $\operatorname{prob}[$ algorithm answers "no" $\mid N$ is composite $] \leq 0.5$.
- Note that we are not referring to the probability that N is composite when the algorithm says "no."
- So it is a Monte Carlo algorithm for Compositeness ${ }^{\text {a }}$ by the definition on p. 539 .

[^9]The Improved Density Attack for Compositeness

Randomized Complexity Classes; RP

- Let N be a polynomial-time precise NTM that runs in time $p(n)$ and has 2 nondeterministic choices at each step.
- N is a polynomial Monte Carlo Turing machine for a language L if the following conditions hold:
- If $x \in L$, then at least half of the $2^{p(n)}$ computation paths of N on x halt with "yes" where $n=|x|$.
- If $x \notin L$, then all computation paths halt with "no."
- The class of all languages with polynomial Monte Carlo TMs is denoted RP (randomized polynomial time). ${ }^{a}$

[^10]
Comments on RP

- In analogy to Proposition 41 (p. 335), a "yes" instance of an RP problem has many certificates (witnesses).
- There are no false positives.
- If we associate nondeterministic steps with flipping fair coins, then we can phrase RP in the language of probability.
- If $x \in L$, then $N(x)$ halts with "yes" with probability at least 0.5.
- If $x \notin L$, then $N(x)$ halts with "no."

Comments on RP (concluded)

- The probability of false negatives is ≤ 0.5.
- But any constant ϵ between 0 and 1 can replace 0.5 .
- Repeat the algorithm

$$
k \triangleq\left\lceil-\frac{1}{\log _{2} \epsilon}\right\rceil
$$

times.

- Answer "no" only if all the runs answer "no."
- The probability of false negatives becomes $\epsilon^{k} \leq 0.5$.

Where RP Fits

- $\mathrm{P} \subseteq \mathrm{RP} \subseteq \mathrm{NP}$.
- A deterministic TM is like a Monte Carlo TM except that all the coin flips are ignored.
- A Monte Carlo TM is an NTM with more demands on the number of accepting paths.
- COMPOSITENESS $\in R P ;{ }^{\text {a }}$ PRIMES $\in \operatorname{coRP}$; PRIMES \in RP. ${ }^{\mathrm{b}}$
- In fact, PRIMES $\in P$. ${ }^{\text {c }}$
- RP \cup coRP is an alternative "plausible" notion of efficient computation.

[^11]
ZPP ${ }^{\text {a }}$ (Zero Probabilistic Polynomial)

- The class ZPP is defined as $\mathrm{RP} \cap$ coRP.
- A language in ZPP has two Monte Carlo algorithms, one with no false positives (RP) and the other with no false negatives (coRP).
- If we repeatedly run both Monte Carlo algorithms, eventually one definite answer will come (unlike RP).
- A positive answer from the one without false positives.
- A negative answer from the one without false negatives.

[^12]
The ZPP Algorithm (Las Vegas)

1: $\{$ Suppose $L \in$ ZPP. $\}$
2: $\left\{N_{1}\right.$ has no false positives, and N_{2} has no false negatives. $\}$
3: while true do
4: if $N_{1}(x)=$ "yes" then
5: return "yes";
6: end if
7: if $N_{2}(x)=$ "no" then
8: return "no";
9: end if
10: end while

ZPP (concluded)

- The expected running time for the correct answer to emerge is polynomial.
- The probability that a run of the 2 algorithms does not generate a definite answer is 0.5 (why?).
- Let $p(n)$ be the running time of each run of the while-loop.
- The expected running time for a definite answer is

$$
\sum_{i=1}^{\infty} 0.5^{i} i p(n)=2 p(n)
$$

- Essentially, ZPP is the class of problems that can be solved, without errors, in expected polynomial time.

Large Deviations

- Suppose you have a biased coin.
- One side has probability $0.5+\epsilon$ to appear and the other $0.5-\epsilon$, for some $0<\epsilon<0.5$.
- But you do not know which is which.
- How to decide which side is the more likely side - with high confidence?
- Answer: Flip the coin many times and pick the side that appeared the most times.
- Question: Can you quantify your confidence?

