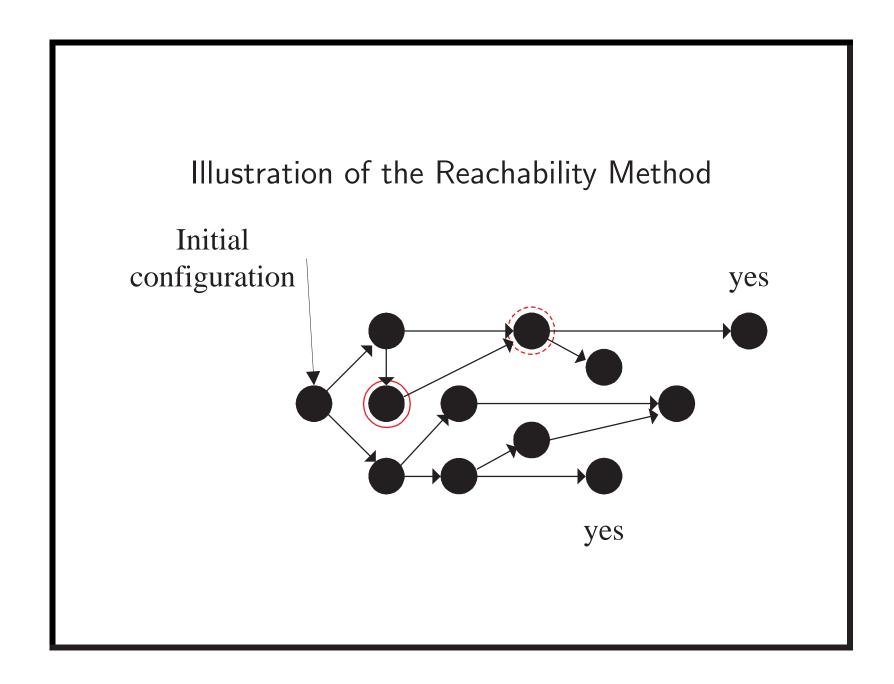
The Reachability Method

- The computation of a time-bounded TM can be represented by a directed graph.
- The TM's configurations constitute the nodes.
- There is a directed edge from node x to node y if x yields y in one step.
- The start node representing the initial configuration has zero in-degree.

The Reachability Method (concluded)

- When the TM is nondeterministic, a node may have an out-degree greater than one.
 - The graph is the same as the computation tree earlier.
 - But identical configurations are merged into one node.^a
- So M accepts the input if and only if there is a path from the start node to a node with a "yes" state.
- It is the reachability problem.

^aSo we end up with a graph not a tree.



Relations between Complexity Classes

Theorem 24 Suppose f(n) is proper. Then

- 1. $SPACE(f(n)) \subseteq NSPACE(f(n)),$ $TIME(f(n)) \subseteq NTIME(f(n)).$
- 2. NTIME $(f(n)) \subseteq SPACE(f(n))$.
- 3. NSPACE $(f(n)) \subseteq \text{TIME}(k^{\log n + f(n)})$.
- Proof of 2:
 - Explore the computation *tree* of the NTM for "yes."
 - Specifically, generate an f(n)-bit sequence denoting the nondeterministic choices over f(n) steps.

Proof of Theorem 24(2)

- (continued)
 - Simulate the NTM based on the choices.
 - Recycle the space and repeat the above steps.
 - Halt with "yes" when a "yes" is encountered or "no" if the tree is exhausted.
 - Each path simulation consumes at most O(f(n)) space because it takes O(f(n)) time.
 - The total space is O(f(n)) because space is recycled.

Proof of Theorem 24(3)

• Let k-string NTM

$$M = (K, \Sigma, \Delta, s)$$

with input and output decide $L \in NSPACE(f(n))$.

- Use the reachability method on the configuration graph of M on input x of length n.
- A configuration is a (2k+1)-tuple

$$(q, w_1, u_1, w_2, u_2, \dots, w_k, u_k).$$

Proof of Theorem 24(3) (continued)

• We only care about

$$(q, i, w_2, u_2, \dots, w_{k-1}, u_{k-1}),$$

where i is an integer between 0 and n for the position of the first cursor.

