
Complementing a TM’s Halting States

• Let M decide L, and M ′ be M after “yes” ↔ “no”.

• If M is a deterministic TM, then M ′ decides L̄.

– So M and M ′ decide languages that complement

each other.

• But if M is an NTM, then M ′ may not decide L̄.

– It is possible that M and M ′ accept the same input x

(see next page).

– So M and M ′ may accept languages that are not

even disjoint.
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Time Complexity under Nondeterminism

• Nondeterministic machine N decides L in time f(n),

where f : N → N, if

– N decides L, and

– for any x ∈ Σ∗, N does not have a computation path

longer than f(|x |).
• We charge only the “depth” of the computation tree.
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Time Complexity Classes under Nondeterminism

• NTIME(f(n)) is the set of languages decided by NTMs

within time f(n).

• NTIME(f(n)) is a complexity class.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 116



NP (“Nondeterministic Polynomial”)

• Define

NP
Δ
=

⋃

k>0

NTIME(nk).

• Clearly P ⊆ NP.

• Think of NP as efficiently verifiable problems (see p.

337).

– Boolean satisfiability (p. 121 and p. 196), e.g.

• The most important open problem in computer science

is whether P = NP.
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Simulating Nondeterministic TMs

Nondeterminism does not add power to TMs.

Theorem 6 Suppose language L is decided by an NTM N

in time f(n). Then it is decided by a 3-string deterministic

TM M in time O(cf(n)), where c > 1 is some constant

depending on N .

• On input x, M goes down every computation path of N

using depth-first search.

– M does not need to know f(n).

– As N is time-bounded, the depth-first search will not

run indefinitely.
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The Proof (concluded)

• If any path leads to “yes,” then M immediately enters

the “yes” state.

• If none of the paths lead to “yes,” then M enters the

“no” state.

• The simulation takes time O(cf(n)) for some c > 1

because the computation tree has that many nodes.

Corollary 7 NTIME(f(n))) ⊆ ⋃
c>1TIME(cf(n)).a

aMr. Kai-Yuan Hou (B99201038, R03922014) on October 6, 2015:
⋃

c>1 TIME(cf(n)) ⊆ NTIME(f(n)))?
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NTIME vs. TIME

• Does converting an NTM into a TM require exploring all

computation paths of the NTM as done in Theorem 6

(p. 118)?

• This is a key question in theory with important practical

implications.
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A Nondeterministic Algorithm for Satisfiability

φ is a boolean formula with n variables.

1: for i = 1, 2, . . . , n do

2: Guess xi ∈ { 0, 1 }; {Nondeterministic choices.}
3: end for

4: {Verification:}
5: if φ(x1, x2, . . . , xn) = 1 then

6: “yes”;

7: else

8: “no”;

9: end if
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Computation Tree for Satisfiability
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Analysis

• The computation tree is a complete binary tree of depth

n.

• Every computation path corresponds to a particular

truth assignmenta out of 2n.

• Recall that φ is satisfiable if and only if there is a truth

assignment that satisfies φ.

aEquivalently, a sequence of nondeterministic choices.
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Analysis (concluded)

• The algorithm decides language

{φ : φ is satisfiable }.

– Suppose φ is satisfiable.

∗ There is a truth assignment that satisfies φ.

∗ So there is a computation path that results in

“yes.”

– Suppose φ is not satisfiable.

∗ That means every truth assignment makes φ false.

∗ So every computation path results in “no.”

• General paradigm: Guess a “proof” then verify it.
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The Traveling Salesman Problem

• We are given n cities 1, 2, . . . , n and integer distance dij

between any two cities i and j.

• Assume dij = dji for convenience.

• The traveling salesman problem (tsp) asks for the

total distance of the shortest tour of the cities.a

• The decision version tsp (d) asks if there is a tour with

a total distance at most B, where B is an input.b

aEach city is visited exactly once.
bBoth problems are extremely important. They are equally hard

(p. 409 and p. 509).
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A Shortest Path
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A Nondeterministic Algorithm for tsp (d)
1: for i = 1, 2, . . . , n do

2: Guess xi ∈ { 1, 2, . . . , n }; {The ith city.}a
3: end for

4: {Verification:}
5: if x1, x2, . . . , xn are distinct and

∑n−1
i=1 dxi,xi+1 ≤ B then

6: “yes”;

7: else

8: “no”;

9: end if

aCan be made into a series of log2 n binary choices for each xi so

that the next-state count (2) is a constant, independent of input size.

