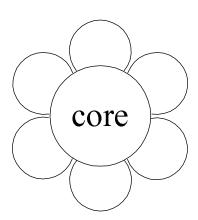
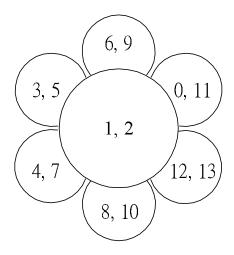
Sunflowers

- Fix $p \in \mathbb{Z}^+$ and $\ell \in \mathbb{Z}^+$.
- A sunflower is a family of p sets $\{P_1, P_2, \dots, P_p\}$, called **petals**, each of cardinality at most ℓ .
- Furthermore, all pairs of sets in the family must have the same intersection (called the **core** of the sunflower).



A Sample Sunflower

 $\{\{1,2,3,5\},\{1,2,6,9\},\{0,1,2,11\},$ $\{1,2,12,13\},\{1,2,8,10\},\{1,2,4,7\}\}.$



The Erdős-Rado Lemma

Lemma 88 Let \mathcal{Z} be a family of more than $M \stackrel{\triangle}{=} (p-1)^{\ell} \ell!$ nonempty sets, each of cardinality ℓ or less. Then \mathcal{Z} must contain a sunflower (with p petals).

- Induction on ℓ .
- For $\ell = 1$, p different singletons form a sunflower (with an empty core).
- Suppose $\ell > 1$.
- Consider a maximal subset $\mathcal{D} \subseteq \mathcal{Z}$ of disjoint sets.
 - Every set in $\mathcal{Z} \mathcal{D}$ intersects some set in \mathcal{D} .

The Proof of the Erdős-Rado Lemma (continued) For example,

$$\mathcal{Z} = \{\{1,2,3,5\}, \{1,3,6,9\}, \{0,4,8,11\}, \\ \{4,5,6,7\}, \{5,8,9,10\}, \{6,7,9,11\}\},$$

$$\mathcal{D} = \{\{1,2,3,5\}, \{0,4,8,11\}\}.$$

The Proof of the Erdős-Rado Lemma (continued)

- Suppose \mathcal{D} contains at least p sets.
 - $-\mathcal{D}$ constitutes a sunflower with an empty core.
- Suppose \mathcal{D} contains fewer than p sets.
 - Let C be the union of all sets in \mathcal{D} .
 - $-\mid C\mid \leq (p-1)\ell.$
 - -C intersects every set in \mathcal{Z} by \mathcal{D} 's maximality.
 - There is a $d \in C$ that intersects more than $\frac{M}{(p-1)\ell} = (p-1)^{\ell-1}(\ell-1)! \text{ sets in } \mathcal{Z}.$
 - Consider $\mathcal{Z}' = \{ Z \{ d \} : Z \in \mathcal{Z}, d \in Z \}.$

The Proof of the Erdős-Rado Lemma (concluded)

- (continued)
 - $-\mathcal{Z}'$ has more than $M' \stackrel{\Delta}{=} (p-1)^{\ell-1} (\ell-1)!$ sets.
 - -M' is just M with ℓ replaced with $\ell-1$.
 - $-\mathcal{Z}'$ contains a sunflower by induction, say

$$\{P_1,P_2,\ldots,P_p\}.$$

- Now,

$$\{P_1 \cup \{d\}, P_2 \cup \{d\}, \dots, P_p \cup \{d\}\}\$$

is a sunflower in \mathcal{Z} .

Comments on the Erdős-Rado Lemma

- A family of more than M sets must contain a sunflower.
- **Plucking** a sunflower means replacing the sets in the sunflower by its core.
- By repeatedly finding a sunflower and plucking it, we can reduce a family with more than M sets to a family with at most M sets.
- If \mathcal{Z} is a family of sets, the above result is denoted by $\operatorname{pluck}(\mathcal{Z})$.
- pluck(\mathcal{Z}) is not unique.^a

^aIt depends on the sequence of sunflowers one plucks. Fortunately, this issue is not material to the proof.

An Example of Plucking

• Recall the sunflower on p. 811:

$$\mathcal{Z} = \{\{1,2,3,5\}, \{1,2,6,9\}, \{0,1,2,11\}, \{1,2,12,13\}, \{1,2,8,10\}, \{1,2,4,7\}\}$$

• Then

$$pluck(\mathcal{Z}) = \{\{1, 2\}\}.$$

Razborov's Theorem

Theorem 89 (Razborov, 1985) There is a constant c such that for large enough n, all monotone circuits for $CLIQUE_{n,k}$ with $k = n^{1/4}$ have size at least $n^{cn^{1/8}}$.

