#### **Exponents**

- The **exponent** of  $m \in \Phi(p)$  is the least  $k \in \mathbb{Z}^+$  such that  $m^k = 1 \mod p$ .
- Every residue  $s \in \Phi(p)$  has an exponent.
  - $-1, s, s^2, s^3, \ldots$  eventually repeats itself modulo p, say  $s^i \equiv s^j \mod p$ , i < j, which means  $s^{j-i} = 1 \mod p$ .
- If the exponent of m is k and  $m^{\ell} = 1 \mod p$ , then  $k \mid \ell$ .
  - Otherwise,  $\ell = qk + a$  for 0 < a < k, and  $m^{\ell} = m^{qk+a} \equiv m^a \equiv 1 \mod p$ , a contradiction.

**Lemma 64** Any nonzero polynomial of degree k has at most k distinct roots modulo p.

#### **Exponents and Primitive Roots**

- From Fermat's "little" theorem (p. 493), all exponents divide p-1.
- A primitive root of p is thus a number with exponent p-1.
- Let R(k) denote the total number of residues in  $\Phi(p) = \{1, 2, \dots, p-1\}$  that have exponent k.
- We already knew that R(k) = 0 for  $k \not| (p-1)$ .
- As every number has an exponent,

$$\sum_{k \mid (p-1)} R(k) = p - 1. \tag{7}$$

#### Size of R(k)

- Any  $a \in \Phi(p)$  of exponent k satisfies  $x^k = 1 \mod p$ .
- By Lemma 64 (p. 498) there are at most k residues of exponent k, i.e.,  $R(k) \leq k$ .
- Let s be a residue of exponent k.
- $1, s, s^2, \ldots, s^{k-1}$  are distinct modulo p.
  - Otherwise,  $s^i \equiv s^j \mod p$  with i < j.
  - Then  $s^{j-i} = 1 \mod p$  with j i < k, a contradiction.
- As all these k distinct numbers satisfy  $x^k = 1 \mod p$ , they comprise all the solutions of  $x^k = 1 \mod p$ .

# Size of R(k) (continued)

- But do all of them have exponent k (i.e., R(k) = k)?
- And if not (i.e., R(k) < k), how many of them do?
- Pick  $s^{\ell}$ , where  $\ell < k$ .
- Suppose  $\ell \notin \Phi(k)$  with  $gcd(\ell, k) = d > 1$ .
- Then

$$(s^{\ell})^{k/d} = (s^k)^{\ell/d} = 1 \mod p.$$

- Therefore,  $s^{\ell}$  has exponent at most k/d < k.
- So  $s^{\ell}$  has exponent k only if  $\ell \in \Phi(k)$ .
- We conclude that

$$R(k) \le \phi(k)$$
.

# Size of R(k) (continued)

• Because all p-1 residues have an exponent,

$$p-1 = \sum_{k \mid (p-1)} R(k) \le \sum_{k \mid (p-1)} \phi(k) = p-1$$

by Lemma 61 (p. 491) and Eq. (7) (p. 499).

• Hence

$$R(k) = \begin{cases} \phi(k), & \text{when } k \mid (p-1), \\ 0, & \text{otherwise.} \end{cases}$$

# Size of R(k) (concluded)

• Incidentally, we have shown that

$$g^{\ell}$$
, where  $\ell \in \Phi(k)$ ,

are all the numbers with exponent k if g has exponent k.

- As  $R(p-1) = \phi(p-1) > 0$ , p has primitive roots.
- This proves one direction of Theorem 56 (p. 476).

#### A Few Calculations

- Let p = 13.
- From p. 495  $\phi(p-1) = 4$ .
- Hence R(12) = 4.
- Indeed, there are 4 primitive roots of p.
- As

$$\Phi(p-1) = \{1, 5, 7, 11\},\$$

the primitive roots are

$$g^1, g^5, g^7, g^{11},$$

where g is any primitive root.

#### **Function Problems**

- Decision problems are yes/no problems (SAT, TSP (D), etc.).
- Function problems require a solution (a satisfying truth assignment, a best TSP tour, etc.).
- Optimization problems are clearly function problems.
- What is the relation between function and decision problems?
- Which one is harder?

