Maximum Satisfiability

e Given a set of clauses, MAXSAT seeks the truth
assignment that satisfies the most simultaneously.

e MAX2SAT is already NP-complete (p. 352), so MAXSAT is
NP-complete.

e Consider the more general k-MAXGSAT for constant k.
— Let ® ={ ¢1,¢2,..., 0, } be a set of boolean

expressions in n variables.

— Each ¢; is a general expression involving up to k

variables.

— k-MAXGSAT seeks the truth assignment that satisfies

the most expressions simultaneously.
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A Probabilistic Interpretation of an Algorithm

e Let ¢, involve k; < k variables and be satisfied by s; of

the 2% truth assignments.

e A random truth assignment € { 0,1 }" satisfies ¢; with
probability p(¢;) = s;/2%.

— p(¢;) is easy to calculate as k is a constant.

e Hence a random truth assignment satisfies an average of

m

p(®) = p(¢s)

1=1

expressions @, .
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The Search Procedure

Clearly

p(®[x1 = true]) + p(®[x; = false])
5 .

Select the t; € { true,false } such that p(®[z; =t1]) is

the larger one.
Note that p(®[z1 =t1]) > p(P).

Repeat the procedure with expression ®|x; = t1 ] until
all variables x; have been given truth values ¢; and all ¢;

are either true or false.
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The Search Procedure (continued)

e By our hill-climbing procedure,

p(®)
p(®[z1 =11])
p(Pzy =t1, 22 =12])

p((I)[l‘l — tl,il?g — tQ,. N )

e So at least p(®) expressions are satisfied by truth

assignment (t1,t2,...,t,).
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The Search Procedure (concluded)

e Note that the algorithm is deterministic!

e [t is called the method of conditional

expectations.?

aErdés & Selfridge (1973); Spencer (1987).
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Approximation Analysis

The optimum is at most the number of satisfiable
¢;—i.e., those with p(¢;) > 0.

The ratio of algorithm’s output vs. the optimum is®

> p(<I>) _ ZZP(@)
T 2 p(p>0 !

This is a polynomial-time e-approximation algorithm
with € = 1 — min,4,)>0 p(¢;) by Eq. (20) on p. 732.

Because p(¢;) > 27 for a satisfiable ¢;, the heuristic is
a polynomial-time e-approximation algorithm with
e=1—27"

®Because ) . a;/ > .b; > min;(a;/b;).
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Back to MAXSAT

In MAXSAT, the ¢;’s are clauses (like x V y V —z).

Hence p(¢;) > 1/2 (why?).

The heuristic becomes a polynomial-time

e-approximation algorithm with e = 1/2.2

Suppose we set each boolean variable to true with
probability (v/5 — 1)/2, the golden ratio.

Then follow through the method of conditional

expectations to derandomize it.

2Johnson (1974).
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Back to MAXSAT (concluded)

We will obtain a [(3 — /5 )]/2-approximation
algorithm.?

— Note [ (3 —+/5)]/2 ~ 0.382.

If the clauses have k distinct literals,
p(d) =1—27F

The heuristic becomes a polynomial-time

e-approximation algorithm with e = 27,

— This is the best possible for k£ > 3 unless P = NP.

e All the results hold even if clauses are weighted.

2Lieberherr & Specker (1981).
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MAX CUT Revisited

MAX CUT seeks to partition the nodes of graph
G = (V, F) into (S,V — S) so that there are as many
edges as possible between S and V' — 5.

It is NP-complete (p. 387).

Local search starts from a feasible solution and

performs “local” improvements until none are possible.

Next we present a local-search algorithm for MAX CUT.
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A 0.5-Approximation Algorithm for MAX CUT
. S = (Z);

: while Jv € V whose switching sides results in a larger

cut do
Switch the side of v;
. end while

. return S;
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Analysis

/ Optimal cut
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Analysis (continued)

Partition V = V; U V5 U V3 U V,, where
— Our algorithm returns (V3 UV, V3 U Vy).
— The optimum cut is (V1 U V3, Vo U Vy).

Let e;; be the number of edges between V; and V.

Our algorithm returns a cut of size
€13 + €14 + €23 + €24.
The optimum cut size is

€12 + €34 + €14 + €23.
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Analysis (continued)

e For each node v € V7, its edges to V3 U V4 cannot be
outnumbered by those to V4 U V5.

