Notations

- Suppose M is a TM accepting L.
- Write $L(M)=L$.
- In particular, if $M(x)=\nearrow$ for all x, then $L(M)=\emptyset$.
- If $M(x)$ is never "yes" nor \nearrow (as required by the definition of acceptance), we also let $L(M)=\emptyset$.

Nontrivial Properties of Sets in RE

- A property of the recursively enumerable languages can be defined by the set \mathcal{C} of all the recursively enumerable languages that satisfy it.
- The property of finite recursively enumerable languages is

$$
\{L: L=L(M) \text { for a } \mathrm{TM} M, L \text { is finite }\} .
$$

- A property is trivial if $\mathcal{C}=\mathrm{RE}$ or $\mathcal{C}=\emptyset$.
- Answer to a trivial property is always "yes" or always "no."

Nontrivial Properties of Sets in RE (concluded)

- Here is a trivial property (always yes): Does the TM accept a recursively enumerable language? ${ }^{\text {a }}$
- A property is nontrivial if $\mathcal{C} \neq \mathrm{RE}$ and $\mathcal{C} \neq \emptyset$.
- In other words, answer to a nontrivial property is "yes" for some TMs and "no" for others.
- Here is a nontrivial property: Does the TM accept an empty language? ${ }^{\text {b }}$
- Up to now, all nontrivial properties (of recursively enumerable languages) are undecidable (pp. 156-157).
- In fact, Rice's theorem confirms that.

$$
\begin{aligned}
& { }^{\mathrm{a}} \mathrm{Or}, L(M) \in \mathrm{RE} ? \\
& { }^{\mathrm{b}} \mathrm{Or}, L(M)=\emptyset ?
\end{aligned}
$$

Rice's Theorem

Theorem 13 (Rice, 1956) Suppose $\mathcal{C} \neq \emptyset$ is a proper subset of the set of all recursively enumerable languages. ${ }^{\text {a }}$ Then the question " $L(M) \in \mathcal{C}$?" is undecidable.

- Note that the input is a TM program M.
- Assume that $\emptyset \notin \mathcal{C}$ (otherwise, repeat the proof for the class of all recursively enumerable languages not in \mathcal{C}).
- Let $L \in \mathcal{C}$ be accepted by TM M_{L} (recall that $\left.\mathcal{C} \neq \emptyset\right)$.
- Let M_{H} accept the undecidable language H.
- M_{H} exists (p. 139).

[^0]
The Proof (continued)

- Construct machine $M_{x}(y)$:

$$
\text { if } M_{H}(x)=\text { "yes" then } M_{L}(y) \text { else }
$$

- On the next page, we will prove that

$$
\begin{equation*}
x \in H \text { if and only if } L\left(M_{x}\right) \in \mathcal{C} . \tag{1}
\end{equation*}
$$

- As a result, the halting problem is reduced to deciding $L\left(M_{x}\right) \in \mathcal{C}$.
- Hence $L\left(M_{x}\right) \in \mathcal{C}$ must be undecidable, and we are done.

The Proof (concluded)

- Suppose $x \in H$, i.e., $M_{H}(x)=$ "yes."
- $M_{x}(y)$ determines this, and it either accepts y or never halts, depending on whether $y \in L$.
- Hence $L\left(M_{x}\right)=L \in \mathcal{C}$.
- Suppose $M_{H}(x)=\nearrow$.
- M_{x} never halts.
- $L\left(M_{x}\right)=\emptyset \notin \mathcal{C}$.

Comments

- \mathcal{C} must be arbitrary.
- The following $M_{x}(y)$, though similar, will not work:

$$
\text { if } M_{L}(y)=\text { "yes" then } M_{H}(x) \text { else } \nearrow .
$$

- Rice's theorem is about properties of the languages accepted by Turing machines.
- It then says any nontrivial property is undecidable.
- Rice's theorem is not about Turing machines themselves, such as "Does a TM contain 5 states?"

Consequences of Rice's Theorem

Corollary 14 The following properties of recursively enumerative sets are undecidable.

- Emptiness.
- Finiteness.
- Recursiveness.
- Σ^{*}.
- Regularity. ${ }^{\text {a }}$
- Context-freedom. ${ }^{\text {b }}$
${ }^{\text {a }}$ Is it a regular language?
${ }^{\mathrm{b}}$ Is it a context-free language?