# Function Problems Cannot Be Easier than Decision Problems

- If we know how to generate a solution, we can solve the corresponding decision problem.
  - If you can find a satisfying truth assignment efficiently, then SAT is in P.
  - If you can find the best TSP tour efficiently, then TSP
    (D) is in P.
- But we shall see that decision problems can be as hard as the corresponding function problems. immediately.

#### **FSAT**

- FSAT is this function problem:
  - Let  $\phi(x_1, x_2, \ldots, x_n)$  be a boolean expression.
  - If  $\phi$  is satisfiable, then return a satisfying truth assignment.
  - Otherwise, return "no."
- We next show that if  $SAT \in P$ , then FSAT has a polynomial-time algorithm.
- SAT is a subroutine (black box) that returns "yes" or "no" on the satisfiability of the input.

#### An Algorithm for FSAT Using SAT

```
1: t := \epsilon; {Truth assignment.}
 2: if \phi \in SAT then
      for i = 1, 2, ..., n do
 4: if \phi[x_i = \text{true}] \in \text{SAT then}
5: t := t \cup \{x_i = \text{true}\};
 6: \phi := \phi[x_i = \text{true}];
7: else
 8: t := t \cup \{x_i = \mathtt{false}\};
     \phi := \phi[\,x_i = \mathtt{false}\,];
     end if
10:
      end for
11:
12:
        return t;
13: else
        return "no";
15: end if
```

#### **Analysis**

- If sat can be solved in polynomial time, so can fsat.
  - There are  $\leq n+1$  calls to the algorithm for SAT.<sup>a</sup>
  - Boolean expressions shorter than  $\phi$  are used in each call to the algorithm for SAT.
- Hence SAT and FSAT are equally hard (or easy).
- Note that this reduction from FSAT to SAT is not a Karp reduction.<sup>b</sup>
- Instead, it calls SAT multiple times as a subroutine, and its answers guide the search on the computation tree.

<sup>&</sup>lt;sup>a</sup>Contributed by Ms. Eva Ou (R93922132) on November 24, 2004.

<sup>&</sup>lt;sup>b</sup>Recall p. 266 and p. 270.

#### TSP and TSP (D) Revisited

- We are given n cities 1, 2, ..., n and integer distances  $d_{ij} = d_{ji}$  between any two cities i and j.
- TSP (D) asks if there is a tour with a total distance at most B.
- TSP asks for a tour with the shortest total distance.
  - The shortest total distance is at most  $\sum_{i,j} d_{ij}$ .
    - \* Recall that the input string contains  $d_{11}, \ldots, d_{nn}$ .
- Thus the shortest total distance is less than  $2^{|x|}$  in magnitude, where x is the input (why?).
- We next show that if TSP  $(D) \in P$ , then TSP has a polynomial-time algorithm.

# An Algorithm for TSP Using TSP (D)

- 1: Perform a binary search over interval  $[0, 2^{|x|}]$  by calling TSP (D) to obtain the shortest distance, C;
- 2: **for**  $i, j = 1, 2, \dots, n$  **do**
- 3: Call TSP (D) with B = C and  $d_{ij} = C + 1$ ;
- 4: **if** "no" **then**
- 5: Restore  $d_{ij}$  to its old value; {Edge [i, j] is critical.}
- 6: end if
- 7: end for
- 8: **return** the tour with edges whose  $d_{ij} \leq C$ ;