- We shall approximate any monotone circuit for $CLIQUE_{n,k}$ by a restricted kind of crude circuit.
- The approximation will proceed in steps: one step for each gate of the monotone circuit.
- Each step introduces few errors (false positives and false negatives).
- Yet, the final crude circuit has exponentially many errors.

The Proof

- Fix $k = n^{1/4}$.
- Fix $\ell = n^{1/8}$.
- Note that^a

$$2\binom{\ell}{2} \le k - 1.$$

- p will be fixed later to be $n^{1/8} \log n$.
- Fix $M = (p-1)^{\ell} \ell!$.
 - Recall the Erdős-Rado lemma (p. 812).

^aCorrected by Mr. Moustapha Bande (D98922042) on January 5, 2010.

The Proof (continued)

- Each crude circuit used in the approximation process is of the form $CC(X_1, X_2, ..., X_m)$, where:
 - $-X_i\subseteq V.$
 - $-|X_i| \le \ell.$
 - $-m \leq M$.
- It answers true if any X_i is a clique.
- We shall show how to approximate any monotone circuit for $CLIQUE_{n,k}$ by such a crude circuit, inductively.
- The induction basis is straightforward:
 - Input gate g_{ij} is the crude circuit $CC(\{i,j\})$.

The Proof (continued)

- A monotone circuit is the OR or AND of two subcircuits.
- We will build approximators of the overall circuit from the approximators of the two subcircuits.
 - Start with two crude circuits $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.
 - $-\mathcal{X}$ and \mathcal{Y} are two families of at most M sets of nodes, each set containing at most ℓ nodes.
 - We will construct the approximate OR and the approximate AND of these subcircuits.
 - Then show both approximations introduce few errors.

The Proof: OR

- $CC(\mathcal{X} \cup \mathcal{Y})$ is equivalent to the OR of $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.
 - Trivially, a node set $C \in \mathcal{X} \cup \mathcal{Y}$ is a clique if and only if $C \in \mathcal{X}$ is a clique or $C \in \mathcal{Y}$ is a clique.
- Violations in using $CC(\mathcal{X} \cup \mathcal{Y})$ occur when $|\mathcal{X} \cup \mathcal{Y}| > M$.
- Such violations are eliminated by using

$$CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$$

as the approximate OR of $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.

The Proof: OR (continued)

- If $CC(\mathcal{Z})$ is true, then $CC(\operatorname{pluck}(\mathcal{Z}))$ must be true.
 - The quick reason: If Y is a clique, then a subset of Y must also be a clique.
 - Let $Y \in \mathcal{Z}$ be a clique.
 - There must exist an $X \in \text{pluck}(\mathcal{Z})$ such that $X \subseteq Y$.
 - This X is also a clique.

The Proof: OR (continued) X

The Proof: OR (concluded)

- $CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces a **false positive** if a negative example makes both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return false but makes $CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return true.
- $CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces a **false negative** if a positive example makes either $CC(\mathcal{X})$ or $CC(\mathcal{Y})$ return true but makes $CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return false.
- We next count the number of false positives and false negatives introduced by $CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$.
- Let us work on false negatives for OR first.

^aCompared with $CC(\mathcal{X} \cup \mathcal{Y})$ of course.

The Number of False Negatives^a

Lemma 90 CC(pluck($\mathcal{X} \cup \mathcal{Y}$)) introduces no false negatives.

- Each plucking replaces sets in a crude circuit by their common subset.
- This makes the test for cliqueness less stringent.^b

