
Large Deviations

• Suppose you have a biased coin.

• One side has probability 0.5 + ε to appear and the other

0.5− ε, for some 0 < ε < 0.5.

• But you do not know which is which.

• How to decide which side is the more likely side—with

high confidence?

• Answer: Flip the coin many times and pick the side that

appeared the most times.

• Question: Can you quantify your confidence?
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The (Improved) Chernoff Bounda

Theorem 75 (Chernoff, 1952) Suppose x1, x2, . . . , xn are

independent random variables taking the values 1 and 0 with

probabilities p and 1− p, respectively. Let X =
∑n

i=1 xi.

Then for all 0 ≤ θ ≤ 1,

prob[X ≥ (1 + θ) pn ] ≤ e−θ2pn/3.

• The probability that the deviate of a binomial

random variable from its expected value

E[X ] = E [
∑n

i=1 xi ] = pn decreases exponentially with

the deviation.

aHerman Chernoff (1923–). This bound is asymptotically optimal.

The original bound is e−2θ2p2n (McDiarmid, 1998).
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The Proof

• Let t be any positive real number.

• Then

prob[X ≥ (1 + θ) pn ] = prob[ etX ≥ et(1+θ) pn ].

• Markov’s inequality (p. 536) generalized to real-valued

random variables says that

prob
[
etX ≥ kE[ etX ]

] ≤ 1/k.

• With k = et(1+θ) pn/E[ etX ], we havea

prob[X ≥ (1 + θ) pn ] ≤ e−t(1+θ)pnE[ etX ].

aNote that X does not appear in k. Contributed by Mr. Ao Sun

(R05922147) on December 20, 2016.
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The Proof (continued)

• Because X =
∑n

i=1 xi and xi’s are independent,

E[ etX ] = (E[ etx1 ])n = [ 1 + p(et − 1) ]n.

• Substituting, we obtain

prob[X ≥ (1 + θ) pn ] ≤ e−t(1+θ) pn[ 1 + p(et − 1) ]n

≤ e−t(1+θ) pnepn(e
t−1)

as (1 + a)n ≤ ean for all a > 0.
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The Proof (concluded)

• With the choice of t = ln(1 + θ), the above becomes

prob[X ≥ (1 + θ) pn ] ≤ epn[ θ−(1+θ) ln(1+θ) ].

• The exponent expands toa

−θ2

2
+

θ3

6
− θ4

12
+ · · ·

for 0 ≤ θ ≤ 1.

• But it is less than

−θ2

2
+

θ3

6
≤ θ2

(
−1

2
+

θ

6

)
≤ θ2

(
−1

2
+

1

6

)
= −θ2

3
.

aOr McDiarmid (1998): x− (1 + x) ln(1 + x) ≤ −3x2/(6 + 2x) for all

x ≥ 0.
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Other Variations of the Chernoff Bound

The following can be proved similarly (prove it).

Theorem 76 Given the same terms as Theorem 75

(p. 599),

prob[X ≤ (1− θ) pn ] ≤ e−θ2pn/2.

The following slightly looser inequalities achieve symmetry.

Theorem 77 (Karp, Luby, & Madras, 1989) Given the

same terms as Theorem 75 (p. 599) except with 0 ≤ θ ≤ 2,

prob[X ≥ (1 + θ) pn ] ≤ e−θ2pn/4,

prob[X ≤ (1− θ) pn ] ≤ e−θ2pn/4.
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Power of the Majority Rule

The next result follows from Theorem 76 (p. 603).

Corollary 78 If p = (1/2) + ε for some 0 ≤ ε ≤ 1/2, then

prob

[
n∑

i=1

xi ≤ n/2

]
≤ e−ε2n/2.

• The textbook’s corollary to Lemma 11.9 seems too

loose, at e−ε2n/6.a

• Our original problem (p. 598) hence demands, e.g.,

n ≈ 1.4k/ε2 independent coin flips to guarantee making

an error with probability ≤ 2−k with the majority rule.

aSee Dubhashi & Panconesi (2012) for many Chernoff-type bounds.
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BPPa (Bounded Probabilistic Polynomial)

• The class BPP contains all languages L for which there

is a precise polynomial-time NTM N such that:

– If x ∈ L, then at least 3/4 of the computation paths

of N on x lead to “yes.”

– If x �∈ L, then at least 3/4 of the computation paths

of N on x lead to “no.”

• So N accepts or rejects by a clear majority.

aGill (1977).

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 605



Magic 3/4?

• The number 3/4 bounds the probability (ratio) of a

right answer away from 1/2.

• Any constant strictly between 1/2 and 1 can be used

without affecting the class BPP.

• In fact, as with RP,

1

2
+

1

q(n)

for any polynomial q(n) can replace 3/4.

• The next algorithm shows why.
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The Majority Vote Algorithm

Suppose L is decided by N by majority (1/2) + ε.