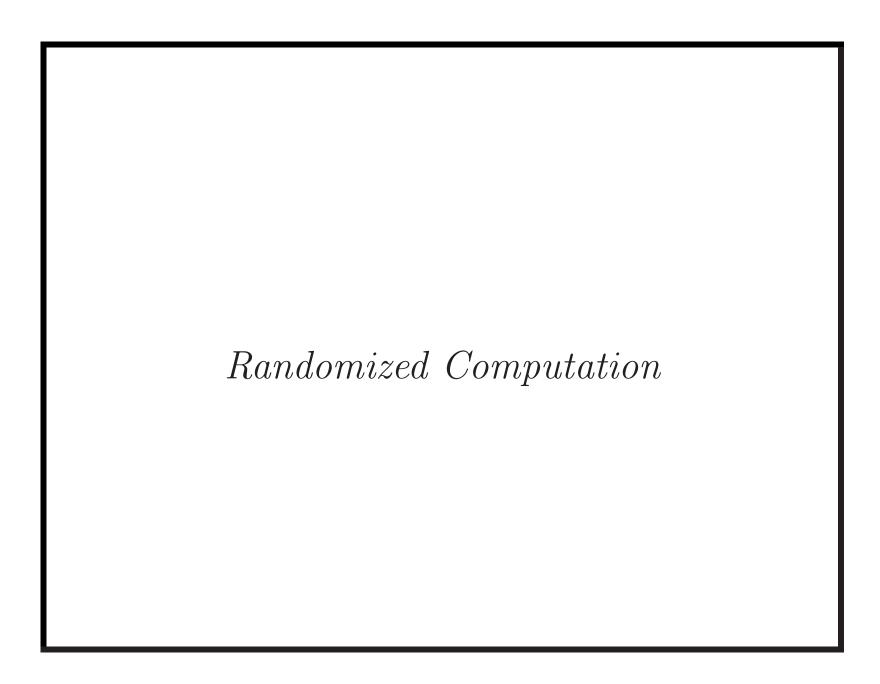
#### Analysis

- An edge which is not on any remaining optimal tours will be eliminated, with its  $d_{ij}$  set to C + 1.
- So the algorithm ends with n edges which are not eliminated (why?).
- This is true even if there are multiple optimal tours!<sup>a</sup>

<sup>&</sup>lt;sup>a</sup>Thanks to a lively class discussion on November 12, 2013.

# Analysis (concluded)

- There are  $O(|x|+n^2)$  calls to the algorithm for TSP (D).
- Each call has an input length of O(|x|).
- So if TSP (D) can be solved in polynomial time, so can TSP.
- Hence TSP (D) and TSP are equally hard (or easy).



I know that half my advertising works,

I just don't know which half.

— John Wanamaker

I know that half my advertising is a waste of money,
I just don't know which half!

— McGraw-Hill ad.

#### Randomized Algorithms<sup>a</sup>

- Randomized algorithms flip unbiased coins.
- There are important problems for which there are no known efficient *deterministic* algorithms but for which very efficient randomized algorithms exist.
  - Extraction of square roots, for instance.
- $\bullet$  There are problems where randomization is *necessary*.
  - Secure protocols.
- Randomized version can be more efficient.
  - Parallel algorithms for maximal independent set.<sup>b</sup>

<sup>&</sup>lt;sup>a</sup>Rabin (1976); Solovay & Strassen (1977).

<sup>&</sup>lt;sup>b</sup> "Maximal" (a local maximum) not "maximum" (a global maximum).

# Randomized Algorithms (concluded)

- Are randomized algorithms algorithms?<sup>a</sup>
- Coin flips are occasionally used in politics.<sup>b</sup>

<sup>b</sup>In the 2016 Iowa Democratic caucuses, e.g. (see http://edition.cnn.com/2016/02/02/politics/hillary-clinton-coin-flip-iowa-bernie-sanders/index.html).

<sup>&</sup>lt;sup>a</sup>Pascal, "Truth is so delicate that one has only to depart the least bit from it to fall into error."

#### "Four Most Important Randomized Algorithms" a

- 1. Primality testing.<sup>b</sup>
- 2. Graph connectivity using random walks.<sup>c</sup>
- 3. Polynomial identity testing.<sup>d</sup>
- 4. Algorithms for approximate counting.<sup>e</sup>

<sup>&</sup>lt;sup>a</sup>Trevisan (2006).

<sup>&</sup>lt;sup>b</sup>Rabin (1976); Solovay & Strassen (1977).

<sup>&</sup>lt;sup>c</sup>Aleliunas, Karp, Lipton, Lovász, & Rackoff (1979).

<sup>&</sup>lt;sup>d</sup>Schwartz (1980); Zippel (1979).

<sup>&</sup>lt;sup>e</sup>Sinclair & Jerrum (1989).