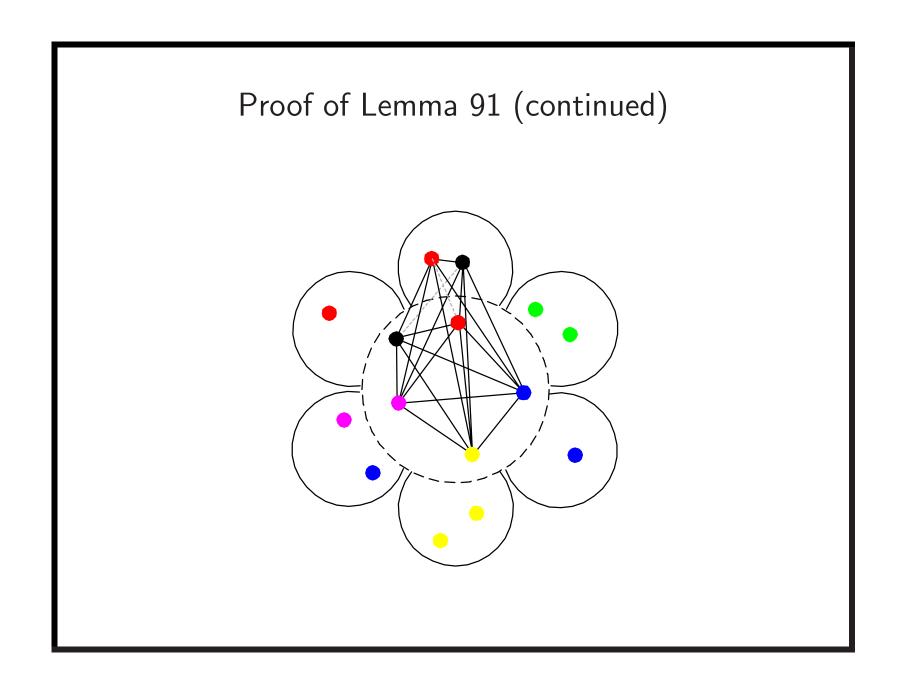
 $^{^{}a}CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces a false negative if a positive example makes either $CC(\mathcal{X})$ or $CC(\mathcal{Y})$ return true but makes $CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return false.

^bRecall p. 823.

The Number of False Positives

Lemma 91 CC(pluck($\mathcal{X} \cup \mathcal{Y}$)) introduces at most $\frac{2M}{p-1} 2^{-p} (k-1)^n$ false positives.

- Each plucking operation replaces the sunflower $\{Z_1, Z_2, \ldots, Z_p\}$ with its common core Z.
- A false positive is *necessarily* a coloring such that:
 - There is a pair of identically colored nodes in *each* petal Z_i (and so $CC(Z_1, Z_2, ..., Z_p)$ returns false).
 - But the core contains distinctly colored nodes (thus forming a clique).
 - This implies at least one node from each identical-color pair was plucked away.



- We now count the number of such colorings.
- Color nodes in V at random with k-1 colors.
- Let R(X) denote the event that there are repeated colors in set X.

Now

$$\operatorname{prob}[R(Z_{1}) \wedge \cdots \wedge R(Z_{p}) \wedge \neg R(Z)] \qquad (24)$$

$$\leq \operatorname{prob}[R(Z_{1}) \wedge \cdots \wedge R(Z_{p}) | \neg R(Z)]$$

$$= \prod_{i=1}^{p} \operatorname{prob}[R(Z_{i}) | \neg R(Z)]$$

$$\leq \prod_{i=1}^{p} \operatorname{prob}[R(Z_{i})]. \qquad (25)$$

- First equality holds because $R(Z_i)$ are independent given $\neg R(Z)$ as Z contains their *only common* nodes.
- Last inequality holds as the likelihood of repetitions in Z_i decreases given no repetitions in its subset Z.

- Consider two nodes in Z_i .
- The probability that they have identical color is

$$\frac{1}{k-1}$$
.

Now

$$\operatorname{prob}[R(Z_i)] \le \frac{\binom{|Z_i|}{2}}{k-1} \le \frac{\binom{\ell}{2}}{k-1} \le \frac{1}{2}.$$

• So the probability^a that a random coloring is a *new* false positive is at most 2^{-p} by inequality (25) on p. 830.

^aProportion, if you so prefer.

- As there are $(k-1)^n$ different colorings, each plucking introduces at most $2^{-p}(k-1)^n$ false positives.
- Recall that $|\mathcal{X} \cup \mathcal{Y}| \leq 2M$.
- When the procedure pluck $(\mathcal{X} \cup \mathcal{Y})$ ends, the set system contains $\leq M$ sets.

Proof of Lemma 91 (concluded)

- Each plucking reduces the number of sets by p-1.
- Hence at most 2M/(p-1) pluckings occur in pluck $(\mathcal{X} \cup \mathcal{Y})$.
- At most

$$\frac{2M}{p-1} \, 2^{-p} (k-1)^n$$

false positives are introduced.^a

^aNote that the numbers of errors are added not multiplied. Recall that we count how many new errors are introduced by each approximation step. Contributed by Mr. Ren-Shuo Liu (D98922016) on January 5, 2010.