1: for i = 1, 2, . . . , 2k + 1 do

2: Run N on input x;

3: end for

4: if “yes” is the majority answer then

5: “yes”;

6: else

7: “no”;

8: end if
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Analysis

• By Corollary 78 (p. 604), the probability of a false

answer is at most e−ε2k.

• By taking k = � 2/ε2 �, the error probability is at most

1/4.

• Even if ε is any inverse polynomial, k remains a

polynomial in n.

• The running time remains polynomial: 2k + 1 times N ’s

running time.
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Aspects of BPP

• BPP is the most comprehensive yet plausible notion of

efficient computation.

– If a problem is in BPP, we take it to mean that the

problem can be solved efficiently.

– In this aspect, BPP has effectively replaced P.

• (RP ∪ coRP) ⊆ (NP ∪ coNP).

• (RP ∪ coRP) ⊆ BPP.

• Whether BPP ⊆ (NP ∪ coNP) is unknown.

• But it is unlikely that NP ⊆ BPP.a

aSee p. 621.
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coBPP

• The definition of BPP is symmetric: acceptance by clear

majority and rejection by clear majority.

• An algorithm for L ∈ BPP becomes one for L̄ by

reversing the answer.

• So L̄ ∈ BPP and BPP ⊆ coBPP.

• Similarly coBPP ⊆ BPP.

• Hence BPP = coBPP.

• This approach does not work for RP.a

aIt did not work for NP either.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 610



BPP and coBPP

����� ���� ���� �����
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“The Good, the Bad, and the Ugly”

BPPP

ZPP

RPcoRP

NPcoNP
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Circuit Complexity

• Circuit complexity is based on boolean circuits instead

of Turing machines.

• A boolean circuit with n inputs computes a boolean

function of n variables.

• Now, identify true/1 with “yes” and false/0 with “no.”

• Then a boolean circuit with n inputs accepts certain

strings in { 0, 1 }n.
• To relate circuits with an arbitrary language, we need

one circuit for each possible input length n.
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Formal Definitions

• The size of a circuit is the number of gates in it.

• A family of circuits is an infinite sequence

C = (C0, C1, . . .) of boolean circuits, where Cn has n

boolean inputs.

• For input x ∈ { 0, 1 }∗, C|x | outputs 1 if and only if

x ∈ L.

• In other words,

Cn accepts L ∩ { 0, 1 }n.
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Formal Definitions (concluded)

• L ⊆ { 0, 1 }∗ has polynomial circuits if there is a

family of circuits C such that:

– The size of Cn is at most p(n) for some fixed

polynomial p.

– Cn accepts L ∩ { 0, 1 }n.
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Exponential Circuits Suffice for All Languages

• Theorem 16 (p. 209) implies that there are languages

that cannot be solved by circuits of size 2n/(2n).

• But surprisingly, circuits of size 2n+2 can solve all

problems, decidable or otherwise!
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Exponential Circuits Suffice for All Languages
(continued)

Proposition 79 All decision problems (decidable or

otherwise) can be solved by a circuit of size 2n+2.

• We will show that for any language L ⊆ { 0, 1 }∗,
L ∩ { 0, 1 }n can be decided by a circuit of size 2n+2.

• Define boolean function f : { 0, 1 }n → { 0, 1 }, where

f(x1x2 · · ·xn) =

⎧⎨
⎩ 1, x1x2 · · ·xn ∈ L,

0, x1x2 · · ·xn �∈ L.
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The Proof (concluded)

• Clearly, any circuit that implements f decides

L ∩ { 0, 1 }n.
• Now,

f(x1x2 · · ·xn) = (x1 ∧ f(1x2 · · ·xn)) ∨ (¬x1 ∧ f(0x2 · · ·xn)).

• The circuit size s(n) for f(x1x2 · · ·xn) hence satisfies

s(n) = 4 + 2s(n− 1)

with s(1) = 1.

• Solve it to obtain s(n) = 5× 2n−1 − 4 ≤ 2n+2.
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The Circuit Complexity of P

Proposition 80 All languages in P have polynomial

circuits.

• Let L ∈ P be decided by a TM in time p(n).

• By Corollary 35 (p. 315), there is a circuit with

O(p(n)2) gates that accepts L ∩ { 0, 1 }n.
• The size of that circuit depends only on L and the

length of the input.

• The size of that circuit is polynomial in n.
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Polynomial Circuits vs. P

• Is the converse of Proposition 80 true?

– Do polynomial circuits accept only languages in P?

• No.

• Polynomial circuits can accept undecidable languages!a

aSee p. 268 of the textbook.
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BPP’s Circuit Complexity: Adleman’s Theorem

Theorem 81 (Adleman, 1978) All languages in BPP

have polynomial circuits.

• Our proof will be nonconstructive in that only the

existence of the desired circuits is shown.

– Recall our proof of Theorem 16 (p. 209).

– Something exists if its probability of existence is

nonzero.

• It is not known how to efficiently generate circuit Cn.

– If the construction of Cn can be made efficient, then

P = BPP, an unlikely result.
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The Proof

• Let L ∈ BPP be decided by a precise polynomial-time

NTM N by clear majority.