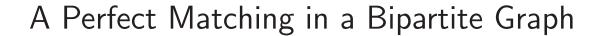
#### Bipartite Perfect Matching

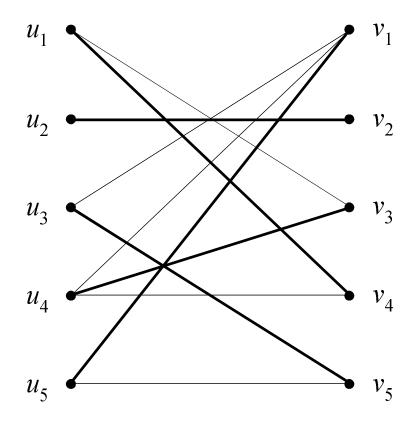
- We are given a **bipartite graph** G = (U, V, E).
  - $-U = \{u_1, u_2, \dots, u_n\}.$
  - $-V = \{v_1, v_2, \dots, v_n\}.$
  - $-E \subseteq U \times V.$
- We are asked if there is a **perfect matching**.
  - A permutation  $\pi$  of  $\{1, 2, ..., n\}$  such that

$$(u_i, v_{\pi(i)}) \in E$$

for all 
$$i \in \{1, 2, ..., n\}$$
.

• A perfect matching contains n edges.





#### Symbolic Determinants

- We are given a bipartite graph G.
- Construct the  $n \times n$  matrix  $A^G$  whose (i, j)th entry  $A^G_{ij}$  is a symbolic variable  $x_{ij}$  if  $(u_i, v_j) \in E$  and 0 otherwise:

$$A_{ij}^{G} = \begin{cases} x_{ij}, & \text{if } (u_i, v_j) \in E, \\ 0, & \text{otherwise.} \end{cases}$$

# Symbolic Determinants (continued)

• The matrix for the bipartite graph G on p. 520 is<sup>a</sup>

$$A^{G} = \begin{bmatrix} 0 & 0 & x_{13} & x_{14} & 0 \\ 0 & x_{22} & 0 & 0 & 0 \\ x_{31} & 0 & 0 & 0 & x_{35} \\ x_{41} & 0 & x_{43} & x_{44} & 0 \\ x_{51} & 0 & 0 & 0 & x_{55} \end{bmatrix}.$$
 (8)

<sup>&</sup>lt;sup>a</sup>The idea is similar to the Tanner (1981) graph in coding theory.

#### Symbolic Determinants (concluded)

• The **determinant** of  $A^G$  is

$$\det(A^G) = \sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^n A_{i,\pi(i)}^G.$$
 (9)

- $-\pi$  ranges over all permutations of n elements.
- $-\operatorname{sgn}(\pi)$  is 1 if  $\pi$  is the product of an even number of transpositions and -1 otherwise.<sup>a</sup>
- $det(A^G)$  contains n! terms, many of which may be 0s.

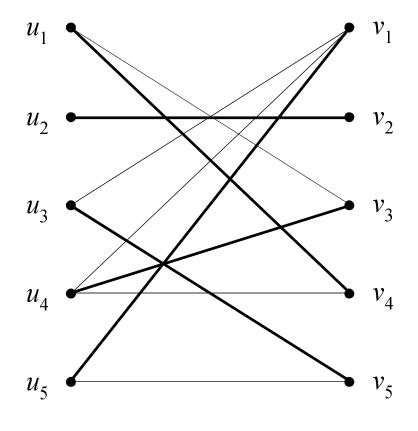
<sup>&</sup>lt;sup>a</sup>Equivalently,  $\operatorname{sgn}(\pi) = 1$  if the number of (i,j)s such that i < j and  $\pi(i) > \pi(j)$  is even. Contributed by Mr. Hwan-Jeu Yu (D95922028) on May 1, 2008.

#### Determinant and Bipartite Perfect Matching

- In  $\sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} A_{i,\pi(i)}^{G}$ , note the following:
  - Each summand corresponds to a possible perfect matching  $\pi$ .
  - Nonzero summands  $\prod_{i=1}^{n} A_{i,\pi(i)}^{G}$  are distinct monomials and will not cancel.
- $det(A^G)$  is essentially an exhaustive enumeration.

**Proposition 65 (Edmonds, 1967)** G has a perfect matching if and only if  $det(A^G)$  is not identically zero.

Perfect Matching and Determinant (p. 520)



# Perfect Matching and Determinant (concluded)

• The matrix is (p. 522)

$$A^{G} = \begin{bmatrix} 0 & 0 & x_{13} & x_{14} & 0 \\ 0 & x_{22} & 0 & 0 & 0 \\ x_{31} & 0 & 0 & 0 & x_{35} \\ x_{41} & 0 & x_{43} & x_{44} & 0 \\ \hline x_{51} & 0 & 0 & 0 & x_{55} \end{bmatrix}$$

- $\det(A^G) = -x_{14}x_{22}x_{35}x_{43}x_{51} + x_{13}x_{22}x_{35}x_{44}x_{51} + x_{14}x_{22}x_{31}x_{43}x_{55} x_{13}x_{22}x_{31}x_{44}x_{55}.$
- Each nonzero term denotes a perfect matching, and vice versa.