— Otherwise, v would have been moved to V3 U Vj to

improve the cut.

e Considering all nodes in V; together, we have

2e11 +e12 < e13 + eyy.

— 2eq11, because each edge in V; is counted twice.

e The above inequality implies

e12 < e13 + €e14.
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Analysis (concluded)

e Similarly,

€12 €23 + €24
€34 €23 + €13

€34 €14 + €24

e Add all four inequalities, divide both sides by 2, and add

the inequality e14 + e23 < €14 + €23 + €13 + €24 to obtain
e12 + €34 + €14 + €23 < 2(e13 + €14 + €23 + €24).

e The above says our solution is at least half the optimum.
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Remarks

e A 0.12-approximation algorithm exists.?

e 0.059-approximation algorithms do not exist unless
NP = ZPP.

2Goemans & Williamson (1995).
PHastad (1997).
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Approximability, Unapproximability, and Between

e Some problems have approximation thresholds less than
1.

— KNAPSACK has a threshold of 0 (p. 782).
— NODE COVER (p. 738), BIN PACKING, and MAXSAT?
have a threshold larger than 0.
e The situation is maximally pessimistic for TSP (p. 757)
and INDEPENDENT SET,” which cannot be approximated

— Their approximation threshold is 1.

2Williamson & Shmoys (2011).
bSee the textbook.
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Unapproximability of Tsp?

Theorem 84 The approximation threshold of TSP s 1
unless P = NP.

e Suppose there is a polynomial-time e-approximation
algorithm for TSP for some € < 1.

e We shall construct a polynomial-time algorithm to solve
the NP-complete HAMILTONIAN CYCLE.

e Given any graph G = (V, F), construct a TSP with | V|
cities with distances

Clen
N it (1,5

1,
|V |

1—e”’

otherwise.

2Sahni & Gonzales (1976).
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The Proof (continued)

Run the alleged approximation algorithm on this TSP

Instance.

Note that if a tour includes edges of length |V |/(1 — €),
then the tour costs more than |V |.

Note also that no tour has a cost less than | V' |.

Suppose a tour of cost | V| is returned.

— Then every edge on the tour exists in the original
graph G.

— So this tour is a Hamiltonian cycle on G.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 758



The Proof (concluded)

e Suppose a tour that includes an edge of length
|V /(1 — €) is returned.

— The total length of this tour exceeds |V |/(1 — €).?

— Because the algorithm is e-approximate, the optimum

is at least 1 — € times the returned tour’s length.
— The optimum tour has a cost exceeding | V' |.

— Hence G has no Hamiltonian cycles.

aSo this reduction is gap introducing.
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METRIC TSP
e METRIC TSP is similar to TSP.

e But the distances must satisfy the triangular inequality:

dij < d;j + di;

for all 7, 5, k.

e Inductively,
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A 0.5-Approximation Algorithm for METRIC TSP?

e It suffices to present an algorithm with the

approximation ratio of

c(M(z))
OPT(x)

<9

(see p. 733).

2Choukhmane (1978); Iwainsky, Canuto, Taraszow, & Villa (1986);
Kou, Markowsky, & Berman (1981); Plesnik (1981).
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A 0.5-Approximation Algorithm for METRIC TSP
(concluded)

. T':= a minimum spanning tree of G’
. T" := duplicate the edges of T plus their cost; {Note: T’

is an Eulerian multigraph.}
. C := an Euler cycle of T”;
. Remove repeated nodes of C'; {“Shortcutting.” }

. return C';
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Analysis

e Let Cypy be an optimal TSP tour.

e Note first that
c(T) < c(Copt)- (21)

— Copt 1s a spanning tree after the removal of one edge.

— But 7' is a munimum spanning tree.

e Because 1" doubles the edges of T,

c(T") = 2¢(T).
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Analysis (concluded)

e Because of the triangular inequality, “shortcutting” does
not increase the cost.

