The Kleene Star ${ }^{\text {a }}$ *

- Let A be a set.
- The Kleene star of A, denoted by A^{*}, is the set of all strings obtained by concatenating zero or more strings from A.
- For example, suppose $A=\{0,1\}$.
- Then

$$
A^{*}=\{\epsilon, 0,1,00,01,10,11,000, \ldots\}
$$

- Note that every string in A^{*} must be of finite length.

[^0]
Stephen Kleene (1909-1994)

The two words in the language I most respect are Yes and No. - Henry James (1843-1916), The Portrait of a Lady (1881)

Decidability and Recursive Languages

- Let $L \subseteq(\Sigma-\{\bigsqcup\})^{*}$ be a language, i.e., a set of strings of non- \bigsqcup symbols, with a finite length.
- For example, $\{0,01,10,210,1010, \ldots\}$.
- Let M be a TM such that for any string x :
- If $x \in L$, then $M(x)=$ "yes."
- If $x \notin L$, then $M(x)=$ "no."
- We say M decides L.
- If there exists a TM that decides L, then L is said to be recursive ${ }^{\text {a }}$ or decidable.

[^1]
Recursive and Nonrecursive Languages: Examples

- The set of palindromes over any alphabet is recursive. ${ }^{\text {a }}$
- Palindrome cannot be solved by finite state automata.
- In fact, finite-state automata are equivalent to read-only, right-moving TMs. ${ }^{\text {b }}$
- The set of prime numbers $\{2,3,5,7,11,13,17, \ldots\}$ is recursive. ${ }^{\text {c }}$

[^2]
Recursive and Nonrecursive Languages: Examples (concluded)

- The set of C programs that do not contain a while, a for, or a goto is recursive. ${ }^{\text {a }}$
- But, the set of C programs that do not contain an infinite loop is not recursive (see p. 140). ${ }^{\text {b }}$

[^3]
Acceptability and Recursively Enumerable Languages

- Let $L \subseteq(\Sigma-\{\bigsqcup\})^{*}$ be a language.
- Let M be a TM such that for any string x :
- If $x \in L$, then $M(x)=$ "yes."
- If $x \notin L$, then $M(x)=\nearrow$. ${ }^{\text {a }}$
- We say M accepts L.
- If L is accepted by some TM, then L is said to be recursively enumerable or semidecidable. ${ }^{b}$

[^4]
Acceptability and Recursively Enumerable Languages (concluded)

- A recursively enumerable language can be generated by a TM, thus the name. ${ }^{\text {a }}$
- It means there is a program such that every $x \in L$ (and only they) will be printed out eventually.
- Of course, if L is infinite in size, this program will not terminate.
${ }^{\text {a }}$ Proposition 3.5 on p. 61 of the textbook proves it. Thanks to lively class discussions on September 20, 2011, and September 12, 2017.

Emil Post (1897-1954)

W. V. Quine (1985), "E.
L. Post worked alone in

New York, little heeded."

Recursive and Recursively Enumerable Languages

Proposition 2 If L is recursive, then it is recursively enumerable.

- Let TM M decide L.
- Need to design a TM that accepts L.
- We will modify M to obtain an M^{\prime} that accepts L.

The Proof (concluded)

- M^{\prime} is identical to M except that when M is about to halt with a "no" state, M^{\prime} goes into an infinite loop.
- Simply replace every instruction that results in a "no" state with ones that move the cursor to the right forever and never halts.
- M^{\prime} accepts L.
- If $x \in L$, then $M^{\prime}(x)=M(x)=$ "yes."
- If $x \notin L$, then $M(x)=$ "no" and so $M^{\prime}(x)=\nearrow$.