Contributed by Mr. Chih-Duo Hong (R95922079) on September 27, 2006.
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Analysis

• Suppose the input graph contains at least one tour of

the cities with a total distance at most B.

– Then there is a computation path for that tour.a

– And it leads to “yes.”

• Suppose the input graph contains no tour of the cities

with a total distance at most B.

– Then every computation path leads to “no.”

aIt does not mean the algorithm will follow that path. It just means

such a computation path (i.e., a sequence of nondeterministic choices)

exists.
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Remarks on the P
?
= NP Open Problema

• Many practical applications depend on answers to the

P
?
= NP question.

• Verification of password should be easy (so it is in NP).

– A computer should not take a long time to let a user

log in.

• A password system should be hard to crack (loosely

speaking, cracking it should not be in P).

• It took logicians 63 years to settle the Continuum

Hypothesis; how long will it take for this one?

aContributed by Mr. Kuan-Lin Huang (B96902079, R00922018) on

September 27, 2011.
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Nondeterministic Space Complexity Classes

• Let L be a language.

• Then

L ∈ NSPACE(f(n))

if there is an NTM with input and output that decides L

and operates within space bound f(n).

• NSPACE(f(n)) is a set of languages.

• As in the linear speedup theorem,a constant coefficients

do not matter.

aTheorem 5 (p. 95).
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Graph Reachability

• Let G(V,E) be a directed graph (digraph).

• reachability asks, given nodes a and b, does G

contain a path from a to b?

• Can be easily solved in polynomial time by breadth-first

search.

• How about its nondeterministic space complexity?
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The First Try: NSPACE(n log n)
1: Determine the number of nodes m; {Note m ≤ n.}
2: x1 := a; {Assume a �= b.}
3: for i = 2, 3, . . . ,m do

4: Guess xi ∈ { v1, v2, . . . , vm }; {The ith node.}
5: end for

6: for i = 2, 3, . . . ,m do

7: if (xi−1, xi) �∈ E then

8: “no”;

9: end if

10: if xi = b then

11: “yes”;

12: end if

13: end for

14: “no”;
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In Fact, reachability ∈ NSPACE(log n)
1: Determine the number of nodes m; {Note m ≤ n.}
2: x := a;

3: for i = 2, 3, . . . ,m do

4: Guess y ∈ { v1, v2, . . . , vm }; {The next node.}
5: if (x, y) �∈ E then

6: “no”;

7: end if

8: if y = b then

9: “yes”;

10: end if

11: x := y;

12: end for

13: “no”;
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Space Analysis

• Variables m, i, x, and y each require O(log n) bits.

• Testing (x, y) ∈ E is accomplished by consulting the

input string with counters of O(log n) bits long.

• Hence

reachability ∈ NSPACE(log n).

– reachability with more than one terminal node

also has the same complexity.

– In fact, reachability for undirected graphs is in

SPACE(logn).a

• reachability ∈ P (see, e.g., p. 240).

aReingold (2005).
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Undecidability

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 135



He [Turing] invented

the idea of software, essentially[.]

It’s software that’s really

the important invention.

— Freeman Dyson (2015)
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Universal Turing Machinea

• A universal Turing machine U interprets the input

as the description of a TM M concatenated with the

description of an input to that machine, x.b

– Both M and x are over the alphabet of U .

• U simulates M on x so that

U(M ;x) = M(x).

• U is like a modern computer, which executes any valid

machine code, or a Java virtual machine, which executes

any valid bytecode.

aTuring (1936).
bSee pp. 57–58 of the textbook.
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The Halting Problem

• Undecidable problems are problems that have no

algorithms.

– Equivalently, they are languages that are not

recursive.

• We now define a concrete undecidable problem, the

halting problem:

H
Δ
= {M ;x : M(x) �=↗}.

– Does M halt on input x?

• H is called the halting set.
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H Is Recursively Enumerable

• Use the universal TM U to simulate M on x.

• When M is about to halt, U enters a “yes” state.

• If M(x) diverges, so does U .

• This TM accepts H.
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H Is Not Recursivea

• Suppose H is recursive.

• Then there is a TM MH that decides H.

• Consider the program D(M) that calls MH :

1: if MH(M ;M) = “yes” then

2: ↗; {Writing an infinite loop is easy.}
3: else

4: “yes”;

5: end if

aTuring (1936).
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H Is Not Recursive (concluded)

• Consider D(D):

– D(D) =↗⇒ MH(D;D) = “yes” ⇒ D;D ∈ H ⇒
D(D) �=↗, a contradiction.