The (Improved) Chernoff Bound ${ }^{\text {a }}$

Theorem 75 (Chernoff, 1952) Suppose $x_{1}, x_{2}, \ldots, x_{n}$ are independent random variables taking the values 1 and 0 with probabilities p and $1-p$, respectively. Let $X=\sum_{i=1}^{n} x_{i}$. Then for all $0 \leq \theta \leq 1$,

$$
\operatorname{prob}[X \geq(1+\theta) p n] \leq e^{-\theta^{2} p n / 3} .
$$

- The probability that the deviate of a binomial random variable from its expected value $E[X]=E\left[\sum_{i=1}^{n} x_{i}\right]=p n$ decreases exponentially with the deviation.

[^13]
The Proof

- Let t be any positive real number.
- Then

$$
\operatorname{prob}[X \geq(1+\theta) p n]=\operatorname{prob}\left[e^{t X} \geq e^{t(1+\theta) p n}\right]
$$

- Markov's inequality (p. 542) generalized to real-valued random variables says that

$$
\operatorname{prob}\left[e^{t X} \geq k E\left[e^{t X}\right]\right] \leq 1 / k
$$

- With $k=e^{t(1+\theta) p n} / E\left[e^{t X}\right]$, we have ${ }^{\text {a }}$

$$
\operatorname{prob}[X \geq(1+\theta) p n] \leq e^{-t(1+\theta) p n} E\left[e^{t X}\right]
$$

[^14]
The Proof (continued)

- Because $X=\sum_{i=1}^{n} x_{i}$ and x_{i} 's are independent,

$$
E\left[e^{t X}\right]=\left(E\left[e^{t x_{1}}\right]\right)^{n}=\left[1+p\left(e^{t}-1\right)\right]^{n} .
$$

- Substituting, we obtain

$$
\begin{aligned}
& \operatorname{prob}[X \geq(1+\theta) p n] \leq e^{-t(1+\theta) p n}\left[1+p\left(e^{t}-1\right)\right]^{n} \\
& \leq e^{-t(1+\theta) p n} e^{p n\left(e^{t}-1\right)} \\
& \text { as }(1+a)^{n} \leq e^{a n} \text { for all } a>0 .
\end{aligned}
$$

The Proof (concluded)

- With the choice of $t=\ln (1+\theta)$, the above becomes

$$
\operatorname{prob}[X \geq(1+\theta) p n] \leq e^{p n[\theta-(1+\theta) \ln (1+\theta)]}
$$

- The exponent expands to ${ }^{\text {a }}$

$$
-\frac{\theta^{2}}{2}+\frac{\theta^{3}}{6}-\frac{\theta^{4}}{12}+\cdots
$$

for $0 \leq \theta \leq 1$.

- But it is less than

$$
-\frac{\theta^{2}}{2}+\frac{\theta^{3}}{6} \leq \theta^{2}\left(-\frac{1}{2}+\frac{\theta}{6}\right) \leq \theta^{2}\left(-\frac{1}{2}+\frac{1}{6}\right)=-\frac{\theta^{2}}{3}
$$

[^15]

Other Variations of the Chernoff Bound

The following can be proved similarly (prove it).
Theorem 76 Given the same terms as Theorem 75
(p. 605),

$$
\operatorname{prob}[X \leq(1-\theta) p n] \leq e^{-\theta^{2} p n / 2}
$$

The following slightly looser inequalities achieve symmetry.
Theorem 77 (Karp, Luby, \& Madras, 1989) Given the same terms as Theorem 75 (p. 605) except with $0 \leq \theta \leq 2$,

$$
\begin{aligned}
& \operatorname{prob}[X \geq(1+\theta) p n] \leq e^{-\theta^{2} p n / 4} \\
& \operatorname{prob}[X \leq(1-\theta) p n] \leq e^{-\theta^{2} p n / 4}
\end{aligned}
$$

Power of the Majority Rule

The next result follows from Theorem 76 (p. 610).
Corollary 78 If $p=(1 / 2)+\epsilon$ for some $0 \leq \epsilon \leq 1 / 2$, then

$$
\operatorname{prob}\left[\sum_{i=1}^{n} x_{i} \leq n / 2\right] \leq e^{-\epsilon^{2} n / 2}
$$

- The textbook's corollary to Lemma 11.9 seems too loose, at $e^{-\epsilon^{2} n / 6}$. ${ }^{\text {a }}$
- Our original problem (p. 604) hence demands, e.g., $n \approx 1.4 k / \epsilon^{2}$ independent coin flips to guarantee making an error with probability $\leq 2^{-k}$ with the majority rule.