Recursively Enumerable Languages: Examples

- The set of C program-input pairs that do not run into an infinite loop is recursively enumerable.
- Just run its binary code in a simulator environment.
- Then the simulator will terminate if and only if the C program will terminate.
- When the C program terminates, the simulator simply exits with a "yes" state.
- The set of C programs that contain an infinite loop is not recursively enumerable. ${ }^{\text {a }}$

[^5]
Turing-Computable Functions

- Let $f:(\Sigma-\{\bigsqcup\})^{*} \rightarrow \Sigma^{*}$.
- Optimization problems, root finding problems, etc.
- Let M be a TM with alphabet Σ.
- M computes f if for any string $x \in(\Sigma-\{\bigsqcup\})^{*}$, $M(x)=f(x)$.
- f may be a partial function.
- Then $f(x)$ is undefined if and only if $M(x)$ diverges.
- We call f a (partial) recursive function ${ }^{\mathrm{a}}$ if such an M exists.

[^6]
Kurt Gödel ${ }^{\text {a }}$ (1906-1978)

Quine (1978), "this theorem [...] sealed his immortality."

${ }^{\text {a }}$ This photo was taken by Alfred Eisenstaedt (1898-1995).

Church's Thesis

- What is computable is Turing-computable; TMs are algorithms. ${ }^{\text {a }}$
- No "intuitively computable" problems have been shown not to be Turing-computable (yet). ${ }^{\text {b }}$

[^7]
Church's Thesis (continued)

- Many other computation models have been proposed.
- Recursive function, ${ }^{a} \lambda$ calculus, ${ }^{\text {b }}$ boolean circuits, ${ }^{\text {c }}$ formal language, ${ }^{\text {d }}$ assembly language-like RAM, ${ }^{e}$ cellular automaton, ${ }^{f}$ recurrent neural network, ${ }^{\mathrm{g}}$ and extensions of the Turing machine (more strings, two-dimensional strings, etc.).

```
a}\mathrm{ Skolem (1923); Gödel (1934); Kleene (1936).
'b}\mathrm{ Church (1936).
c'Shannon (1937).
dPost (1943).
e}\mathrm{ Shepherdson & Sturgis (1963).
'f}Conway (1970).
gSiegelmann & Sontag (1991).
```


Church's Thesis (concluded)

- All have been proved to be equivalent.
- Church's thesis is also called the Church-Turing Thesis.

Alonso Church (1903-1995)

Extended Church's Thesis ${ }^{\text {a }}$

- All "reasonably succinct encodings" of problems are polynomially related (e.g., n^{2} vs. n^{6}).
- Representations of a graph as an adjacency matrix and as a linked list are both succinct.
- The unary representation of numbers is not succinct.
- The binary representation of numbers is succinct. * 1001_{2} vs. 111111111_{1}.
- All numbers for TMs will be binary from now on.

[^8]
Extended Church's Thesis (concluded)

- Representations that are not succinct may give misleadingly low complexities.
- Consider an algorithm with binary inputs that runs in 2^{n} steps.
- Suppose the input uses unary representation instead.
- Then the same algorithm runs in linear time because the input length is now 2^{n} !
- So a succinct representation means honest accounting.

Physical Church-Turing Thesis

- The physical Church-Turing thesis states that:

Anything computable in physics can also be computed on a Turing machine. ${ }^{\text {a }}$

- The universe is a Turing machine. ${ }^{\text {b }}$
${ }^{\mathrm{a}}$ Cooper (2012).
${ }^{\text {b }}$ Edward Fredkin's (1992) digital physics.

The Strong Church-Turing Thesis ${ }^{\text {a }}$

- The strong Church-Turing thesis states that:

A Turing machine can compute any function computable by any "reasonable" physical device with only polynomial slowdown. ${ }^{\text {b }}$

- A CPU, a GPU, and a DSP chip are good examples of physical devices. ${ }^{\text {c }}$

[^9]
The Strong Church-Turing Thesis (continued)

- Factoring is believed to be a hard problem for Turing machines (but there is no proof yet).
- But a quantum computer can factor numbers in probabilistic polynomial time. ${ }^{\text {a }}$
- If a large-scale stable quantum computer can be reliably built, the strong Church-Turing thesis may be refuted. ${ }^{\text {b }}$

[^10]
The Strong Church-Turing Thesis (concluded)

- As of 2919, ${ }^{\text {a }}$

There is no publicly known application of commercial interest based upon quantum algorithms that could be run on a near-term analog or digital NISQ $^{\text {b }}$ computer that would provide an advantage over classical approaches.