Undecidability in Logic and Mathematics

- First-order logic is undecidable (answer to Hilbert's (1928) Entscheidungsproblem). ${ }^{\text {a }}$
- Natural numbers with addition and multiplication is undecidable. ${ }^{\text {b }}$
- Rational numbers with addition and multiplication is undecidable. ${ }^{\text {c }}$
${ }^{\mathrm{a}}$ Church (1936).
${ }^{\text {b }}$ Rosser (1937).
${ }^{c}$ Robinson (1948).

Undecidability in Logic and Mathematics (concluded)

- Natural numbers with addition and equality is decidable and complete. ${ }^{\text {a }}$
- Elementary theory of groups is undecidable. ${ }^{\text {b }}$

[^1]
Julia Hall Bowman Robinson (1919-1985)

Alfred Tarski (1901-1983)

Boolean Logic

Christianity is either false or true. - Girolamo Savonarola (1497)

Both of us had said the very same thing. Did we both speak the truth - or one of us did -or neither?

- Joseph Conrad (1857-1924),

Lord Jim (1900)

Boolean Logic ${ }^{\text {a }}$

Boolean variables: x_{1}, x_{2}, \ldots.
Literals: $x_{i}, \neg x_{i}$.
Boolean connectives: \vee, \wedge, \neg.
Boolean expressions: Boolean variables, $\neg \phi$ (negation), $\phi_{1} \vee \phi_{2}$ (disjunction), $\phi_{1} \wedge \phi_{2}$ (conjunction).

- $\bigvee_{i=1}^{n} \phi_{i}$ stands for $\phi_{1} \vee \phi_{2} \vee \cdots \vee \phi_{n}$.
- $\bigwedge_{i=1}^{n} \phi_{i}$ stands for $\phi_{1} \wedge \phi_{2} \wedge \cdots \wedge \phi_{n}$.

Implications: $\phi_{1} \Rightarrow \phi_{2}$ is a shorthand for $\neg \phi_{1} \vee \phi_{2}$.
Biconditionals: $\phi_{1} \Leftrightarrow \phi_{2}$ is a shorthand for

$$
\left(\phi_{1} \Rightarrow \phi_{2}\right) \wedge\left(\phi_{2} \Rightarrow \phi_{1}\right)
$$

[^2]
Truth Assignments

- A truth assignment T is a mapping from boolean variables to truth values true and false.
- A truth assignment is appropriate to boolean expression ϕ if it defines the truth value for every variable in ϕ.
$-\left\{x_{1}=\right.$ true, $x_{2}=$ false $\}$ is appropriate to $x_{1} \vee x_{2}$.
$-\left\{x_{2}=\right.$ true, $x_{3}=$ false $\}$ is not appropriate to $x_{1} \vee x_{2}$.

Satisfaction

- $T \models \phi$ means boolean expression ϕ is true under T; in other words, T satisfies ϕ.
- ϕ_{1} and ϕ_{2} are equivalent, written

$$
\phi_{1} \equiv \phi_{2},
$$

if for any truth assignment T appropriate to both of them, $T \models \phi_{1}$ if and only if $T \models \phi_{2}$.

Truth Table ${ }^{a}$

- Suppose ϕ has n boolean variables.
- A truth table contains 2^{n} rows.
- Each row corresponds to one truth assignment of the n variables and records the truth value of ϕ under it.
- A truth table can be used to prove if two boolean expressions are equivalent.
- Just check if they give identical truth values under all appropriate truth assignments.

[^3]

A Second Truth Table

p	q	$p \vee q$
0	0	0
0	1	1
1	0	1
1	1	1

\section*{A Third Truth Table
 | p | $\neg p$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |}

Proof of Equivalency by the Truth Table:

$$
p \Rightarrow q \equiv \neg q \Rightarrow \neg p
$$

p	q	$p \Rightarrow q$	$\neg q \Rightarrow \neg p$
0	0	1	1
0	1	1	1
1	0	0	0
1	1	1	1

De Morgan's Laws ${ }^{\text {a }}$

- De Morgan's laws state that

$$
\begin{aligned}
\neg\left(\phi_{1} \wedge \phi_{2}\right) & \equiv \neg \phi_{1} \vee \neg \phi_{2}, \\
\neg\left(\phi_{1} \vee \phi_{2}\right) & \equiv \neg \phi_{1} \wedge \neg \phi_{2} .
\end{aligned}
$$

- Here is a proof of the first law:

ϕ_{1}	ϕ_{2}	$\neg\left(\phi_{1} \wedge \phi_{2}\right)$	$\neg \phi_{1} \vee \neg \phi_{2}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

${ }^{\text {a }}$ Augustus DeMorgan (1806-1871) or William of Ockham (12881348).