The Proof: AND

• The approximate AND of crude circuits $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ is

$$CC(\operatorname{pluck}(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \leq \ell\})).$$

• We need to count the number of errors this approximate AND introduces on the positive and negative examples.

The Proof: AND (continued)

- The approximate AND *introduces* a **false positive** if a negative example makes either $CC(\mathcal{X})$ or $CC(\mathcal{Y})$ return false but makes the approximate AND return true.
- The approximate AND *introduces* a **false negative** if a positive example makes both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return true but makes the approximate AND return false.
- Introduction of errors means we ignore scenarios where the AND of $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ is already wrong.

The Proof: AND (continued)

- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ introduces no false positives and no false negatives over our positive and negative examples.^a
 - Suppose $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ returns true.
 - Then some $X_i \cup Y_j$ is a clique.
 - Thus $X_i \in \mathcal{X}$ and $Y_j \in \mathcal{Y}$ are cliques, making both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return true.
 - So CC($\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\}$) introduces no false positives.

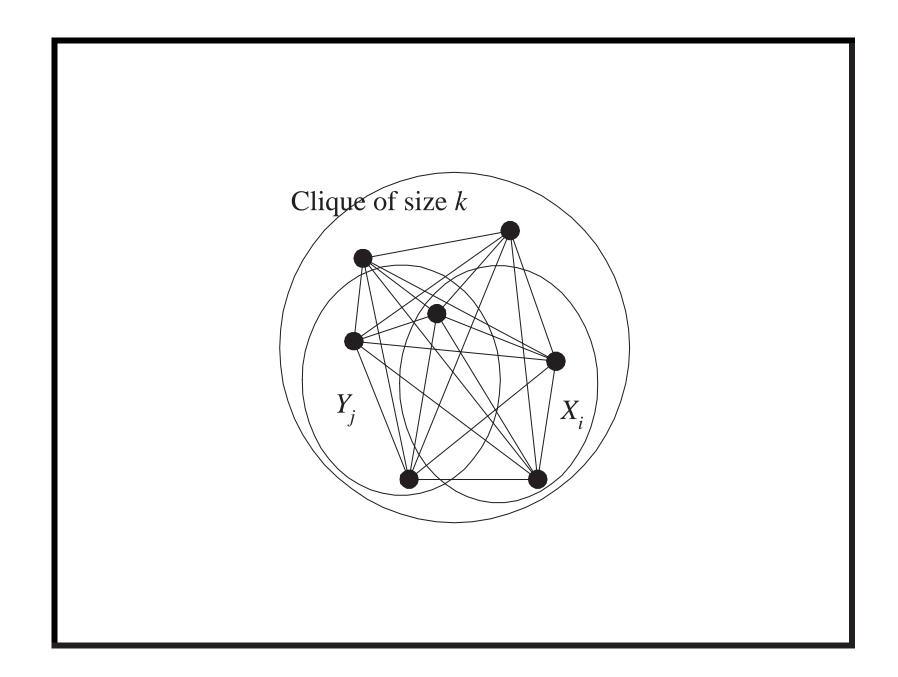
^aUnlike the OR case on p. 822, we are not claiming that $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ is equivalent to the AND of $CC(\mathcal{X})$ and $CC(\mathcal{Y})$. Equivalence is more than we need in either case.

The Proof: AND (concluded)

- (continued)
 - On the other hand, suppose both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ accept a positive example with a clique \mathcal{C} of size k.
 - This clique \mathcal{C} must contain an $X_i \in \mathcal{X}$ and a $Y_j \in \mathcal{Y}$.
 - As this clique C also contains $X_i \cup Y_j$, a the new circuit returns true.
 - CC($\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\}$) introduces no false negatives.
- We now bound the number of false positives and false negatives introduced^b by the approximate AND.

^aSee next page.

^bCompared with CC($\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\}$) of course.



The Number of False Positives

Lemma 92 The approximate AND introduces at most $M^2 2^{-p} (k-1)^n$ false positives.

- We prove this claim in stages.
- We already knew $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ introduces no false positives.^a
- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \leq \ell\})$ introduces no additional false positives because we are testing potentially fewer sets for cliqueness.

^aRecall p. 836.

Proof of Lemma 92 (concluded)

- $|\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell\}| \le M^2$.
- Each plucking reduces the number of sets by p-1.
- So pluck($\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \leq \ell \}$) involves $\leq M^2/(p-1)$ pluckings.
- Each plucking introduces at most $2^{-p}(k-1)^n$ false positives by the proof of Lemma 91 (p. 827).
- The desired upper bound is

$$[M^2/(p-1)]2^{-p}(k-1)^n \le M^22^{-p}(k-1)^n.$$

The Number of False Negatives

Lemma 93 The approximate AND introduces at most $M^2\binom{n-\ell-1}{k-\ell-1}$ false negatives.