[^11]
Turing Machines with Multiple Strings

- A k-string Turing machine (TM) is a quadruple $M=(K, \Sigma, \delta, s)$.
- K, Σ, s are as before.
- $\delta: K \times \Sigma^{k} \rightarrow(K \cup\{h$, "yes", "no" $\}) \times(\Sigma \times\{\leftarrow, \rightarrow,-\})^{k}$.
- All strings start with a \triangleright.
- The first string contains the input.
- Decidability and acceptability are the same as before.
- When TMs compute functions, the output is the last (k th) string.

PaLINDROME Revisited

- A 2 -string TM can decide palindrome in $O(n)$ steps.
- It copies the input to the second string.
- The cursor of the first string is positioned at the first symbol of the input.
- The cursor of the second string is positioned at the last symbol of the input.
- The symbols under the cursors are then compared.
- The two cursors are then moved in opposite directions until the ends are reached.
- The machine accepts if and only if the symbols under the two cursors are identical at all steps.

PALINDROME Revisited (concluded)

- The running times of a 2 -string TM and a single-string TM are quadratically related: n^{2} vs. n.
- This is consistent with the extended Church's thesis (p. 67).
- "Reasonable" models are related polynomially in running times.

Configurations and Yielding

- The concept of configuration and yielding is the same as before except that a configuration is a $(2 k+1)$-tuple

$$
\left(q, w_{1}, u_{1}, w_{2}, u_{2}, \ldots, w_{k}, u_{k}\right)
$$

$-w_{i} u_{i}$ is the i th string.

- The i th cursor is reading the last symbol of w_{i}.
- Recall that \triangleright is each w_{i} 's first symbol.
- The k-string TM's initial configuration is

Time seemed to be the most obvious measure of complexity. - Stephen Arthur Cook (1939-)

Time Complexity

- The multistring TM is the basis of our notion of the time expended by TMs.
- If a k-string TM M halts after t steps on input x, then the time required by M on input x is t.
- If $M(x)=\nearrow$, then the time required by M on x is ∞.

Time Complexity (concluded)

- Machine M operates within time $f(n)$ for $f: \mathbb{N} \rightarrow \mathbb{N}$ if for any input string x, the time required by M on x is at most $f(|x|)$.
$-|x|$ is the length of string x.
- Function $f(n)$ is a time bound for M.

Time Complexity Classes ${ }^{\text {a }}$

- Suppose language $L \subseteq(\Sigma-\{\bigsqcup\})^{*}$ is decided by a multistring TM operating in time $f(n)$.
- We say $L \in \operatorname{TIME}(f(n))$.
- $\operatorname{TIME}(f(n))$ is the set of languages decided by TMs with multiple strings operating within time bound $f(n)$.
- $\operatorname{TIME}(f(n))$ is a complexity class.
- Palindrome is in $\operatorname{TIME}(f(n))$, where $f(n)=O(n)$.
- Trivially, $\operatorname{TIME}(f(n)) \subseteq \operatorname{TIME}(g(n))$ if $f(n) \leq g(n)$ for all n.

[^12]Juris Hartmanis ${ }^{\text {a }}$ (1928-)

${ }^{\text {a }}$ Turing Award (1993).

Richard Edwin Stearns ${ }^{\text {a }}$ (1936-)

${ }^{\text {a }}$ Turing Award (1993).

The Simulation Technique

Theorem 3 Given any k-string M operating within time $f(n)$, there exists a (single-string) M^{\prime} operating within time $O\left(f(n)^{2}\right)$ such that $M(x)=M^{\prime}(x)$ for any input x.