# How To Test If a Polynomial Is Identically Zero?

- $det(A^G)$  is a polynomial in  $n^2$  variables.
- It has, potentially, exponentially many terms.
- Expanding the determinant polynomial is thus infeasible.
- If  $det(A^G) \equiv 0$ , then it remains zero if we substitute arbitrary integers for the variables  $x_{11}, \ldots, x_{nn}$ .
- When  $det(A^G) \not\equiv 0$ , what is the likelihood of obtaining a zero?

#### Number of Roots of a Polynomial

**Lemma 66 (Schwartz, 1980)** Let  $p(x_1, x_2, ..., x_m) \not\equiv 0$  be a polynomial in m variables each of degree at most d. Let  $M \in \mathbb{Z}^+$ . Then the number of m-tuples

$$(x_1, x_2, \dots, x_m) \in \{0, 1, \dots, M-1\}^m$$

such that  $p(x_1, x_2, \dots, x_m) = 0$  is

$$\leq mdM^{m-1}$$
.

• By induction on m (consult the textbook).

#### Density Attack

• The density of roots in the domain is at most

$$\frac{mdM^{m-1}}{M^m} = \frac{md}{M}. (10)$$

- So suppose  $p(x_1, x_2, \ldots, x_m) \not\equiv 0$ .
- Then a random

$$(x_1, x_2, \dots, x_m) \in \{0, 1, \dots, M-1\}^m$$

has a probability of  $\leq md/M$  of being a root of p.

- Note that M is under our control!
  - One can raise M to lower the error probability, e.g.

# Density Attack (concluded)

Here is a sampling algorithm to test if  $p(x_1, x_2, ..., x_m) \not\equiv 0$ .

- 1: Choose  $i_1, \ldots, i_m$  from  $\{0, 1, \ldots, M-1\}$  randomly;
- 2: **if**  $p(i_1, i_2, ..., i_m) \neq 0$  **then**
- 3: **return** "p is not identically zero";
- 4: else
- 5: **return** "p is (probably) identically zero";
- 6: end if

#### **Analysis**

- If  $p(x_1, x_2, ..., x_m) \equiv 0$ , the algorithm will always be correct as  $p(i_1, i_2, ..., i_m) = 0$ .
- Suppose  $p(x_1, x_2, \dots, x_m) \not\equiv 0$ .
  - The algorithm will answer incorrectly with probability at most md/M by Eq. (10) on p. 529.
- We next return to the original problem of bipartite perfect matching.

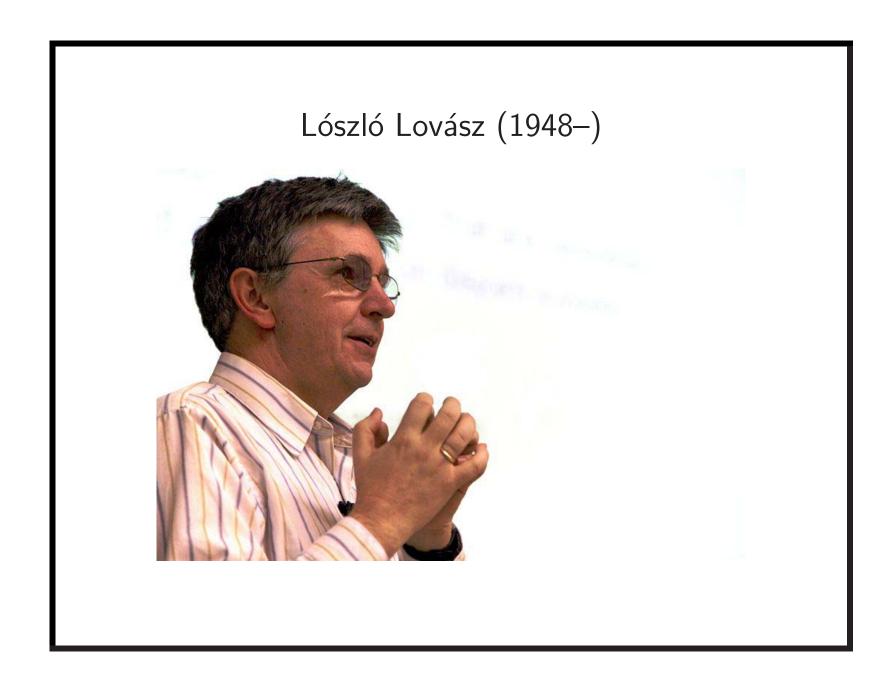
#### A Randomized Bipartite Perfect Matching Algorithm<sup>a</sup>