Conjunctive Normal Forms

- A boolean expression ϕ is in conjunctive normal form (CNF) if

$$
\phi=\bigwedge_{i=1}^{n} C_{i},
$$

where each clause C_{i} is the disjunction of zero or more literals. ${ }^{\text {a }}$

- For example,

$$
\left(x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{2} \vee x_{3}\right)
$$

- Convention: An empty CNF is satisfiable, but a CNF containing an empty clause is not.

[^4]
Disjunctive Normal Forms

- A boolean expression ϕ is in disjunctive normal form (DNF) if

$$
\phi=\bigvee_{i=1}^{n} D_{i}
$$

where each implicant ${ }^{\text {a }}$ or simply term D_{i} is the conjunction of zero or more literals.

- For example,

$$
\left(x_{1} \wedge x_{2}\right) \vee\left(x_{1} \wedge \neg x_{2}\right) \vee\left(x_{2} \wedge x_{3}\right) .
$$

${ }^{\mathrm{a}} D_{i}$ implies ϕ, thus the term.

Clauses and Implicants

- The V of clauses yields a clause.
- For example,

$$
\begin{aligned}
& \left(x_{1} \vee x_{2}\right) \vee\left(x_{1} \vee \neg x_{2}\right) \vee\left(x_{2} \vee x_{3}\right) \\
= & x_{1} \vee x_{2} \vee x_{1} \vee \neg x_{2} \vee x_{2} \vee x_{3} .
\end{aligned}
$$

- The \wedge of implicants yields an implicant.
- For example,

$$
\begin{aligned}
& \left(x_{1} \wedge x_{2}\right) \wedge\left(x_{1} \wedge \neg x_{2}\right) \wedge\left(x_{2} \wedge x_{3}\right) \\
= & x_{1} \wedge x_{2} \wedge x_{1} \wedge \neg x_{2} \wedge x_{2} \wedge x_{3} .
\end{aligned}
$$

Any Expression ϕ Can Be Converted into CNFs and DNFs $\phi=x_{j}:$

- This is trivially true.
$\phi=\neg \phi_{1}$ and a CNF is sought:
- Turn ϕ_{1} into a DNF.
- Apply de Morgan's laws to make a CNF for ϕ.
$\phi=\neg \phi_{1}$ and a DNF is sought:
- Turn ϕ_{1} into a CNF.
- Apply de Morgan's laws to make a DNF for ϕ.

Any Expression ϕ Can Be Converted into CNFs and DNFs (continued)

$\phi=\phi_{1} \vee \phi_{2}$ and a DNF is sought:

- Make ϕ_{1} and ϕ_{2} DNFs.
$\phi=\phi_{1} \vee \phi_{2}$ and a CNF is sought:
- Turn ϕ_{1} and ϕ_{2} into CNFs, ${ }^{\text {a }}$

$$
\phi_{1}=\bigwedge_{i=1}^{n_{1}} A_{i}, \quad \phi_{2}=\bigwedge_{j=1}^{n_{2}} B_{j}
$$

- Set

$$
\phi=\bigwedge_{i=1}^{n_{1}} \bigwedge_{j=1}^{n_{2}}\left(A_{i} \vee B_{j}\right)
$$

${ }^{\text {a Corrected by Mr. Chun-Jie Yang (R99922150) on November 9, } 2010 . ~}$

Any Expression ϕ Can Be Converted into CNFs and DNFs (concluded)

$\phi=\phi_{1} \wedge \phi_{2}$ and a CNF is sought:

- Make ϕ_{1} and ϕ_{2} CNFs.
$\phi=\phi_{1} \wedge \phi_{2}$ and a DNF is sought:
- Turn ϕ_{1} and ϕ_{2} into DNFs,

$$
\phi_{1}=\bigvee_{i=1}^{n_{1}} A_{i}, \quad \phi_{2}=\bigvee_{j=1}^{n_{2}} B_{j}
$$

- Set

$$
\phi=\bigvee_{i=1}^{n_{1}} \bigvee_{j=1}^{n_{2}}\left(A_{i} \wedge B_{j}\right)
$$