- The single string of M^{\prime} implements the k strings of M.

The Proof

- Represent configuration $\left(q, w_{1}, u_{1}, w_{2}, u_{2}, \ldots, w_{k}, u_{k}\right)$ of M by this string of M^{\prime} :

$$
\left(q, \triangleright w_{1}^{\prime} u_{1} \triangleleft w_{2}^{\prime} u_{2} \triangleleft \cdots \triangleleft w_{k}^{\prime} u_{k} \triangleleft \triangleleft\right) .
$$

$-\triangleleft$ is a special delimiter.

- w_{i}^{\prime} is w_{i} with the first ${ }^{\mathrm{a}}$ and last symbols "primed."
- It serves the purpose of "," in a configuration. ${ }^{\text {b }}$
${ }^{\text {a }}$ The first symbol is of course \triangleright.
${ }^{\mathrm{b}}$ An alternative is to use ($q, \triangleright w_{1}^{\prime}\left|u_{1} \triangleleft w_{2}^{\prime}\right| u_{2} \triangleleft \cdots \triangleleft w_{k}^{\prime} \mid u_{k} \triangleleft \triangleleft$) by priming only \triangleright in w_{i}, where " \mid " is a new symbol.

The Proof (continued)

- The first symbol of w_{i}^{\prime} is the primed version of $\triangleright: \triangleright^{\prime}$.
- Recall TM cursors are not allowed to move to the left of \triangleright (p.23).
- Now the cursor of M^{\prime} can move between the simulated strings of M. ${ }^{\text {a }}$
- The "priming" of the last symbol of each w_{i} ensures that M^{\prime} knows which symbol is under each cursor of $M .{ }^{\mathrm{b}}$
${ }^{\text {a }}$ Thanks to a lively discussion on September 22, 2009.
${ }^{\mathrm{b}}$ Added because of comments made by Mr. Che-Wei Chang (R95922093) on September 27, 2006.

The Proof (continued)

- The initial configuration of M^{\prime} is

$$
(s, \triangleright \triangleright^{\prime \prime} x \triangleleft \overbrace{\left.\triangleright^{\prime \prime} \triangleleft \cdots \triangleright^{\prime \prime} \triangleleft \triangleleft\right) .}^{k-1 \text { pairs }}
$$

- $\nabla^{\prime \prime}$ is double-primed because it is the beginning and the ending symbol as the cursor is reading it. ${ }^{\text {a }}$
- Again, think of it as a new symbol.

[^13]
The Proof (continued)

- We simulate each move of M thus:

1. M^{\prime} scans the string to pick up the k symbols under the cursors.

- The states of M^{\prime} must be enlarged to include $K \times \Sigma^{k}$ to remember them. ${ }^{\text {a }}$
- The transition functions of M^{\prime} must also reflect it.

2. M^{\prime} then changes the string to reflect the overwriting of symbols and cursor movements of M.
[^14]
The Proof (continued)

- It is possible that some strings of M need to be lengthened (see next page).
- The linear-time algorithm on p. 38 can be used for each such string.
- The simulation continues until M halts.
- M^{\prime} then erases all strings of M except the last one. ${ }^{\text {a }}$
${ }^{\text {a }}$ Because whatever appears on the string of M^{\prime} will be considered the output. So ∇^{\prime} s and $\nabla^{\prime \prime}$ s need to be removed.

The Proof (continued) ${ }^{\text {a }}$

string 1	string 2	string 3	string 4

string 1	string 2	string 3	string 4

${ }^{a}$ If we interleave the strings, the simulation may be easier. Contributed by Mr. Kai-Yuan Hou (B99201038, R03922014) on September 22, 2015. This is similar to constructing a single-string multi-track TM in, e.g., Hopcroft \& Ullman (1969).