[^16]
BPPa (Bounded Probabilistic Polynomial)

- The class BPP contains all languages L for which there is a precise polynomial-time NTM N such that:
- If $x \in L$, then at least $3 / 4$ of the computation paths of N on x lead to "yes."
- If $x \notin L$, then at least $3 / 4$ of the computation paths of N on x lead to "no."
- So N accepts or rejects by a clear majority.

[^17]
Magic 3/4?

- The number $3 / 4$ bounds the probability (ratio) of a right answer away from $1 / 2$.
- Any constant strictly between $1 / 2$ and 1 can be used without affecting the class BPP.
- In fact, as with RP,

$$
\frac{1}{2}+\frac{1}{q(n)}
$$

for any polynomial $q(n)$ can replace $3 / 4$.

- The next algorithm shows why.

The Majority Vote Algorithm

Suppose L is decided by N by majority $(1 / 2)+\epsilon$.
1: for $i=1,2, \ldots, 2 k+1$ do
2: \quad Run N on input x;
3: end for
4: if "yes" is the majority answer then
5: "yes";
6: else
7: "no";
8: end if

Analysis

- By Corollary 78 (p. 611), the probability of a false answer is at most $e^{-\epsilon^{2} k}$.
- By taking $k=\left\lceil 2 / \epsilon^{2}\right\rceil$, the error probability is at most 1/4.
- Even if ϵ is any inverse polynomial, k remains a polynomial in n.
- The running time remains polynomial: $2 k+1$ times N 's running time.

Aspects of BPP

- BPP is the most comprehensive yet plausible notion of efficient computation.
- If a problem is in BPP, we take it to mean that the problem can be solved efficiently.
- In this aspect, BPP has effectively replaced P.
- $(R P \cup c o R P) \subseteq(N P \cup c o N P)$.
- $(R P \cup c o R P) \subseteq B P P$.
- Whether $\mathrm{BPP} \subseteq(\mathrm{NP} \cup \mathrm{coNP})$ is unknown.
- But it is unlikely that NP \subseteq BPP. ${ }^{\text {a }}$

[^18]
coBPP

- The definition of BPP is symmetric: acceptance by clear majority and rejection by clear majority.
- An algorithm for $L \in$ BPP becomes one for \bar{L} by reversing the answer.
- So $\bar{L} \in \mathrm{BPP}$ and $\mathrm{BPP} \subseteq$ coBPP.
- Similarly coBPP \subseteq BPP.
- Hence BPP = coBPP.
- This approach does not work for RP. ${ }^{\text {a }}$

[^19]
BPP and coBPP

"The Good, the Bad, and the Ugly"

Circuit Complexity

- Circuit complexity is based on boolean circuits instead of Turing machines.
- A boolean circuit with n inputs computes a boolean function of n variables.
- Now, identify true/1 with "yes" and false/0 with "no."
- Then a boolean circuit with n inputs accepts certain strings in $\{0,1\}^{n}$.
- To relate circuits with an arbitrary language, we need one circuit for each possible input length n.

Formal Definitions

- The size of a circuit is the number of gates in it.
- A family of circuits is an infinite sequence $\mathcal{C}=\left(C_{0}, C_{1}, \ldots\right)$ of boolean circuits, where C_{n} has n boolean inputs.
- For input $x \in\{0,1\}^{*}, C_{|x|}$ outputs 1 if and only if $x \in L$.
- In other words,

$$
C_{n} \text { accepts } L \cap\{0,1\}^{n} \text {. }
$$

Formal Definitions (concluded)

- $L \subseteq\{0,1\}^{*}$ has polynomial circuits if there is a family of circuits \mathcal{C} such that:
- The size of C_{n} is at most $p(n)$ for some fixed polynomial p.
- C_{n} accepts $L \cap\{0,1\}^{n}$.

Exponential Circuits Suffice for All Languages

- Theorem 16 (p. 212) implies that there are languages that cannot be solved by circuits of size $2^{n} /(2 n)$.
- But surprisingly, circuits of size 2^{n+2} can solve all problems, decidable or otherwise!

Exponential Circuits Suffice for All Languages (continued)

Proposition 79 All decision problems (decidable or otherwise) can be solved by a circuit of size 2^{n+2} and depth $2 n$.