An Example: Turn $\neg((a \wedge y) \vee(z \vee w))$ into a DNF

$$
\begin{array}{cl}
& \neg((a \wedge y) \vee(z \vee w)) \\
\neg(\mathrm{CNF} \mathrm{\vee CNF}) & \neg(((a) \wedge(y)) \vee((z \vee w))) \\
\neg(\mathrm{CNF}) & \neg((a \vee z \vee w) \wedge(y \vee z \vee w)) \\
= & \neg(a \vee z \vee w) \vee \neg(y \vee z \vee w) \\
\text { de Morgan } & \neg \\
\text { de Morgan } & (\neg a \wedge \neg z \wedge \neg w) \vee(\neg y \wedge \neg z \wedge \neg w) .
\end{array}
$$

Functional Completeness

- A set of logical connectives is called functionally complete if every boolean expression is equivalent to one involving only these connectives.
- The set $\{\neg, \vee, \wedge\}$ is functionally complete.
- Every boolean expression can be turned into a CNF, which involves only \neg, \vee, and \wedge.
- The sets $\{\neg, \vee\}$ and $\{\neg, \wedge\}$ are functionally complete. ${ }^{\text {a }}$
- By the above result and de Morgan's laws.
- $\{$ NAND $\}$ and $\{$ NOR $\}$ are functionally complete. ${ }^{\text {b }}$
${ }^{\text {a Post (1921). }}$
${ }^{\text {b }}$ Peirce (c. 1880); Sheffer (1913).

Satisfiability

- A boolean expression ϕ is satisfiable if there is a truth assignment T appropriate to it such that $T \models \phi$.
- ϕ is valid or a tautology, ${ }^{\text {a }}$ written $\models \phi$, if $T \models \phi$ for all T appropriate to ϕ.

[^5]
Satisfiability (concluded)

- ϕ is unsatisfiable or a contradiction if ϕ is false under all appropriate truth assignments.
- Or, equivalently, if $\neg \phi$ is valid (prove it).
- ϕ is a contingency if ϕ is neither a tautology nor a contradiction.

Ludwig Wittgenstein (1889-1951)

Wittgenstein
"Whereof one cannot speak, thereof one must be silent."

SATISFIABILITY (SAT)

- The length of a boolean expression is the length of the string encoding it.
- satisfiability (sat): Given a CNF ϕ, is it satisfiable?
- Solvable in exponential time on a TM by the truth table method.
- Solvable in polynomial time on an NTM, hence in NP (p. 121).
- A most important problem in settling the "P $\stackrel{?}{=}$ NP" problem (p. 323).

UNSATISFIABILITY (UNSAT or SAT COMPLEMENT) and VALIDITY

- UNSAT (SAT COMPLEMENT): Given a boolean expression ϕ, is it unsatisfiable?
- validity: Given a boolean expression ϕ, is it valid?
$-\phi$ is valid if and only if $\neg \phi$ is unsatisfiable.
$-\phi$ and $\neg \phi$ are basically of the same length.
- So unsat and validity have the same complexity.
- Both are solvable in exponential time on a TM by the truth table method.

Relations among sAT, UNSAT, and VALIDITY

- The negation of an unsatisfiable expression is a valid expression.
- None of the three problems-satisfiability, unsatisfiability, validity - are known to be in P.

Boolean Functions

- An n-ary boolean function is a function

$$
f:\{\text { true }, \text { false }\}^{n} \rightarrow\{\text { true }, \text { false }\} .
$$

- It can be represented by a truth table.
- There are $2^{2^{n}}$ such boolean functions.
- We can assign true or false to f for each of the 2^{n} truth assignments.

Boolean Functions (continued)

Assignment	Truth value
1	true or false
2	true or false
\vdots	\vdots
2^{n}	true or false

- A boolean expression expresses a boolean function.
- Think of its truth values under all possible truth assignments.

Boolean Functions (continued)

- A boolean function expresses a boolean expression.
$-\bigvee_{T \models \phi, \text { literal } y_{i} \text { is true in "row" } T}\left(y_{1} \wedge \cdots \wedge y_{n}\right)$. ${ }^{\text {a }}$ * The implicant $y_{1} \wedge \cdots \wedge y_{n}$ is called the minterm over $\left\{x_{1}, \ldots, x_{n}\right\}$ for T.
- The size ${ }^{\mathrm{b}}$ is $\leq n 2^{n} \leq 2^{2 n}$.
- This DNF is optimal for the parity function, for example. ${ }^{\text {c }}$

[^6]
Boolean Functions (continued)

x_{1}	x_{2}	$f\left(x_{1}, x_{2}\right)$
0	0	1
0	1	1
1	0	0
1	1	1

The corresponding boolean expression:

$$
\left(\neg x_{1} \wedge \neg x_{2}\right) \vee\left(\neg x_{1} \wedge x_{2}\right) \vee\left(x_{1} \wedge x_{2}\right)
$$

Boolean Functions (concluded)

Corollary 15 Every n-ary boolean function can be expressed by a boolean expression of size $O\left(n 2^{n}\right)$.