The Proof (continued)

- Since M halts within time $f(|x|)$, none of its strings ever becomes longer than $f(|x|)$. ${ }^{\text {a }}$
- The length of the string of M^{\prime} at any time is $O(k f(|x|))$.
- Simulating each step of M takes, per string of M, $O(k f(|x|))$ steps.
- $O(f(|x|))$ steps to collect information from this string.
- $O(k f(|x|))$ steps to write and, if needed, to lengthen the string.

[^15]
The Proof (concluded)

- M^{\prime} takes $O\left(k^{2} f(|x|)\right)$ steps to simulate each step of M because there are k strings.
- As there are $f(|x|)$ steps of M to simulate, M^{\prime} operates within time $O\left(k^{2} f(|x|)^{2}\right)$. ${ }^{\text {a }}$

[^16]
Simulation with Two-String TMs

We can do better with two-string TMs.
Theorem 4 Given any k-string M operating within time $f(n), k>2$, there exists a two-string M^{\prime} operating within time $O(f(n) \log f(n))$ such that $M(x)=M^{\prime}(x)$ for any input x.

Linear Speedup ${ }^{\text {a }}$

Theorem 5 Let $L \in \operatorname{TIME}(f(n))$. Then for any $\epsilon>0$, $L \in \operatorname{TIME}\left(f^{\prime}(n)\right)$, where $f^{\prime}(n) \triangleq \epsilon f(n)+n+2$.

See Theorem 2.2 of the textbook for a proof.

[^17]
Implications of the Speedup Theorem

- State size can be traded for speed. ${ }^{\text {a }}$
- If the running time is $c n$ with $c>1$, then c can be made arbitrarily close to 1 .
- If the running time is superlinear, say $14 n^{2}+31 n$, then the constant in the leading term (14 in this example) can be made arbitrarily small.
- Arbitrary linear speedup can be achieved. ${ }^{\text {b }}$
- This justifies the big-O notation in the analysis of algorithms.

[^18]
P

- By the linear speedup theorem, any polynomial time bound can be represented by its leading term n^{k} for some $k \geq 1$.
- If $L \in \operatorname{TIME}\left(n^{k}\right)$ for some $k \in \mathbb{N}$, it is a polynomially decidable language.
- Clearly, $\operatorname{TIME}\left(n^{k}\right) \subseteq \operatorname{TIME}\left(n^{k+1}\right)$.
- The union of all polynomially decidable languages is denoted by P:

$$
\mathrm{P} \triangleq \bigcup_{k>0} \operatorname{TIME}\left(n^{k}\right)
$$

- P contains problems that can be efficiently solved.

Philosophers have explained space. They have not explained time. - Arnold Bennett (1867-1931), How To Live on 24 Hours a Day (1910)

I keep bumping into that silly quotation attributed to me that says 640 K of memory is enough.

- Bill Gates (1996)

Space Complexity

- Consider a k-string TM M with input x.
- Assume non- \bigsqcup is never written over by $\bigsqcup .^{\text {a }}$
- The purpose is not to artificially reduce the space needs (see below).
- If M halts in configuration

$$
\left(H, w_{1}, u_{1}, w_{2}, u_{2}, \ldots, w_{k}, u_{k}\right)
$$

then the space required by M on input x is

$$
\sum_{i=1}^{k}\left|w_{i} u_{i}\right|
$$

[^19]
Space Complexity (continued)

- Suppose we do not charge the space used only for input and output.
- Let $k>2$ be an integer.
- A k-string Turing machine with input and output is a k-string TM that satisfies the following conditions.
- The input string is read-only. ${ }^{\text {a }}$
- The cursor on the last string never moves to the left.
* The output string is essentially write-only.
- The cursor of the input string does not wander off into the $\bigsqcup \mathrm{s}$.

[^20]
Space Complexity (concluded)

- If M is a TM with input and output, then the space required by M on input x is

$$
\sum_{i=2}^{k-1}\left|w_{i} u_{i}\right|
$$

- Machine M operates within space bound $f(n)$ for $f: \mathbb{N} \rightarrow \mathbb{N}$ if for any input x, the space required by M on x is at most $f(|x|)$.