• The number of configurations is therefore at most

$$|K| \times (n+1) \times |\Sigma|^{2(k-2)f(n)} = O(c_1^{\log n + f(n)})$$
 (2)

for some $c_1 > 1$, which depends on M.

• Add edges to the configuration graph based on M's transition function.

Proof of Theorem 24(3) (concluded)

- $x \in L \Leftrightarrow$ there is a path in the configuration graph from the initial configuration to a configuration of the form ("yes", i, \ldots).^a
- This is REACHABILITY on a graph with $O(c_1^{\log n + f(n)})$ nodes.
- It is in TIME $(c^{\log n + f(n)})$ for some c > 1 because REACHABILITY \in TIME (n^j) for some j and

$$\left[c_1^{\log n + f(n)}\right]^{j} = (c_1^{j})^{\log n + f(n)}.$$

^aThere may be many of them.

Space-Bounded Computation and Proper Functions

- In the definition of *space-bounded* computations earlier (p. 111), the TMs are not required to halt at all.
- When the space is bounded by a proper function f, computations can be assumed to halt:
 - Run the TM associated with f to produce a quasi-blank output of length f(n) first.
 - The space-bounded computation must repeat a configuration if it runs for more than $c^{\log n + f(n)}$ steps for some c > 1.^a

^aSee Eq. (2) on p. 244.

Space-Bounded Computation and Proper Functions (concluded)

- (continued)
 - So an infinite loop occurs during simulation for a computation path longer than $c^{\log n + f(n)}$ steps.
 - Hence we only simulate up to $c^{\log n + f(n)}$ time steps per computation path.

A Grand Chain of Inclusions^a

• It is an easy application of Theorem 24 (p. 241) that

$$L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP$$
.

- By Corollary 21 (p. 236), we know $L \subseteq PSPACE$.
- So the chain must break somewhere between L and EXP.
- It is suspected that all four inclusions are proper.
- But there are no proofs yet.

^aWith input from Mr. Chin-Luei Chang (B89902053, R93922004, D95922007) on October 22, 2004.

What Is Wrong with the Proof?^a

• By Theorem 24(2) (p. 241),

$$NL \subseteq TIME\left(k^{O(\log n)}\right) \subseteq TIME\left(n^{c_1}\right)$$

for some $c_1 > 0$.

• By Theorem 18 (p. 235),

TIME
$$(n^{c_1}) \subseteq \text{TIME } (n^{c_2}) \subseteq P$$

for some $c_2 > c_1$.

• So

$$NL \neq P$$
.

^aContributed by Mr. Yuan-Fu Shao (R02922083) on November 11, 2014.

What Is Wrong with the Proof? (concluded)

• Recall from p. 225 that $\mathrm{TIME}(k^{O(\log n)})$ is a shorthand for

$$\bigcup_{j>0} \text{TIME}\left(j^{O(\log n)}\right).$$

• So the correct proof runs more like

$$NL \subseteq \bigcup_{j>0} TIME \left(j^{O(\log n)}\right) \subseteq \bigcup_{c>0} TIME \left(n^c\right) = P.$$

• And

$$NL \neq P$$

no longer follows.

Nondeterministic and Deterministic Space

• By Theorem 6 (p. 118),

$$NTIME(f(n)) \subseteq TIME(c^{f(n)}),$$

an exponential gap.

- There is no proof yet that the exponential gap is inherent.
- How about NSPACE vs. SPACE?
- Surprisingly, the relation is only quadratic—a polynomial—by Savitch's theorem.

Savitch's Theorem

Theorem 25 (Savitch, 1970)

REACHABILITY $\in SPACE(\log^2 n)$.

- Let G(V, E) be a graph with n nodes.
- For $i \geq 0$, let

mean there is a path from node x to node y of length at most 2^i .