- 1: Choose  $n^2$  integers  $i_{11}, ..., i_{nn}$  from  $\{0, 1, ..., 2n^2 1\}$  randomly;  $\{\text{So } M = 2n^2.\}$
- 2: Calculate  $\det(A^G(i_{11},\ldots,i_{nn}))$  by Gaussian elimination;
- 3: **if**  $\det(A^G(i_{11},\ldots,i_{nn})) \neq 0$  **then**
- 4: **return** "G has a perfect matching";
- 5: else
- 6: **return** "G has (probably) no perfect matchings";
- 7: end if

<sup>&</sup>lt;sup>a</sup>Lovász (1979). According to Paul Erdős, Lovász wrote his first significant paper "at the ripe old age of 17."

#### **Analysis**

- If G has no perfect matchings, the algorithm will always be correct as  $\det(A^G(i_{11},\ldots,i_{nn}))=0$ .
- Suppose G has a perfect matching.
  - The algorithm will answer incorrectly with probability at most md/M = 0.5 with  $m = n^2$ , d = 1 and  $M = 2n^2$  in Eq. (10) on p. 529.
- $\bullet$  Run the algorithm independently k times.
- Output "G has no perfect matchings" if and only if all say "(probably) no perfect matchings."
- The error probability is now reduced to at most  $2^{-k}$ .



#### Remarks<sup>a</sup>

- Note that we calculated

  prob[algorithm answers "no" | G has no perfect matchings],
  - prob[algorithm answers "yes" |G| has a perfect matching].
  - And they are 1 and  $\geq 1/2$ , respectively.
- We did *not* calculate<sup>b</sup>

 $\operatorname{prob}[G]$  has no perfect matchings | algorithm answers "no" ],  $\operatorname{prob}[G]$  has a perfect matching | algorithm answers "yes" ].

<sup>&</sup>lt;sup>a</sup>Thanks to a lively class discussion on May 1, 2008.

<sup>&</sup>lt;sup>b</sup>Numerical Recipes in C (1988), "statistics is not a branch of mathematics!" Similar issues arise in MAP (maximum a posteriori) estimates and ML (maximum likelihood) estimates.

But How Large Can  $det(A^G(i_{11}, \ldots, i_{nn}))$  Be?

• It is at most<sup>a</sup>

$$n! \left(2n^2\right)^n$$
.

- Stirling's formula says  $n! \sim \sqrt{2\pi n} (n/e)^n$ .
- Hence

$$\log_2 \det(A^G(i_{11}, \dots, i_{nn})) = O(n \log_2 n)$$

bits are sufficient for representing the determinant.

• We skip the details about how to make sure that all intermediate results are of polynomial size.

<sup>&</sup>lt;sup>a</sup>In fact, it can be lowered to  $2^{O(\log^2 n)}$  (Csanky, 1975)!

### An Intriguing Question<sup>a</sup>

- Is there an  $(i_{11}, \ldots, i_{nn})$  that will always give correct answers for the algorithm on p. 532?
- A theorem on p. 628 shows that such an  $(i_{11}, \ldots, i_{nn})$  exists!
  - Whether it can be found efficiently is another matter.
- Once  $(i_{11}, \ldots, i_{nn})$  is available, the algorithm can be made deterministic.

<sup>&</sup>lt;sup>a</sup>Thanks to a lively class discussion on November 24, 2004.

#### Randomization vs. Nondeterminism<sup>a</sup>

- What are the differences between randomized algorithms and nondeterministic algorithms?
- Think of a randomized algorithm as a nondeterministic one but with a probability associated with every guess/branch.
- So each computation path of a randomized algorithm has a probability associated with it.

<sup>&</sup>lt;sup>a</sup>Contributed by Mr. Olivier Valery (D01922033) and Mr. Hasan Alhasan (D01922034) on November 27, 2012.