Space Complexity Classes

- Let L be a language.
- Then

$$
L \in \operatorname{SPACE}(f(n))
$$

if there is a TM with input and output that decides L and operates within space bound $f(n)$.

- $\operatorname{SPACE}(f(n))$ is a set of languages.
$-\operatorname{PALINDROME} \in \mathrm{SPACE}(\log n) .{ }^{\text {a }}$
- A linear speedup theorem similar to the one on p. 95 exists, so constant coefficients do not matter.

[^21]If she can hesitate as to "Yes," she ought to say "No" directly.

- Jane Austen (1775-1817),

Emma (1815)

Nondeterminism ${ }^{\text {a }}$

- A nondeterministic Turing machine (NTM) is a quadruple $N=(K, \Sigma, \Delta, s)$.
- K, Σ, s are as before.
- $\Delta \subseteq K \times \Sigma \times(K \cup\{h$, "yes", "no" $\}) \times \Sigma \times\{\leftarrow, \rightarrow,-\}$ is a relation, not a function. ${ }^{\text {b }}$
- For each state-symbol combination (q, σ), there may be multiple valid next steps.
- Multiple lines of code may be applicable.
- But only one will be taken.

[^22]
Nondeterminism (continued)

- As before, a program contains lines of code:

$$
\begin{aligned}
\left(q_{1}, \sigma_{1}, p_{1}, \rho_{1}, D_{1}\right) & \in \Delta \\
\left(q_{2}, \sigma_{2}, p_{2}, \rho_{2}, D_{2}\right) & \in \Delta, \\
\vdots & \\
\left(q_{n}, \sigma_{n}, p_{n}, \rho_{n}, D_{n}\right) & \in \Delta .
\end{aligned}
$$

- But we cannot write

$$
\delta\left(q_{i}, \sigma_{i}\right)=\left(p_{i}, \rho_{i}, D_{i}\right)
$$

as in the deterministic case (p. 24) anymore.

Nondeterminism (concluded)

- A configuration yields another configuration in one step if there exists a rule in Δ that makes this happen.
- There is only a single thread of computation. ${ }^{\text {a }}$
- Nondeterminism is not parallelism, multiprocessing, multithreading, or quantum computation.

[^23]
Michael O. Rabin ${ }^{\text {a }}$ (1931-)

${ }^{\text {a }}$ Turing Award (1976).

Dana Stewart Scott ${ }^{\text {a }}$ (1932-)

${ }^{\text {a }}$ Turing Award (1976).

Computation Tree and Computation Path

Decidability under Nondeterminism

- Let L be a language and N be an NTM.
- N decides L if for any $x \in \Sigma^{*}, x \in L$ if and only if there is a sequence of valid configurations that ends in "yes."
- In other words,
- If $x \in L$, then $N(x)=$ "yes" for some computation path.
- If $x \notin L$, then $N(x) \neq$ "yes" for all computation paths.

Decidability under Nondeterminism (continued)

- It is not required that the NTM halts in all computation paths. ${ }^{\text {a }}$
- If $x \notin L$, no nondeterministic choices should lead to a "yes" state.
- The key is the algorithm's overall behavior not whether it gives a correct answer for each particular run.
- Note that determinism is a special case of nondeterminism.

[^24]
Decidability under Nondeterminism (concluded)

- For example, suppose L is the set of primes. ${ }^{\text {a }}$
- Then we have the primality testing problem.
- An NTM N decides L if:
- If x is a prime, then $N(x)=$ "yes" for some computation path.
- If x is not a prime, then $N(x) \neq$ "yes" for all computation paths.
${ }^{\text {a Contributed by Mr. Yu-Ming Lu (R06723032, D08922008) on March }}$ 7, 2019.