• There is a path from x to y if and only if

$$PATH(x, y, \lceil \log n \rceil)$$

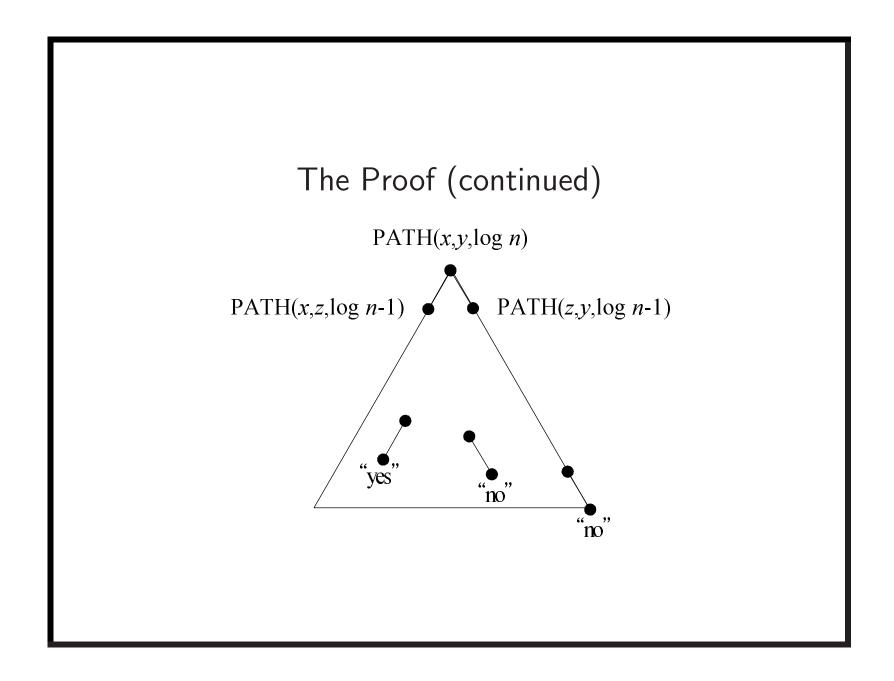
holds.

The Proof (continued)

- For i > 0, PATH(x, y, i) if and only if there exists a z such that PATH(x, z, i 1) and PATH(z, y, i 1).
- For PATH(x, y, 0), check the input graph or if x = y.
- Compute PATH $(x, y, \lceil \log n \rceil)$ with a depth-first search on a graph with nodes (x, y, i)s (see next page).^a
- Like stacks in recursive calls, we keep only the current path's (x, y, i)s.
- The space requirement is proportional to the depth of the tree ($\lceil \log n \rceil$) times the size of the items stored at each node.

^aContributed by Mr. Chuan-Yao Tan on October 11, 2011.

```
The Proof (continued): Algorithm for PATH(x, y, i)
1: if i = 0 then
   if x = y or (x, y) \in E then
   return true;
   else
5: return false;
   end if
7: else
    for z = 1, 2, ..., n do
   if PATH(x, z, i - 1) and PATH(z, y, i - 1) then
9:
         return true;
10:
   end if
11:
   end for
12:
    return false;
13:
14: end if
```



The Proof (concluded)

- Depth is $\lceil \log n \rceil$, and each node (x, y, i) needs space $O(\log n)$.
- The total space is $O(\log^2 n)$.

The Relation between Nondeterministic and Deterministic Space Is Only Quadratic

Corollary 26 Let $f(n) \ge \log n$ be proper. Then

$$NSPACE(f(n)) \subseteq SPACE(f^2(n)).$$

- Apply Savitch's proof to the configuration graph of the NTM on its input.
- From p. 244, the configuration graph has $O(c^{f(n)})$ nodes; hence each node takes space O(f(n)).
- But if we construct *explicitly* the whole graph before applying Savitch's theorem, we get $O(c^{f(n)})$ space!

The Proof (continued)

- The way out is *not* to generate the graph at all.
- Instead, keep the graph implicit.
- We checked node connectedness only when i = 0 on p. 254, by examining the input graph G.
- Suppose we are given configurations x and y.
- Then we go over the Turing machine's program to determine if there is an instruction that can turn x into y in one step.^a
- So connectivity is checked locally and on demand.

^aThanks to a lively class discussion on October 15, 2003.

The Proof (continued)

- The z variable in the algorithm on p. 254 simply runs through all possible valid configurations.
 - Let $z = 0, 1, \dots, O(c^{f(n)})$.
 - Make sure z is a valid configuration before proceeding with it.^a
 - * Adopt the same width for each symbol and state of the NTM and for the cursor position on the input string.^b
 - If it is not, advance to the next z.

^aThanks to a lively class discussion on October 13, 2004.

^bContributed by Mr. Jia-Ming Zheng (R04922024) on October 17, 2017.