- (1,2,3,2,1,4,...) = (1,2,3,4,...), a Hamiltonian

cycle.

e Thus
c(C) < e(Th).

e Combine all the inequalities to yield

c(C) < e(T") = 2¢(T) < 2¢(Copt),

as desired.
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A 100-Node Example

Cities

The cost 1s 7.72877.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 765



A 100-Node Example (continued)

The minimum spanning tree 7.
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A 100-Node Example (continued)

1.0

“Shortcutting” the repeated nodes on the Euler cycle C.
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A 100-Node Example (concluded)

Short-cutting Euler cycle Approximate TSP

The cost is 10.5718 < 2 x 7.72877 = 15.4576.
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A (1/3)-Approximation Algorithm for METRIC TSP?

e It suffices to present an algorithm with the

approximation ratio of

c(M(x))
OPT(x)

<

3
2

(see p. 733).

e This is the best approximation ratio for METRIC TSP as
of 2016!

2Christofides (1976).
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A (1/3)-Approximation Algorithm for METRIC TSP
(concluded)
1: T := a minimum spanning tree of G;
2: V' := the set of nodes with an odd degree in T; {| V|
must be even by a well-known parity result.}
. G’ := the induced subgraph of G by V'; {G’ is a
complete graph on V'.}
. M := a minimum-cost perfect matching of G’;
. G":=TUM; {G" is an Eulerian multigraph.}
. C':= an Euler cycle of G”;

. Remove repeated nodes of C'; {“Shortcutting.” }

. return C';
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Analysis

Let Copte be an optimal TSP tour.
By Eq. (21) on p. 763,

c(T) < c(Copt).

Let C" be Cyp on V' by “shortcutting.”
— Copt 1s a Hamiltonian cycle on V.

— Replace any path (v, vs,...,v;) on Copy with
(v1,v), where vy, v, € V' but vg, ..., 01 &€ V',

So C' is simply the restriction of Cypy to V7.
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Analysis (continued)

e By the triangular inequality,
c(C") < e(Copt)-

e ('’ is now a Hamiltonian cycle on V.

e (' consists of two perfect matchings on G'.2
— The first, third, ... edges constitute one.

— The second, fourth, ... edges constitute the other.

Note that G’ is a complete graph with an even |V’ .
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Analysis (continued)

By Eq. (22) on p. 771, the cheaper perfect matching has

a cost of

e(C") _ e(Copr)
2 2
e As a result, the minimum-cost one M must satisfy

(M) < (") _ c(Copt)

<900 < 95 (23)

e Minimum-cost perfect matching can be solved in

polynomial time.?

2Edmonds (1965); Micali & V. Vazirani (1980).
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Analysis (concluded)

e By combining the two earlier inequalities, any Euler

cycle C' has a cost of
c(C) c(T)+ c(M) by Line 5 of the algorithm

C(Copt) + C(Copt)

5 by inequalities (22) and (23)

5 C<COPt)7

as desired.
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A 100-Node Example

Cities

The cost 1s 7.72877.
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A 100-Node Example (continued)

Odd-degree nodes V'on MST
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A 100-Node Example (continued)

A minimum-cost perfect matching M.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 777



A 100-Node Example (continued)

An Euler cycle C of G" =T U M.
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A 100-Node Example (continued)

LA
K .{,,\//-' /
2 ,

/oo

“Shortcutting” the repeated nodes on the Euler cycle C.
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A 100-Node Example (continued)

Short-cutting the Euler cycle Approximate TSP

. '/._,. & \
vy
8f f * i :'0)? - '.X

The cost is 8.74583 < (3/2) x 7.72877 = 11.5932.?

In comparison, the earlier 0.5-approximation algorithm gave a cost
of 10.5718 on p. 768.
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A 100-Node Example (concluded)

Previous approximate TSP Another approximate TSP

If a different Euler cycle were generated on p. 778, the cost
could be different, such as 8.54902 (above), 8.85674, 8.53410,
9.20841, and 8.87152.2

2Contributed by Mr. Yu-Chuan Liu (B00507010, R04922040) on July
15, 2017.
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KNAPSACK Has an Approximation Threshold of Zero?®

Theorem 85 For any €, there is a polynomial-time

e-approrimation algorithm for KNAPSACK.

e We have n weights wy, wa, ..., w, € Z1, a weight limit

W, and n values vy, va,...,v, € ZT.P

e We must find an I C {1,2,...,n} such that

D icrwi < W and ) ., v; is the largest possible.

albarra & Kim (1975). This algorithm can be used to derive good
approximation algorithms for some NP-complete scheduling problems

(Bansal & Sviridenko, 2006).
PIf the values are fractional, the result is slightly messier, but the main

conclusion remains correct. Contributed by Mr. Jr-Ben Tian (B89902011,
R93922045) on December 29, 2004.
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The Proof (continued)

V = max{v,va,...,0, }.
Clearly, ) .., vi <nV.
Let 0<i:<nand 0 <ov<nV.