- In general, the exponential length in n cannot be avoided (p. 212).
- The size of the truth table is also $O\left(n 2^{n}\right)$. $^{\text {a }}$
${ }^{\text {a }}$ There are $2^{n} n$-bit strings.

Boolean Circuits

- A boolean circuit is a graph C whose nodes are the gates.
- There are no cycles in C.
- All nodes have indegree (number of incoming edges) equal to 0,1 , or 2 .
- Each gate has a sort from

$$
\left\{\text { true }, \text { false }, \vee, \wedge, \neg, x_{1}, x_{2}, \ldots\right\}
$$

- There are $n+5$ sorts.

Boolean Circuits (concluded)

- Gates with a sort from $\left\{\right.$ true, $\left.\mathrm{false}, x_{1}, x_{2}, \ldots\right\}$ are the inputs of C and have an indegree of zero.
- The output gate(s) has no outgoing edges.
- A boolean circuit computes a boolean function.
- A boolean function can be realized by infinitely many equivalent boolean circuits.

Boolean Circuits and Expressions

- They are equivalent representations.
- One can construct one from the other:

An Example
 $\left(\left(x_{1} \wedge x_{2}\right) \wedge\left(x_{3} \vee x_{4}\right)\right) \vee\left(\neg\left(x_{3} \vee x_{4}\right)\right)$

- Circuits are more economical because of the possibility of "sharing."

CIRCUIT SAT and CIRCUIT VALUE

CIRCUIT SAT: Given a circuit, is there a truth assignment such that the circuit outputs true?

- Circuit sat \in NP: Guess a truth assignment and then evaluate the circuit. ${ }^{\text {a }}$

CIRCUIT VALUE: The same as CIRCUIT SAT except that the circuit has no variable gates.

- circuit value $\in \mathrm{P}$: Evaluate the circuit from the input gates gradually towards the output gate.

[^7]
Some ${ }^{a}$ Boolean Functions Need Exponential Circuits ${ }^{\text {b }}$

Theorem 16 For any $n \geq 2$, there is an n-ary boolean function f such that no boolean circuits with $2^{n} /(2 n)$ or fewer gates can compute it.

- There are $2^{2^{n}}$ different n-ary boolean functions (p. 202).
- So it suffices to prove that the number of boolean circuits with $2^{n} /(2 n)$ or fewer gates is less than $2^{2^{n}}$.

[^8]
The Proof (concluded)

- There are at most $\left((n+5) \times m^{2}\right)^{m}$ boolean circuits with m or fewer gates (see next page).
- But $\left((n+5) \times m^{2}\right)^{m}<2^{2^{n}}$ when $m=2^{n} /(2 n)$:

$$
\begin{aligned}
& m \log _{2}\left((n+5) \times m^{2}\right) \\
= & 2^{n}\left(1-\frac{\log _{2} \frac{4 n^{2}}{n+5}}{2 n}\right) \\
< & 2^{n}
\end{aligned}
$$

for $n \geq 2$.

Claude Elwood Shannon (1916-2001)

Howard Gardner (1987), "[Shannon's master's thesis is] possibly the most important, and also the most famous, master's thesis of the century."

Comments

- The lower bound $2^{n} /(2 n)$ is rather tight because an upper bound is $n 2^{n}$ (p. 204).
- The proof counted the number of circuits.
- Some circuits may not be valid at all.
- Different circuits may also compute the same function.
- Both are fine because we only need an upper bound on the number of circuits.
- We do not need to consider the outgoing edges because they have been counted as incoming edges. ${ }^{\text {a }}$
${ }^{a}$ If you prove the theorem by considering outgoing edges, the bound will not be good. (Try it!)

Relations between Complexity Classes

It is, I own, not uncommon to be wrong in theory and right in practice.

- Edmund Burke (1729-1797), A Philosophical Enquiry into the Origin of Our Ideas of the Sublime and Beautiful (1757)

The problem with QE is it works in practice, but it doesn't work in theory.