The Proof (concluded)

- Each z has length O(f(n)).
- So each node needs space O(f(n)).
- The depth of the recursive call on p. 254 is $O(\log c^{f(n)})$, which is O(f(n)).
- The total space is therefore $O(f^2(n))$.

Implications of Savitch's Theorem

Corollary 27 PSPACE = NPSPACE.

- Nondeterminism is less powerful with respect to space.
- Nondeterminism may be very powerful with respect to time as it is not known if P = NP.

Nondeterministic Space Is Closed under Complement

- Closure under complement is trivially true for deterministic complexity classes (p. 228).
- It is known that^a

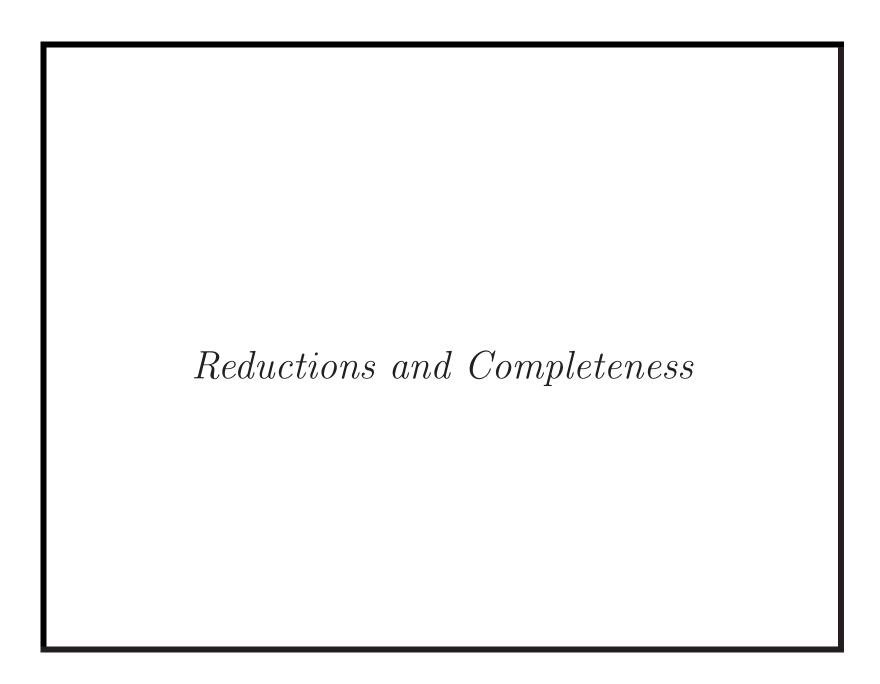
$$coNSPACE(f(n)) = NSPACE(f(n)).$$
 (3)

• So

$$coNL = NL.$$

• But it is not known whether coNP = NP.

^aSzelepscényi (1987); Immerman (1988).



It is unworthy of excellent men to lose hours like slaves in the labor of computation.

— Gottfried Wilhelm von Leibniz (1646–1716)

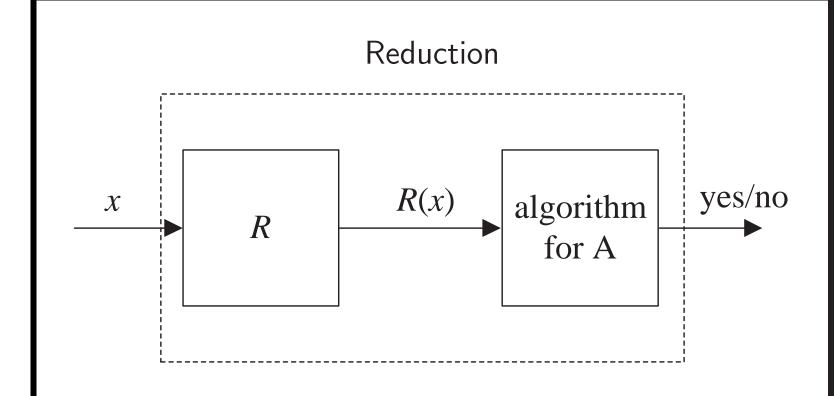
I thought perhaps you might be members of that lowly section of the university known as the Sheffield Scientific School. F. Scott Fitzgerald (1920), "May Day"

Degrees of Difficulty

- When is a problem more difficult than another?
- B reduces to A if:
 - There is a transformation R which for every problem instance x of B yields a problem instance R(x) of A.^a
 - The answer to " $R(x) \in A$?" is the same as the answer to " $x \in B$?"
 - -R is easy to compute.
- We say problem A is at least as hard as^b problem B if B reduces to A.