– D(D) = “yes” ⇒ MH(D;D) = “no” ⇒ D;D �∈ H ⇒
D(D) =↗, a contradiction.
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Comments

• Two levels of interpretations of M :a

– A sequence of 0s and 1s (data).

– An encoding of instructions (programs).

• There are no paradoxes with D(D).

– Concepts should be familiar to computer scientists.

– Feed a C compiler to a C compiler, a Lisp interpreter

to a Lisp interpreter, a sorting program to a sorting

program, etc.

aEckert & Mauchly (1943); von Neumann (1945); Turing (1946).
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It seemed unworthy of a grown man

to spend his time on such trivialities,

but what was I to do? [· · · ]
The whole of the rest of my life might be

consumed in looking at

that blank sheet of paper.

— Bertrand Russell (1872–1970),

Autobiography, Vol. I (1967)
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Self-Loop Paradoxesa

Russell’s Paradox (1901): Consider R = {A : A �∈ A}.
• If R ∈ R, then R �∈ R by definition.

• If R �∈ R, then R ∈ R also by definition.

• In either case, we have a “contradiction.”b

Eubulides: The Cretan says, “All Cretans are liars.”

aE.g., Quine (1966), The Ways of Paradox and Other Essays and

Hofstadter (1979), Gödel, Escher, Bach: An Eternal Golden Braid.
bGottlob Frege (1848–1925) to Bertrand Russell in 1902, “Your dis-

covery of the contradiction [. . .] has shaken the basis on which I intended

to build arithmetic.”
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Self-Loop Paradoxes (continued)

Liar’s Paradox: “This sentence is false.”

Hypochondriac: a patient with imaginary symptoms and

ailments.a

Sharon Stone in The Specialist (1994): “I’m not a

woman you can trust.”

Numbers 12:3, Old Testament: “Moses was the most

humble person in all the world [· · · ]” (attributed to

Moses).

Psalms 116:11, Old Testament: “Everyone is a liar.”

aLike Gödel and the pianist Glenn Gould (1932–1982).
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Self-Loop Paradoxes (continued)

A restaurant in Boston: No Name Restaurant.

U.S. Department of State (March 19, 2020): U.S.

citizens who live in the United States should arrange for

immediate return to the United States[.]

The Egyptian Book of the Dead: “ye live in me and I

would live in you.”a

aSee also John 14:10 and 17:21.
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Self-Loop Paradoxes (concluded)

Jerome K. Jerome (1887), Three Men in a Boat:

“How could I wake you, when you didn’t wake me?”

Winston Churchill (January 23, 1948): “For my part,

I consider that it will be found much better by all

parties to leave the past to history, especially as I

propose to write that history myself.”

Nicola Lacey (2004), A Life of H. L. A. Hart: “Top

Secret [MI5] Documents: Burn before Reading!”
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Bertrand Russella (1872–1970)

Norbort Wiener (1953),

“It is impossible to de-

scribe Bertrand Russell

except by saying that he

looks like the Mad Hat-

ter.”

Karl Popper (1974), “per-

haps the greatest philoso-

pher since Kant.”

aNobel Prize in Literature (1950).
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Reductions in Proving Undecidability

• Suppose we are asked to prove that L is undecidable.

• Suppose L′ (such as H) is known to be undecidable.

• Find a computable transformation R (called

reductiona) from L′ to L such thatb

∀x {x ∈ L′ if and only if R(x) ∈ L }.

• Now we can answer “x ∈ L′?” for any x by answering

“R(x) ∈ L?” because it has the same answer.

• L′ is said to be reduced to L.

aPost (1944).
bContributed by Mr. Tai-Dai Chou (J93922005) on May 19, 2005.
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x yes/noR(x)
R algorithm 

for L

algorithm for L
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Reductions in Proving Undecidability (concluded)

• If L were decidable, “R(x) ∈ L?” becomes computable

and we have an algorithm to decide L′, a contradiction!

• So L must be undecidable.