W (i,v) is the minimum weight attainable by selecting

only from the first ¢ items and with a total value of v.

— Itisan (n+ 1) x (nV 4+ 1) table.
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The Proof (continued)
e Set W(0,v) =oc0forve{l,2,...,nV } and W(i,0) =0

fort=0,1,...,n.2

e Then, for0<i<nand1<v<nV]P

Wi+1,v)

min{ W (¢,v), W(i,v — vj41) + wir1 }, if v > w41,
W (i,v), otherwise.

e Finally, pick the largest v such that W(n,v) < W.C

2Contributed by Mr. Ren-Shuo Liu (D98922016) and Mr. Yen-Wei Wu

(D98922013) on December 28, 2009.

PThe textbook’s formula has an error here.
“Lawler (1979).
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The Proof (continued)
With 6 items, values (4, 3, 3, 3, 2, 3), weights (3,3,1,3,2,1),

and W = 12, the maximum total value 16 is achieved with
I={1,2,3,4,6}; I's weight is 11.

(0.0
3
1
1
1
1

(0. 0) (0.0
(0 0] (0. 0]
(0. 0) (0.0
4 7
4 7
4 7
2 5

(e0)
(e0)
(e0)
(e0)
(e0)
(e0)
1]
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The Proof (continued)

The running time O(n?V) is not polynomial.
Call the problem instance

r = (wy,...,Wn, W,v1,...,05).

Additional idea: Limit the number of precision bits.

Define

Note that
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The Proof (continued)

Call the approximate instance

/ / /
= (wy,..., wy, W0, ..., 0,).

Solving 2’ takes time O(n?V/2%).
— Use v}, = |v;/2°] and V' = max(v],v},...,v
dynamic programming.

— It is now an (n 4+ 1) x (nV 4 1)/2° table.
The selection I’ is optimal for z’.

But I’ may not be optimal for z, although it still
satisfies the weight budget WW.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 788



The Proof (continued)

With the same parameters as p. 786 and b = 1: Values are
(2,1,1,1,1,1) and the optimal selection I’ = {1,2,3,5,6 }

for 2’ has a smaller maximum value 4 4+3+3+2+3 =15
for x than [’s 16; its weight is 10 < W = 12.2

0

(oo
3
1
1
1
1

oo | OO
oo | oo
6 |
4 |7
4 |7
416
415

2The original optimal I = {1,2,3,4,6 } on p. 786 has the same value
6 and but higher weight 11 for x’.
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The Proof (continued)

e The value of I’ for x is close to that of the optimal I:

Zvi > 22%2:217207’:

rel’ rel’ rel’

> Zva,g = 22%2

el el

Z (vi — Qb)

el

jg:?% -—7%2b.

el
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The Proof (continued)

e In summary,

Z’Ui Z Z’Ui —77,2b.

icl’ icl
e Without loss of generality, assume w; < W for all 1.
— Otherwise, item 7 is redundant and can be removed
early on.

e |/ is a lower bound on OPT.

— Picking one single item with value V' is a legitimate

choice.
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The Proof (concluded)

The relative error from the optimum is:

Zie[ Ui — Zie[’ Uq < Zie] Uy — Ziep Uy <
Zie[ U; vV

Suppose we pick b = |log, %J

The algorithm becomes e-approximate.®

The running time is then O(n?V/2°%) = O(n3/e), a

polynomial in n and 1/e.”

2See Eq. (17) on p. 727.

PIt hence depends on the wvalue of 1/e. Thanks to a lively class dis-
cussion on December 20, 2006. If we fix ¢ and let the problem size
increase, then the complexity is cubic. Contributed by Mr. Ren-Shan
Luoh (D97922014) on December 23, 2008.
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Comments

INDEPENDENT SET and NODE COVER are reducible to
each other (Corollary 46, p. 378).

NODE COVER has an approximation threshold at most
0.5 (p. 740).

But INDEPENDENT SET is unapproximable (see the
textbook).