^aSee also p. 149.

^bOr simply "harder than" for brevity.



Solving problem B by calling the algorithm for problem A once and without further processing its answer.^a

^aMore general reductions are possible, such as the Turing (1939) reduction and the Cook (1971) reduction.

Degrees of Difficulty (concluded)

- This makes intuitive sense: If A is able to solve your problem B after only a little bit of work of R, then A must be at least as hard.
 - If A is easy to solve, it combined with R (which is also easy) would make B easy to solve, too.^a
 - So if B is hard to solve, A must be hard (if not harder), too!

^aThanks to a lively class discussion on October 13, 2009.

Comments^a

- Suppose B reduces to A via a transformation R.
- The input x is an instance of B.
- The output R(x) is an instance of A.
- R(x) may not span all possible instances of A.^c
 - Some instances of A may never appear in R's range.
- But x must be an arbitrary instance for B.

^aContributed by Mr. Ming-Feng Tsai (D92922003) on October 29, 2003.

^bSometimes, we say "B can be reduced to A."

 $^{^{}c}R(x)$ may not be onto; Mr. Alexandr Simak (D98922040) on October 13, 2009.

Is "Reduction" a Confusing Choice of Word?^a

- If B reduces to A, doesn't that intuitively make A smaller and simpler?
- But our definition means just the opposite.
- Our definition says in this case B is a special case of A.^b
- Hence A is harder.

^aMoore & Mertens (2011).

^bSee also p. 152.

Reduction between Languages

- Language L_1 is **reducible to** L_2 if there is a function R computable by a deterministic TM in space $O(\log n)$.
- Furthermore, for all inputs $x, x \in L_1$ if and only if $R(x) \in L_2$.
- R is said to be a (Karp) reduction from L_1 to L_2 .

Reduction between Languages (concluded)

- Note that by Theorem 24 (p. 241), R runs in polynomial time.
 - In most cases, a polynomial-time R suffices for proofs.^a
- Suppose R is a reduction from L_1 to L_2 .
- Then solving " $R(x) \in L_2$?" is an algorithm for solving " $x \in L_1$?" b

^aIn fact, unless stated otherwise, we will only require that the reduction R run in polynomial time. It is often called a **polynomial-time** many-one reduction.

^bOf course, it may not be the most efficient.

A Paradox?

- Degree of difficulty is not defined in terms of absolute complexity.
- So a language $B \in TIME(n^{99})$ may be "easier" than a language $A \in TIME(n^3)$ if B reduces to A.
- But isn't this a contradiction if the best algorithm for B requires n^{99} steps?
- That is, how can a problem requiring n^{99} steps be reducible to a problem solvable in n^3 steps?

Paradox Resolved

- The so-called contradiction is the result of flawed logic.
- Suppose we solve the problem " $x \in B$?" via " $R(x) \in A$?"
- We must consider the time spent by R(x) and its length |R(x)|:
 - Because R(x) (not x) is solved by A.

HAMILTONIAN PATH

- A **Hamiltonian path** of a graph is a path that visits every node of the graph exactly once.
- Suppose graph G has n nodes: $1, 2, \ldots, n$.
- A Hamiltonian path can be expressed as a permutation π of $\{1, 2, ..., n\}$ such that
 - $-\pi(i)=j$ means the *i*th position is occupied by node *j*.
 - $-(\pi(i), \pi(i+1)) \in G \text{ for } i = 1, 2, \dots, n-1.$

HAMILTONIAN PATH (concluded)

So

$$\left(\begin{array}{cccc} 1 & 2 & \cdots & n \\ \pi(1) & \pi(2) & \cdots & \pi(n) \end{array}\right).$$

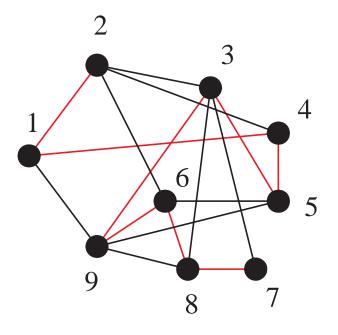
• HAMILTONIAN PATH asks if a graph has a Hamiltonian path.