### Monte Carlo Algorithms<sup>a</sup>

- The randomized bipartite perfect matching algorithm is called a **Monte Carlo algorithm** in the sense that
  - If the algorithm finds that a matching exists, it is always correct (no false positives; no type I errors).
  - If the algorithm answers in the negative, then it may make an error (false negatives; type II errors).

<sup>&</sup>lt;sup>a</sup>Metropolis & Ulam (1949).

# Monte Carlo Algorithms (continued)

- The algorithm makes a false negative with probability  $\leq 0.5$ .<sup>a</sup>
- Again, this probability refers to b  $prob[algorithm answers "no" \mid G \text{ has a perfect matching}]$

 $\operatorname{prob}[G \text{ has a perfect matching } | \operatorname{algorithm answers "no"}].$ 

not

<sup>&</sup>lt;sup>a</sup>Equivalently, among the coin flip sequences, at most half of them lead to the wrong answer.

<sup>&</sup>lt;sup>b</sup>In general, prob[algorithm answers "no" | input is a yes instance].

# Monte Carlo Algorithms (concluded)

- This probability 0.5 is *not* over the space of all graphs or determinants, but *over* the algorithm's own coin flips.
  - It holds for *any* bipartite graph.
- In contrast, to calculate  $\operatorname{prob}[G \text{ has a perfect matching} | \operatorname{algorithm \ answers \ "no"}],$  we will need the distribution of G.
- But it is an empirical statement that is very hard to verify.

### The Markov Inequality<sup>a</sup>

**Lemma 67** Let x be a random variable taking nonnegative integer values. Then for any k > 0,

$$\operatorname{prob}[x \ge kE[x]] \le 1/k.$$

• Let  $p_i$  denote the probability that x = i.

$$E[x] = \sum_{i} ip_{i} = \sum_{i < kE[x]} ip_{i} + \sum_{i \ge kE[x]} ip_{i}$$

$$\geq \sum_{i \ge kE[x]} ip_{i} \ge kE[x] \sum_{i \ge kE[x]} p_{i}$$

$$\geq kE[x] \times \operatorname{prob}[x \ge kE[x]].$$

<sup>&</sup>lt;sup>a</sup>Andrei Andreyevich Markov (1856–1922).

Andrei Andreyevich Markov (1856–1922)



# FSAT for k-SAT Formulas (p. 507)

- Let  $\phi(x_1, x_2, \dots, x_n)$  be a k-sat formula.
- If  $\phi$  is satisfiable, then return a satisfying truth assignment.
- Otherwise, return "no."
- We next propose a randomized algorithm for this problem.

### A Random Walk Algorithm for $\phi$ in CNF Form

```
1: Start with an arbitrary truth assignment T;
 2: for i = 1, 2, ..., r do
      if T \models \phi then
        return "\phi is satisfiable with T";
 4:
      else
 5:
        Let c be an unsatisfied clause in \phi under T; {All of
        its literals are false under T.
        Pick any x of these literals at random;
 7:
        Modify T to make x true;
      end if
9:
10: end for
11: return "\phi is unsatisfiable";
```

# 3SAT vs. 2SAT Again

- Note that if  $\phi$  is unsatisfiable, the algorithm will answer "unsatisfiable."
- The random walk algorithm needs expected exponential time for 3SAT.
  - In fact, it runs in expected  $O((1.333 \cdots + \epsilon)^n)$  time with r = 3n, a much better than  $O(2^n)$ .
- We will show immediately that it works well for 2sat.
- The state of the art as of 2014 is expected  $O(1.30704^n)$  time for 3SAT and expected  $O(1.46899^n)$  time for 4SAT.<sup>c</sup>

<sup>&</sup>lt;sup>a</sup>Use this setting per run of the algorithm.

<sup>&</sup>lt;sup>b</sup>Schöning (1999). Makino, Tamaki, & Yamamoto (2011) improve the bound to deterministic  $O(1.3303^n)$ .

<sup>&</sup>lt;sup>c</sup>Hertli (2014).

#### Random Walk Works for 2SATa

**Theorem 68** Suppose the random walk algorithm with  $r = 2n^2$  is applied to any satisfiable 2SAT problem with n variables. Then a satisfying truth assignment will be discovered with probability at least 0.5.