- We again prove this claim in stages.
- We knew CC($\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\}$) introduces no false negatives.^a

^aRecall p. 836.

- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \leq \ell\})$ introduces $\leq M^2\binom{n-\ell-1}{k-\ell-1}$ false negatives.
 - Deletion of set $Z \stackrel{\Delta}{=} X_i \cup Y_j$ larger than ℓ introduces false negatives only if Z is part of a clique.
 - There are $\binom{n-|Z|}{k-|Z|}$ such cliques.
 - * It is the number of positive examples whose clique contains Z.
 - $-\binom{n-|Z|}{k-|Z|} \le \binom{n-\ell-1}{k-\ell-1} \text{ as } |Z| > \ell.$
 - There are at most M^2 such Zs.

Proof of Lemma 93 (concluded)

- Plucking introduces no false negatives.
 - Recall that if $CC(\mathcal{Z})$ is true, then $CC(\operatorname{pluck}(\mathcal{Z}))$ must be true.^a

^aRecall p. 823.

Two Summarizing Lemmas

From Lemmas 91 (p. 827) and 92 (p. 839), we have:

Lemma 94 Each approximation step introduces at most $M^2 2^{-p} (k-1)^n$ false positives.

From Lemmas 90 (p. 826) and 93 (p. 841), we have:

Lemma 95 Each approximation step introduces at most $M^2\binom{n-\ell-1}{k-\ell-1}$ false negatives.

The Proof (continued)

- The above two lemmas show that each approximation step introduces "few" false positives and false negatives.
- We next show that the resulting crude circuit has "a lot" of false positives or false negatives.

The Final Crude Circuit

Lemma 96 Every final crude circuit is:

- 1. Identically false—thus wrong on all positive examples.
- 2. Or outputs true on at least half of the negative examples.
- Suppose it is not identically false.
- By construction, it accepts at least those graphs that have a clique on some set X of nodes, with

$$|X| \le \ell = n^{1/8} < n^{1/4} = k.$$

Proof of Lemma 96 (concluded)

- The proof of Lemma 91 (p. 827ff) shows that at least half of the colorings assign different colors to nodes in X.
- So at least half of the colorings thus negative examples have a clique in X and are accepted.

The Proof (continued)

• Recall the constants on p. 819:

$$k \stackrel{\triangle}{=} n^{1/4},$$

$$\ell \stackrel{\triangle}{=} n^{1/8},$$

$$p \stackrel{\triangle}{=} n^{1/8} \log n,$$

$$M \stackrel{\triangle}{=} (p-1)^{\ell} \ell! < n^{(1/3)n^{1/8}} \text{ for large } n.$$

The Proof (continued)

- Suppose the final crude circuit is identically false.
 - By Lemma 95 (p. 844), each approximation step introduces at most $M^2\binom{n-\ell-1}{k-\ell-1}$ false negatives.
 - There are $\binom{n}{k}$ positive examples.
 - The original monotone circuit for $\mathtt{CLIQUE}_{n,k}$ has at least

$$\frac{\binom{n}{k}}{M^2 \binom{n-\ell-1}{k-\ell-1}} \ge \frac{1}{M^2} \left(\frac{n-\ell}{k}\right)^{\ell} \ge n^{(1/12)n^{1/8}}$$

gates for large n.

The Proof (concluded)

- Suppose the final crude circuit is not identically false.
 - Lemma 96 (p. 846) says that there are at least $(k-1)^n/2$ false positives.
 - By Lemma 94 (p. 844), each approximation step introduces at most $M^2 2^{-p} (k-1)^n$ false positives
 - The original monotone circuit for $CLIQUE_{n,k}$ has at least

$$\frac{(k-1)^n/2}{M^2 2^{-p} (k-1)^n} = \frac{2^{p-1}}{M^2} \ge n^{(1/3)n^{1/8}}$$

gates.

Alexander Razborov (1963–)

$P \neq NP \text{ Proved}$?

- Razborov's theorem says that there is a monotone language in NP that has no polynomial monotone circuits.
- If we can prove that all monotone languages in P have polynomial monotone circuits, then $P \neq NP$.
- But Razborov proved in 1985 that some monotone languages in P have no polynomial monotone circuits!