- Ben Bernanke (2014)

Proper (Complexity) Functions

- We say that $f: \mathbb{N} \rightarrow \mathbb{N}$ is a proper (complexity) function if the following hold:
- f is nondecreasing.
- There is a k-string TM M_{f} such that $M_{f}(x)=\square^{f(|x|)}$ for any x. ${ }^{\text {a }}$
- M_{f} halts after $O(|x|+f(|x|))$ steps.
- M_{f} uses $O(f(|x|))$ space besides its input x.
- M_{f} 's behavior depends only on $|x|$ not x 's contents.
- M_{f} 's running time is bounded by $f(n)$.
a The textbook calls " Γ " the quasi-blank symbol. The use of $M_{f}(x)$ will become clear in Proposition 17 (p. 222).

Examples of Proper Functions

- Most "reasonable" functions are proper: $c,\lceil\log n\rceil$, polynomials of $n, 2^{n}, \sqrt{n}, n!$, etc.
- If f and g are proper, then so are $f+g, f g$, and 2^{g}. ${ }^{\text {a }}$
- Nonproper functions when serving as the time bounds for complexity classes spoil "theory building."
- For example, $\operatorname{TIME}(f(n))=\operatorname{TIME}\left(2^{f(n)}\right)$ for some recursive function f (the gap theorem). ${ }^{\text {b }}$
- Only proper functions f will be used in $\operatorname{TIME}(f(n))$, $\operatorname{SPACE}(f(n)), \operatorname{NTIME}(f(n))$, and $\operatorname{NSPACE}(f(n))$.

[^9]
Precise Turing Machines

- A TM M is precise if there are functions f and g such that for every $n \in \mathbb{N}$, for every x of length n, and for every computation path of M,
- M halts after precisely $f(n)$ steps, ${ }^{\text {a }}$ and
- All of its strings are of length precisely ${ }^{\mathrm{b}} g(n)$ at halting. ${ }^{\text {c }}$
* Recall that if M is a TM with input and output, we exclude the first and last strings.
- M can be deterministic or nondeterministic.

[^10]
Precise TMs Are General

Proposition 17 Suppose a $T M^{a} M$ decides L within time (space) $f(n)$, where f is proper. Then there is a precise TM M^{\prime} which decides L in time $O(n+f(n))$ (space $O(f(n))$, respectively).

- M^{\prime} on input x first simulates the $\mathrm{TM} M_{f}$ associated with the proper function f on x.
- M_{f} 's output, of length $f(|x|)$, will serve as a "yardstick" or an "alarm clock."

[^11]
The Proof (continued)

- Then M^{\prime} simulates $M(x)$.
- $M^{\prime}(x)$ halts when and only when the alarm clock runs out-even if M halts earlier.
- If f is a time bound:
- The simulation of each step of M on x is matched by advancing the cursor on the "clock" string.
- Because M^{\prime} stops at the moment the "clock" string is exhausted-even if $M(x)$ stops earlier, it is precise.
- The time bound is therefore $O(|x|+f(|x|))$.

The Proof (concluded)

- If f is a space bound (sketch):
- M^{\prime} simulates M on the quasi-blanks of M_{f} 's output string. ${ }^{\text {a }}$
- The total space, not counting the input string, is $O(f(n))$.
- But we still need a way to make sure there is no infinite loop even if M does not halt. ${ }^{\text {b }}$

[^12]
Important Complexity Classes

- We write expressions like n^{k} to denote the union of all complexity classes, one for each value of k.
- For example,

$$
\operatorname{NTIME}\left(n^{k}\right) \triangleq \bigcup_{j>0} \operatorname{NTIME}\left(n^{j}\right) .
$$

Important Complexity Classes (concluded)

$$
\begin{aligned}
\mathrm{P} & \triangleq \operatorname{TIME}\left(n^{k}\right), \\
\mathrm{NP} & \triangleq \operatorname{NTIME}\left(n^{k}\right), \\
\operatorname{PSPACE} & \triangleq \operatorname{SPACE}\left(n^{k}\right), \\
\operatorname{NPSPACE} & \triangleq \operatorname{NSPACE}\left(n^{k}\right), \\
\mathrm{E} & \triangleq \operatorname{TIME}\left(2^{k n}\right), \\
\mathrm{EXP} & \triangleq \operatorname{TIME}\left(2^{n^{k}}\right), \\
\operatorname{NEXP} & \triangleq \operatorname{NTIME}\left(2^{n^{k}}\right), \\
\mathrm{L} & \triangleq \operatorname{SPACE}(\log n), \\
\mathrm{NL} & \triangleq \operatorname{NSPACE}(\log n) .
\end{aligned}
$$

Complements of Nondeterministic Classes

- Recall that the complement of L, or \bar{L}, is the language $\Sigma^{*}-L$.
- sat complement is the set of unsatisfiable boolean expressions.
- R, RE, and coRE are distinct (p. 161).
- Again, coRE contains the complements of languages in RE, not languages that are not in RE.
- How about coC when \mathcal{C} is a complexity class?