Reduction of HAMILTONIAN PATH to SAT

- Given a graph G, we shall construct a CNF^a R(G) such that R(G) is satisfiable if and only if G has a Hamiltonian path.
- R(G) has n^2 boolean variables x_{ij} , $1 \le i, j \le n$.
- x_{ij} means the *i*th position in the Hamiltonian path is occupied by node *j*.
- Our reduction will produce clauses.

^aRemember that R does not have to be onto.

A Hamiltonian Path



$$x_{12} = x_{21} = x_{34} = x_{45} = x_{53} = x_{69} = x_{76} = x_{88} = x_{97} = 1;$$

 $\pi(1) = 2, \pi(2) = 1, \pi(3) = 4, \pi(4) = 5, \pi(5) = 3, \pi(6) = 9, \pi(7) = 6, \pi(8) = 8, \pi(9) = 7.$

The Clauses of R(G) and Their Intended Meanings

- 1. Each node j must appear in the path.
 - $x_{1j} \vee x_{2j} \vee \cdots \vee x_{nj}$ for each j.
- 2. No node j appears twice in the path.
 - $\neg x_{ij} \lor \neg x_{kj} (\equiv \neg (x_{ij} \land x_{kj}))$ for all i, j, k with $i \neq k$.
- 3. Every position i on the path must be occupied.
 - $x_{i1} \vee x_{i2} \vee \cdots \vee x_{in}$ for each i.
- 4. No two nodes j and k occupy the same position in the path.
 - $\neg x_{ij} \lor \neg x_{ik} (\equiv \neg (x_{ij} \land x_{ik}))$ for all i, j, k with $j \neq k$.
- 5. Nonadjacent nodes i and j cannot be adjacent in the path.
 - $\neg x_{ki} \lor \neg x_{k+1,j} (\equiv \neg (x_{k,i} \land x_{k+1,j}))$ for all $(i,j) \notin E$ and $k = 1, 2, \dots, n-1$.

The Proof

- R(G) contains $O(n^3)$ clauses.
- R(G) can be computed efficiently (simple exercise).
- Suppose $T \models R(G)$.
- From the 1st and 2nd types of clauses, for each node j there is a unique position i such that $T \models x_{ij}$.
- From the 3rd and 4th types of clauses, for each position i there is a unique node j such that $T \models x_{ij}$.
- So there is a permutation π of the nodes such that $\pi(i) = j$ if and only if $T \models x_{ij}$.

The Proof (concluded)

- The 5th type of clauses furthermore guarantee that $(\pi(1), \pi(2), \dots, \pi(n))$ is a Hamiltonian path.
- Conversely, suppose G has a Hamiltonian path

$$(\pi(1),\pi(2),\ldots,\pi(n)),$$

where π is a permutation.

• Clearly, the truth assignment

$$T(x_{ij}) =$$
true if and only if $\pi(i) = j$

satisfies all clauses of R(G).

A Comment^a

- An answer to "Is R(G) satisfiable?" answers the question "Is G Hamiltonian?"
- But a "yes" does not give a Hamiltonian path for G.
 - Providing a witness is not a requirement of reduction.
- A "yes" to "Is R(G) satisfiable?" plus a satisfying truth assignment does provide us with a Hamiltonian path for G.

^aContributed by Ms. Amy Liu (J94922016) on May 29, 2006.

Reduction of REACHABILITY to CIRCUIT VALUE

- Note that both problems are in P.
- Given a graph G = (V, E), we shall construct a variable-free circuit R(G).
- The output of R(G) is true if and only if there is a path from node 1 to node n in G.
- Idea: the Floyd-Warshall algorithm.^a

^aFloyd (1962); Marshall (1962).

The Gates

- The gates are
 - $-g_{ijk}$ with $1 \le i, j \le n$ and $0 \le k \le n$.
 - $-h_{ijk}$ with $1 \leq i, j, k \leq n$.
- g_{ijk} : There is a path from node i to node j without passing through a node bigger than k.
- h_{ijk} : There is a path from node i to node j passing through k but not any node bigger than k.
- Input gate $g_{ij0} = \text{true}$ if and only if i = j or $(i, j) \in E$.