INDEPENDENT SET limited to graphs with degree < k is
called k-DEGREE INDEPENDENT SET.

k-DEGREE INDEPENDENT SET is approximable (see the
textbook).
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On P vs. NP
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If 50 million people believe a foolish thing,

it’s still a foolish thing.
— George Bernard Shaw (1856-1950)
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Exponential Circuit Complexity for NP-Complete Problems

e We shall prove exponential lower bounds for

NP-complete problems using monotone circuits.

— Monotone circuits are circuits without — gates.®

e Note that this result does not settle the P vs. NP

problem.

@Recall p. 316.
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The Power of Monotone Circuits

Monotone circuits can only compute monotone boolean

functions.

They are powerful enough to solve a P-complete
problem: MONOTONE CIRCUIT VALUE (p. 317).

There are NP-complete problems that are not monotone;

they cannot be computed by monotone circuits at all.

There are NP-complete problems that are monotone;

they can be computed by monotone circuits.

— HAMILTONIAN PATH and CLIQUE.
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CLIQUE,, ;

CLIQUE,, j is the boolean function deciding whether a
graph G = (V, F) with n nodes has a clique of size k.

The input gates are the (g’) entries of the adjacency

matrix of (.

— Gate g;; 1s set to true if the associated undirected

edge {1, } exists.
CLIQUE,, j Is a monotone function.
Thus it can be computed by a monotone circuit.

This does not rule out that nonmonotone circuits for

CLIQUE,, , may use fewer gates.
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Crude Circuits

e One possible circuit for CLIQUE,, ;, does the following.

1. For each S C V with | S| = k, there is a circuit with
O(k?) A-gates testing whether S forms a clique.

2. We then take an OR of the outcomes of all the (Z)
subsets 51, 55,..., S(n>.
k

e This is a monotone circuit with O(k*(})) gates, which is

exponentially large unless k£ or n — k is a constant.

e A crude circuit CC(Xq, X, ..., X,,) tests if there is
an X; C V that forms a clique.

— The above-mentioned circuit is CC(Sy, So, ..., S(n>).
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The Proof: Positive Examples

Analysis will be applied to only the following positive

examples and negative examples as input graphs.

A positive example is a graph that has (I;) edges

connecting k nodes in all possible ways.
There are (Z) such graphs.

They all should elicit a true output from CLIQUE,, .
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The Proof: Negative Examples

e Color the nodes with k£ — 1 different colors and join by
an edge any two nodes that are colored differently.

e There are (k — 1)™ such graphs.

e They all should elicit a false output from CLIQUE,, .

— Each set of £ nodes must have 2 identically colored

nodes; hence there is no edge between them.
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Positive and Negative Examples with £ =5

A positive example A negative example
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A Warmup to Razborov's (1985) Theorem?®

Lemma 86 (The birthday problem) The probability of
collision, C'(N, q), when q balls are thrown randomly into

N > q bins 1s at most

q(q —1)
IN

Lemma 87 If crude circuit CC(X1, Xa, ..., X,,) computes
CLIQUE,, , then m > pn /" /20 for n sufficiently large.

2 Arora & Barak (2009).
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The Proof (continued)

o Let k =nt/4,

o Let £ =+/k/10.

o et X CV.
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The Proof (continued)

Suppose | X | < 4.

A random f: X — {1,2,...,k — 1} has collisions with
probability less than 0.01 by Lemma 86 (p. 803).

Hence f is one-to-one with probability 0.99.

When f is one-to-one, f is a coloring of X with £k — 1

colors without repeated colors.

As a result, when f is one-to-one, it generates a clique
on X.
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The Proof (continued)

e Note that a random negative example is simply a
random g :V — {1,2,...,k—1}.

e Soour random f: X — {1,2,...,k— 1} is simply a
random g restricted to X.

e In summary, the probability that X is not a clique when

supplied with a random negative example is at most
0.01.
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The Proof (continued)

Now suppose | X | > £.

Consider the probability that X is a clique when

supplied with a random positive example.
It is the probability that X is part of the clique.
Hence the desired probability is
—/
(=2

()
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The Proof (continued)
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The Proof (concluded)

e In summary, the probability that X is a clique when

supplied with a random positive example is at most

n—n1/8/20.

e So we need at least

1/8
n" /20

X s in the crude circuit.
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