The Co-Classes

- For any complexity class $\mathcal{C}, \operatorname{coC}$ denotes the class

$$
\{L: \bar{L} \in \mathcal{C}\} .
$$

- Clearly, if \mathcal{C} is a deterministic time or space complexity class, then $\mathcal{C}=c o \mathcal{C}$.
- They are said to be closed under complement.
- A deterministic TM deciding L can be converted to one that decides \bar{L} within the same time or space bound by reversing the "yes" and "no" states. ${ }^{a}$
- Whether nondeterministic classes for time are closed under complement is not known (see p. 113).

[^13]
Comments

- As

$$
\operatorname{coC}=\{L: \bar{L} \in \mathcal{C}\}
$$

$L \in \mathcal{C}$ if and only if $\bar{L} \in \operatorname{coC}$.

- But it is not true that $L \in \mathcal{C}$ if and only if $L \notin \operatorname{coC}$.
- coC is not defined as $\overline{\mathcal{C}}$.
- For example, suppose $\mathcal{C}=\{\{2,4,6,8,10, \ldots\}, \ldots\}$.
- Then $\operatorname{coC}=\{\{1,3,5,7,9, \ldots\}, \ldots\}$.
- But $\overline{\mathcal{C}}=2^{\{1,2,3, \ldots\}}-\{\{2,4,6,8,10, \ldots\}, \ldots\}$.

The Quantified Halting Problem

- Let $f(n) \geq n$ be proper.
- Define

$$
\begin{aligned}
H_{f} & \triangleq\{M ; x: M \text { accepts input } x \\
& \text { after at most } f(|x|) \text { steps }\},
\end{aligned}
$$

where M is deterministic.

- Assume the input is binary as usual.

$$
H_{f} \in \operatorname{TIME}\left(f(n)^{3}\right)
$$

- For each input $M ; x$, we simulate M on x with an alarm clock of length $f(|x|)$.
- Use the single-string simulator (p. 85), the universal TM (p. 137), and the linear speedup theorem (p. 95).
- Our simulator accepts M; x if and only if M accepts x before the alarm clock runs out.
- From p. 92, the total running time is $O\left(\ell_{M} k_{M}^{2} f(n)^{2}\right)$, where ℓ_{M} is the length to encode each symbol or state of M and k_{M} is M 's number of strings.
- As $\ell_{M} k_{M}^{2}=O(n)$, the running time is $O\left(f(n)^{3}\right)$, where the constant is independent of M.

$H_{f} \notin \operatorname{TIME}(f(\lfloor n / 2\rfloor))$

- Suppose TM $M_{H_{f}}$ decides H_{f} in time $f(\lfloor n / 2\rfloor)$.
- Consider machine:

$$
\begin{aligned}
D_{f}(M)\{ & \\
& \text { if } M_{H_{f}}(M ; M)=\text { "yes" } \\
& \text { then "no"; } \\
& \text { else "yes"; }
\end{aligned}
$$

\}

The Proof (continued)

- $M_{H_{f}}(M ; M)$ runs in time $f\left(\left\lfloor\frac{2 n+1}{2}\right\rfloor\right)=f(n)$, where $n=|M|{ }^{\mathrm{a}}$
- By construction, $D_{f}(M)$ runs in the same amount of time as $M_{H_{f}}(M ; M)$, i.e., $f(n)$, where $n=|M|$.
${ }^{\text {a Mr. Hsiao-Fei Liu (F92922019) and Mr. Hong-Lung Wang }}$ (F92922085) pointed out on October 6, 2004, that this estimation (and the text's Lemma 7.2) forgets to include the time to write down $M ; M$.

The Proof (concluded)

- First, suppose $D_{f}\left(D_{f}\right)=$ "yes".
- This implies

$$
D_{f} ; D_{f} \notin H_{f} .
$$

- Thus D_{f} does not accept D_{f} within time $f\left(\left|D_{f}\right|\right)$.
- But $D_{f}\left(D_{f}\right)$ stops in time $f\left(\left|D_{f}\right|\right)$ with an answer.
- Hence $D_{f}\left(D_{f}\right)=$ "no", a contradiction
- Similarly, $D_{f}\left(D_{f}\right)=$ "no" $\Rightarrow D_{f}\left(D_{f}\right)=$ "yes."