- We will show that for any language $L \subseteq\{0,1\}^{*}$, $L \cap\{0,1\}^{n}$ can be decided by a circuit of size 2^{n+2}.
- Define boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, where

$$
f\left(x_{1} x_{2} \cdots x_{n}\right)= \begin{cases}1, & x_{1} x_{2} \cdots x_{n} \in L \\ 0, & x_{1} x_{2} \cdots x_{n} \notin L .\end{cases}
$$

The Proof (concluded)

- Clearly, any circuit that implements f decides $L \cap\{0,1\}^{n}$.
- Now,

$$
f\left(x_{1} x_{2} \cdots x_{n}\right)=\left(x_{1} \wedge f\left(1 x_{2} \cdots x_{n}\right)\right) \vee\left(\neg x_{1} \wedge f\left(0 x_{2} \cdots x_{n}\right)\right) .
$$

- The circuit size $s(n)$ for $f\left(x_{1} x_{2} \cdots x_{n}\right)$ hence satisfies

$$
s(n)=4+2 s(n-1)
$$

with $s(1)=1$.

- Solve it to obtain $s(n)=5 \times 2^{n-1}-4 \leq 2^{n+2}$.
- The longest path consists of an alternating sequence of $\vee s$ and $\wedge s$.

[^0]: ${ }^{\text {a }}$ Carmichael (1910). Lo (1994) mentions an investment strategy based on such numbers!
 ${ }^{\text {b }}$ Alford, Granville, \& Pomerance (1992).

[^1]: ${ }^{\text {a }}$ But no efficient deterministic general-purpose square-root-extracting algorithms are known yet.

[^2]: ${ }^{\text {a }}$ Andrien-Marie Legendre (1752-1833).

[^3]: ${ }^{\text {a }}$ Because then $i q \equiv-j q \bmod p$ for some $i \neq j$.

[^4]: ${ }^{\text {a }}$ First stated by Euler in 1751. Legendre (1785) did not give a correct proof. Gauss proved the theorem when he was 19. He gave at least 8 different proofs during his life. The 152nd proof appeared in 1963. A computer-generated formal proof was given in Russinoff (1990). As of 2008, there had been 4 such proofs. Wiedijk (2008), "the Law of Quadratic Reciprocity is the first nontrivial theorem that a student encounters in the mathematics curriculum."

[^5]: ${ }^{\text {a }}$ Carl Jacobi (1804-1851).

[^6]: ${ }^{a}$ By Lemma 70 (p. 568) and some parity arguments.

[^7]: ${ }^{\text {a }}$ Recall p. 560. December 6, 2011.

[^8]: ${ }^{\text {a }}$ Mr. Clement Hsiao (B4506061, R88526067) pointed out that the textbook's proof for Lemma 11.8 is incorrect in January 1999 while he was a senior.

[^9]: ${ }^{\text {a Not PRIMES. }}$

[^10]: ${ }^{\text {a Adleman } \& ~ M a n d e r s ~(1977) . ~}$

[^11]: ${ }^{\text {a }}$ Rabin (1976); Solovay \& Strassen (1977).
 ${ }^{\text {b }}$ Adleman \& Huang (1987).
 ${ }^{c}$ Agrawal, Kayal, \& Saxena (2002).

[^12]: ${ }^{\text {a }}$ Gill (1977).

[^13]: ${ }^{\text {a }}$ Herman Chernoff (1923-). This bound is asymptotically optimal. The original bound is $e^{-2 \theta^{2} p^{2} n}$ (McDiarmid, 1998).

[^14]: ${ }^{\text {a }}$ Note that X does not appear in k. Contributed by Mr. Ao Sun (R05922147) on December 20, 2016.

[^15]: ${ }^{\text {a }}$ Or McDiarmid (1998): $x-(1+x) \ln (1+x) \leq-3 x^{2} /(6+2 x)$ for all $x \geq 0$.

[^16]: ${ }^{\text {a See }}$ Dubhashi \& Panconesi (2012) for many Chernoff-type bounds.

[^17]: ${ }^{a}$ Gill (1977).

[^18]: ${ }^{\text {a }}$ See p. 628.

[^19]: ${ }^{\text {a }}$ It did not work for NP either.