[^0]: ${ }^{\text {a }}$ Kleene (1956).

[^1]: a Little to do with the concept of "recursive" calls.

[^2]: ${ }^{\text {a }}$ There is a program that will halt and it returns "yes" if and only if the input is a palindrome.
 ${ }^{\mathrm{b}}$ Thanks to a lively discussion on September 15, 2015.
 ${ }^{\text {c }}$ There is a program that will halt and it returns "yes" if and only if the input is a prime.

[^3]: ${ }^{a}$ There is a program that will halt and it returns "yes" if and only if the input C code does not contain any of the keywords.
 ${ }^{\mathrm{b}}$ So there is no algorithm that will answer correctly in a finite amount of time if a C program will run into an infinite loop on some inputs.

[^4]: ${ }^{\text {a }}$ This part is different from recursive languages.
 ${ }^{\mathrm{b}}$ Post (1944).

[^5]: ${ }^{\text {a }}$ See p. 160 for the proof.

[^6]: ${ }^{\text {a }}$ Gödel (1931, 1934); Kleene (1936).

[^7]: ${ }^{\text {a }}$ Church (1936); Kleene (1943, 1953).
 ${ }^{\mathrm{b}}$ Quantum computer of Manin (1980) and Feynman (1982); DNA computer of Adleman (1994).

[^8]: aSome call it "polynomial Church's thesis," which Lószló Lovász attributed to Leonid Levin.

[^9]: ${ }^{\text {a }}$ Vergis, Steiglitz, \& Dickinson (1986).
 ${ }^{\mathrm{b}}$ http://ocw.mit.edu/courses/mathematics/18-405j-advanced -complexity-theory-fall-2001/lecture-notes/lecture10.pdf
 ${ }^{\text {c }}$ Thanks to a lively discussion on September 23, 2014.

[^10]: ${ }^{\text {a }}$ Shor (1994).
 ${ }^{\text {b }}$ Contributed by Mr. Kai-Yuan Hou (B99201038, R03922014) on September 22, 2015.

[^11]: ${ }^{\text {a }}$ Grumbling \& Horowitz (2019).
 b"Noisy, Intermediate-Scale Quantum."

[^12]: ${ }^{\text {a }}$ Hartmanis \& Stearns (1965); Hartmanis, Lewis, \& Stearns (1965).

[^13]: ${ }^{\text {a }}$ Added after the class discussion on September 20, 2011.

[^14]: ${ }^{\text {a }}$ Recall the TM program on p. 32.

[^15]: ${ }^{\text {a }}$ We tacitly assume $f(n) \geq n$.

[^16]: ${ }^{\text {a }}$ Is the time reduced to $O\left(k f(|x|)^{2}\right)$ if the interleaving data structure is adopted?

[^17]: ${ }^{\text {a }}$ Hartmanis \& Stearns (1965).

[^18]: ${ }^{\mathrm{a}} m^{k} \cdot|\Sigma|^{3 m k}$-fold increase to gain a speedup of $O(m)$. No free lunch.
 ${ }^{\mathrm{b}}$ Can you apply the theorem multiple times to achieve superlinear speedup? Thanks to a question by a student on September 21, 2010.

[^19]: ${ }^{\text {a }}$ Corrected by Ms. Chuan-Ju Wang (R95922018, F95922018) on September 27, 2006.

[^20]: ${ }^{\text {a }}$ Called an off-line TM in Hartmanis, Lewis, \& Stearns (1965).

[^21]: ${ }^{\mathrm{a}}$ Keep 3 counters.

[^22]: ${ }^{\text {a }}$ Rabin \& Scott (1959).
 ${ }^{\mathrm{b}}$ Corrected by Mr. Jung-Ying Chen (D95723006) on September 23, 2008.

[^23]: ${ }^{\text {a }}$ Thanks to a lively discussion on September 22, 2015.

[^24]: aSo "accepts" may be a more proper term. Some books use "decides" only when the NTM always halts.