The Time Hierarchy Theorem

Theorem 18 If $f(n) \geq n$ is proper, then

$$
\operatorname{TIME}(f(n)) \subsetneq \operatorname{TiME}\left(f(2 n+1)^{3}\right) .
$$

- The quantified halting problem makes it so.

Corollary $19 \mathrm{P} \subsetneq \mathrm{E}$.

- $\mathrm{P} \subseteq \operatorname{TIME}\left(2^{n}\right)$ because poly $(n) \leq 2^{n}$ for n large enough.
- But by Theorem 18,

$$
\operatorname{TIME}\left(2^{n}\right) \subsetneq \operatorname{TIME}\left(\left(2^{2 n+1}\right)^{3}\right) \subseteq \mathrm{E} .
$$

- So P \subsetneq E.

The Space Hierarchy Theorem
Theorem 20 (Hennie \& Stearns, 1966) If $f(n)$ is proper, then

$$
\operatorname{SPACE}(f(n)) \subsetneq \operatorname{SPACE}(f(n) \log f(n)) .
$$

Corollary $21 \mathrm{~L} \subsetneq$ PSPACE.

Nondeterministic Time Hierarchy Theorems
Theorem 22 (Cook, 1973) $\operatorname{NTIME}\left(n^{r}\right) \subsetneq \operatorname{NTIME}\left(n^{s}\right)$
whenever $1 \leq r<s$.
Theorem 23 (Seiferas, Fischer, \& Meyer, 1978) If
$T_{1}(n)$ and $T_{2}(n)$ are proper, then
$\operatorname{NTIME}\left(T_{1}(n)\right) \subsetneq \operatorname{NTIME}\left(T_{2}(n)\right)$
whenever $T_{1}(n+1)=o\left(T_{2}(n)\right)$.

[^0]: ${ }^{\mathrm{a}} \mathrm{A}$ nontrivial property, i.e.

[^1]: ${ }^{\text {a }}$ Presburger's Master's thesis (1928), his only work in logic. The direction was suggested by Tarski. Mojz̄esz Presburger (1904-1943) died in a concentration camp during World War II.
 ${ }^{\mathrm{b}}$ Tarski (1949).

[^2]: ${ }^{\text {a }}$ George Boole (1815-1864) in 1847.

[^3]: ${ }^{\text {a }}$ Post (1921); Wittgenstein (1922). Here, 1 is used to denote true; 0 is used to denote false. This is called the standard representation (Beigel, 1993).

[^4]: ${ }^{\text {a }}$ Improved by Mr. Aufbu Huang (R95922070) on October 5, 2006.

[^5]: ${ }^{a}$ Wittgenstein (1922). Wittgenstein is one of the most important philosophers of all time. Russell (1919), "The importance of 'tautology' for a definition of mathematics was pointed out to me by my former pupil Ludwig Wittgenstein, who was working on the problem. I do not know whether he has solved it, or even whether he is alive or dead." "God has arrived," the great economist Keynes (1883-1946) said of him on January 18, 1928, "I met him on the $5: 15$ train."

[^6]: ${ }^{\text {a }}$ Similar to programmable logic array. This is called the table lookup representation (Beigel, 1993).
 ${ }^{\mathrm{b}}$ We count only the literals here.
 ${ }^{\text {c }}$ Du \& Ko (2000).

[^7]: ${ }^{\text {a }}$ Essentially the same algorithm as the one on p. 121.

[^8]: ${ }^{\text {a }}$ Can be strengthened to "Almost all."
 ${ }^{\text {b }}$ Riordan \& Shannon (1942); Shannon (1949).

[^9]: ${ }^{\text {a }}$ For $f(g(n))$, we need to add $f(n) \geq n$.
 ${ }^{\mathrm{b}}$ Trakhtenbrot (1964); Borodin (1972). Theorem 7.3 on p. 145 of the textbook proves it.

[^10]: ${ }^{\text {a }}$ Fully time constructible (Hopcroft \& Ullman, 1979).
 ${ }^{\mathrm{b}}$ This strong requirement does not seem needed later.
 ${ }^{\text {c Fully }}$ space constructible (Hopcroft \& Ullman, 1979).

[^11]: ${ }^{\text {a }}$ It can be deterministic or nondeterministic.

[^12]: ${ }^{\text {a }}$ This is to make sure the space bound is precise.
 ${ }^{\mathrm{b}}$ See the proof of Theorem 24 (p. 241).

[^13]: ${ }^{\text {a }}$ See p. 158.