- Let  $\hat{T}$  be a truth assignment such that  $\hat{T} \models \phi$ .
- Assume our starting T differs from  $\hat{T}$  in i values.
  - Their Hamming distance is i.
  - Recall T is arbitrary.

<sup>&</sup>lt;sup>a</sup>Papadimitriou (1991).

#### The Proof

- Let t(i) denote the expected number of repetitions of the flipping step<sup>a</sup> until a satisfying truth assignment is found.
- It can be shown that t(i) is finite.
- t(0) = 0 because it means that  $T = \hat{T}$  and hence  $T \models \phi$ .
- If  $T \neq \hat{T}$  or any other satisfying truth assignment, then we need to flip the coin at least once.
- We flip a coin to pick among the 2 literals of a clause not satisfied by the present T.
- At least one of the 2 literals is true under  $\hat{T}$  because  $\hat{T}$  satisfies all clauses.

<sup>&</sup>lt;sup>a</sup>That is, Statement 7.

- So we have at least a 50% chance of moving closer to  $\hat{T}$ .
- Thus

$$t(i) \le \frac{t(i-1) + t(i+1)}{2} + 1$$

for 0 < i < n.

- Inequality is used because, for example, T may differ from  $\hat{T}$  in both literals.
- It must also hold that

$$t(n) \le t(n-1) + 1$$

because at i = n, we can only decrease i.

• Now, put the necessary relations together:

$$t(0) = 0, (11)$$

$$t(i) \le \frac{t(i-1) + t(i+1)}{2} + 1, \quad 0 < i < n, \quad (12)$$

$$t(n) \leq t(n-1) + 1. \tag{13}$$

• Technically, this is a one-dimensional random walk with an absorbing barrier at i = 0 and a reflecting barrier at i = n (if we replace " $\leq$ " with "=").

<sup>&</sup>lt;sup>a</sup>The proof in the textbook does exactly that. But a student pointed out difficulties with this proof technique on December 8, 2004. So our proof here uses the original inequalities.

• Add up the relations for

$$2t(1), 2t(2), 2t(3), \dots, 2t(n-1), t(n)$$
 to obtain<sup>a</sup>

$$2t(1) + 2t(2) + \dots + 2t(n-1) + t(n)$$

$$\leq t(0) + t(1) + 2t(2) + \dots + 2t(n-2) + 2t(n-1) + t(n) + 2(n-1) + 1.$$

• Simplify it to yield

$$t(1) \le 2n - 1. \tag{14}$$

<sup>&</sup>lt;sup>a</sup>Adding up the relations for  $t(1), t(2), t(3), \ldots, t(n-1)$  will also work, thanks to Mr. Yen-Wu Ti (D91922010).

• Add up the relations for  $2t(2), 2t(3), \dots, 2t(n-1), t(n)$  to obtain

$$2t(2) + \dots + 2t(n-1) + t(n)$$

$$\leq t(1) + t(2) + 2t(3) + \dots + 2t(n-2) + 2t(n-1) + t(n) + 2(n-2) + 1.$$

• Simplify it to yield

$$t(2) \le t(1) + 2n - 3 \le 2n - 1 + 2n - 3 = 4n - 4$$

by Eq. (14) on p. 551.

• Continuing the process, we shall obtain<sup>a</sup>

$$t(i) \le 2in - i^2.$$

• The worst upper bound happens when i = n, in which case

$$t(n) \le n^2$$
.

• We conclude that

$$t(i) \le t(n) \le n^2$$

for  $0 \le i \le n$ .

<sup>&</sup>lt;sup>a</sup>See also Feller (1968).

# The Proof (concluded)

- So the expected number of steps is at most  $n^2$ .
- The algorithm picks  $r = 2n^2$ .
- Apply the Markov inequality (p. 542) with k = 2 to yield the desired probability of 0.5.
- The proof does not yield a polynomial bound for 3SAT.<sup>a</sup>

 $<sup>^{\</sup>rm a}{\rm Contributed}$  by Mr. Cheng-Yu Lee (R95922035) on November 8, 2006.

### Boosting the Performance

• We can pick  $r = 2mn^2$  to have an error probability of

$$\leq \frac{1}{2m}$$

by Markov's inequality.

- Alternatively, with the same running time, we can run the " $r = 2n^2$ " algorithm m times.
- The error probability is now reduced to

$$\leq 2^{-m}$$
.