Theorem 8 Suppose language L1 can be reduced to

language L2. If L1 is undecidable, then L2 is undecidable.
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Special Cases and Reduction

• Suppose L1 can be reduced to L2.
a

• As the reduction R maps members of L1 to a subset of

L2,
b we may say L1 is a “special case” of L2.

c

• That is one way to understand the use of the somewhat

confusing term “reduction.”

aIntuitively, L2 can be used to solve L1.
bBecause R may not be onto.
cContributed by Ms. Mei-Chih Chang (D03922022) and Mr. Kai-Yuan

Hou (B99201038, R03922014) on October 13, 2015.
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Subsets and Decidability

• Suppose L1 is undecidable and L1 ⊆ L2.

• Is L2 undecidable?a

• It depends.

• When L2 = Σ∗, L2 is decidable: Just answer “yes.”

• If L2 − L1 is decidable, then L2 is undecidable.

– Clearly,

x ∈ L1 if and only if x ∈ L2 and x �∈ L2 − L1.

– Therefore, if L2 were decidable, then L1 would be.

aContributed by Ms. Mei-Chih Chang (D03922022) on October 13,

2015.
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Subsets and Decidability (concluded)

• Suppose L2 is decidable and L1 ⊆ L2.

• Is L1 decidable?

• It depends again.

• When L1 = ∅, L1 is decidable: Just answer “no.”

• But if L2 = Σ∗ and L1 = H, then L1 is undecidable.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 154



The Universal Halting Problem

• The universal halting problem:

H∗ Δ
= {M : M halts on all inputs }.

• It is also called the totality problem.
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H∗ Is Not Recursivea

• We will reduce H to H∗.

• Given the question “M ;x ∈ H?”, construct the following

machine (this is the reduction):b

Mx(y) {M(x); }

• M halts on x if and only if Mx halts on all inputs.

• In other words, M ;x ∈ H if and only if Mx ∈ H∗.

• So if H∗ were recursive (recall the box for L on p. 150),

H would be recursive, a contradiction.

aKleene (1936).
bSimplified by Mr. Chih-Hung Hsieh (D95922003) on October 5, 2006.

Mx ignores its input y; x is part of Mx’s code but not Mx’s input.
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More Undecidability

• {M ;x : there is a y such that M(x) = y }.
• {M ;x :

the computation M on input x uses all states of M }.

• {M ;x; y : M(x) = y }.
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Complements of Recursive Languages

The complement of L, denoted by L̄, is the language

Σ∗ − L.

Lemma 9 If L is recursive, then so is L̄.

• Let L be decided by M , which is deterministic.

• Swap the “yes” state and the “no” state of M .

• The new machine decides L̄.a

aRecall p. 113.
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Recursive and Recursively Enumerable Languages

Lemma 10 (Kleene’s theorem; Post, 1944) L is

recursive if and only if both L and L̄ are recursively

enumerable.

• Suppose both L and L̄ are recursively enumerable,

accepted by M and M̄ , respectively.

• Simulate M and M̄ in an interleaved fashion.

• If M accepts, then halt on state “yes” because x ∈ L.

• If M̄ accepts, then halt on state “no” because x �∈ L.a

• The other direction is trivial.

aEither M or M̄ (but not both) must accept the input and halt.
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A Very Useful Corollary and Its Consequences

Corollary 11 L is recursively enumerable but not recursive,

then L̄ is not recursively enumerable.

• Suppose L̄ is recursively enumerable.

• Then both L and L̄ are recursively enumerable.

• By Lemma 10 (p. 159), L is recursive, a contradiction.

Corollary 12 H̄ is not recursively enumerable.a

aRecall that H̄
Δ
= {M ;x : M(x) =↗}.
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R, RE, and coRE

RE: The set of all recursively enumerable languages.

coRE: The set of all languages whose complements are

recursively enumerable.

R: The set of all recursive languages.

• Note that coRE is not RE.

– coRE
Δ
= {L : L ∈ RE } = {L : L ∈ RE }.

– RE
Δ
= {L : L �∈ RE }.
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R, RE, and coRE (concluded)

• R = RE ∩ coRE (p. 159).

• There exist languages in RE but not in R and not in

coRE.

– Such as H (p. 139, p. 140, and p. 160).

• There are languages in coRE but not in RE.

– Such as H̄ (p. 160).

• There are languages in neither RE nor coRE.
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R
coRERE
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H Is Complete for REa

• Let L be any recursively enumerable language.

• Assume M accepts L.

• Clearly, one can decide whether x ∈ L by asking if

M : x ∈ H.

• Hence all recursively enumerable languages are reducible

to H!

• H is said to be RE-complete.

aPost (1944).
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