The Construction

- h_{ijk} is an AND gate with predecessors $g_{i,k,k-1}$ and $g_{k,j,k-1}$, where k = 1, 2, ..., n.
- g_{ijk} is an OR gate with predecessors $g_{i,j,k-1}$ and $h_{i,j,k}$, where k = 1, 2, ..., n.
- g_{1nn} is the output gate.
- Interestingly, R(G) uses no \neg gates.
 - It is a monotone circuit.

Reduction of CIRCUIT SAT to SAT

- Given a circuit C, we will construct a boolean expression R(C) such that R(C) is satisfiable if and only if C is.
 - -R(C) will turn out to be a CNF.
 - -R(C) is basically a depth-2 circuit; furthermore, each gate has out-degree 1.
- The variables of R(C) are those of C plus g for each gate g of C.
 - The g's propagate the truth values for the CNF.
- Each gate of C will be turned into equivalent clauses.
- \bullet Recall that clauses are \wedge ed together by definition.

The Clauses of R(C)

g is a variable gate x: Add clauses $(\neg g \lor x)$ and $(g \lor \neg x)$.

• Meaning: $g \Leftrightarrow x$.

g is a true gate: Add clause (g).

• Meaning: g must be true to make R(C) true.

g is a false gate: Add clause $(\neg g)$.

• Meaning: g must be false to make R(C) true.

g is a \neg gate with predecessor gate h: Add clauses $(\neg g \lor \neg h)$ and $(g \lor h)$.

• Meaning: $g \Leftrightarrow \neg h$.

The Clauses of R(C) (continued)

- g is a \vee gate with predecessor gates h and h': Add clauses $(\neg g \vee h \vee h')$, $(g \vee \neg h)$, and $(g \vee \neg h')$.
 - The conjunction of the above clauses is equivalent to

$$[g \Rightarrow (h \lor h')] \land [(h \lor h') \Rightarrow g]$$

$$\equiv g \Leftrightarrow (h \lor h').$$

- g is a \land gate with predecessor gates h and h': Add clauses $(\neg g \lor h)$, $(\neg g \lor h')$, and $(g \lor \neg h \lor \neg h')$.
 - It is equivalent to

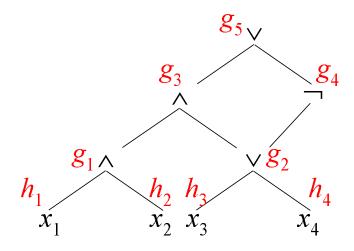
$$g \Leftrightarrow (h \wedge h').$$

The Clauses of R(C) (concluded)

g is the output gate: Add clause (g).

- Meaning: g must be true to make R(C) true.
- Note: If gate g feeds gates h_1, h_2, \ldots , then variable g appears in the clauses for h_1, h_2, \ldots in R(C).

An Example



$$(h_1 \Leftrightarrow x_1) \land (h_2 \Leftrightarrow x_2) \land (h_3 \Leftrightarrow x_3) \land (h_4 \Leftrightarrow x_4)$$

$$\land \quad [g_1 \Leftrightarrow (h_1 \land h_2)] \land [g_2 \Leftrightarrow (h_3 \lor h_4)]$$

$$\land \quad [g_3 \Leftrightarrow (g_1 \land g_2)] \land (g_4 \Leftrightarrow \neg g_2)$$

$$\land \quad [g_5 \Leftrightarrow (g_3 \vee g_4)] \land g_5.$$

An Example (concluded)

- The result is a CNF.
- The CNF adds new variables to the circuit's original input variables.
- The CNF has size proportional to the circuit's number of gates.
- Had we used the idea on p. 210 for the reduction, the resulting formula may have an exponential length because of the copying.^a

 $^{^{\}rm a} {\rm Contributed}$ by Mr. Ching-Hua Yu (D00921025) on October 16, 2012.

Composition of Reductions

Proposition 28 If R_{12} is a reduction from L_1 to L_2 and R_{23} is a reduction from L_2 to L_3 , then the composition $R_{12} \circ R_{23}$ is a reduction from L_1 to L_3 .

• So reducibility is transitive.^a

^aSee Proposition 8.2 of the textbook for a proof.