• We shall prove that L has polynomial circuits C0, C1, . . ..

– These deterministic circuits do not err.

• Suppose N runs in time p(n), where p(n) is a

polynomial.

• Let An = { a1, a2, . . . , am }, where ai ∈ { 0, 1 }p(n).
• Each ai ∈ An represents a sequence of nondeterministic

choices (i.e., a computation path) for N .

• Pick m = 12(n+ 1).
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The Proof (continued)

• Let x be an input with |x | = n.

• Circuit Cn simulates N on x with all sequences of

choices in An and then takes the majority of the m

outcomes.a

– Note that each An yields a circuit.

• As N with ai is a polynomial-time deterministic TM, it

can be simulated by polynomial circuits of size O(p(n)2).

– See the proof of Proposition 80 (p. 619).

aAs m is even, there may be no clear majority. Still, the probability

of that happening is very small and does not materially affect our general

conclusion. Thanks to a lively class discussion on December 14, 2010.
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The Circuit
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The Proof (continued)

• The size of Cn is therefore O(mp(n)2) = O(np(n)2).

– This is a polynomial.

• We now confirm the existence of an An making Cn

correct on all n-bit inputs.

• Call ai bad if it leads N to an error (a false positive or a

false negative) for x.

• Select An uniformly randomly.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 625



The Proof (continued)

• For each x ∈ { 0, 1 }n, 1/4 of the computations of N are

erroneous.

• Because the sequences in An are chosen randomly and

independently, the expected number of bad ai’s is m/4.a

• Also note after fixing the input x, the circuit is a

function of the random bits.

aSo the proof will not work for NP. Contributed by Mr. Ching-Hua

Yu (D00921025) on December 11, 2012.
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The Proof (continued)

• By the Chernoff bound (p. 599), the probability that the

number of bad ai’s is m/2 or more is at most

e−m/12 < 2−(n+1).

• The error probability of using the majority rule is thus

< 2−(n+1)

for each x ∈ { 0, 1 }n.
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The Proof (continued)

• The probability that there is an x such that An results

in an incorrect answer is

< 2n2−(n+1) = 2−1.

– Recall the union bound (Boole’s inequality):

prob[A ∪B ∪ · · · ] ≤ prob[A ] + prob[B ] + · · · .
• We just showed that at least half of them are correct.

• So with probability ≥ 0.5, a random An produces a

correct Cn for all inputs of length n.

– Of course, verifying this fact may take a long time.
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The Proof (concluded)

• Because this probability exceeds 0, an An that makes

majority vote work for all inputs of length n exists.

• Hence a correct Cn exists.a

• We have used the probabilistic methodb popularized

by Erdős (1947).c

• This result answers the question on p. 531 with a “yes.”

aQuine (1948), “To be is to be the value of a bound variable.”
bA counting argument in the probabilistic language.
cSzele (1943) and Turán (1934) were earlier.
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Leonard Adlemana (1945–)

aTuring Award (2002).
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Paul Erdős (1913–1996)
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Cryptography
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Whoever wishes to keep a secret

must hide the fact that he possesses one.

— Johann Wolfgang von Goethe (1749–1832)
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Cryptography

• Alice (A) wants to send a message to Bob (B) over a

channel monitored by Eve (eavesdropper).

• The protocol should be such that the message is known

only to Alice and Bob.

• The art and science of keeping messages secure is

cryptography.

Alice �
Eve

Bob
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Encryption and Decryption

• Alice and Bob agree on two algorithms E and D—the

encryption and the decryption algorithms.

• Both E and D are known to the public in the analysis.

• Alice runs E and wants to send a message x to Bob.

• Bob operates D.
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Encryption and Decryption (concluded)

• Privacy is assured in terms of two numbers e, d, the

encryption and decryption keys.

• Alice sends y = E(e, x) to Bob, who then performs

D(d, y) = x to recover x.

• x is called plaintext, and y is called ciphertext.a

aBoth “zero” and “cipher” come from the same Arab word.
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Some Requirements

• D should be an inverse of E given e and d.

• D and E must both run in (probabilistic) polynomial

time.

• Eve should not be able to recover x from y without

knowing d.

– As D is public, d must be kept secret.

– e may or may not be a secret.
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Degree of Security

• Perfect secrecy: After a ciphertext is intercepted by

the enemy, the a posteriori probabilities of the plaintext

that this ciphertext represents are identical to the a

priori probabilities of the same plaintext before the

interception.

– The probability that plaintext P occurs is

independent of the ciphertext C being observed.

– So knowing C yields no advantage in recovering P .
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Degree of Security (concluded)

• Such systems are said to be informationally secure.

• A system is computationally secure if breaking it is

theoretically possible but computationally infeasible.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 639



Conditions for Perfect Secrecya

• Consider a cryptosystem where:

– The space of ciphertext is as large as that of keys.

– Every plaintext has a nonzero probability of being

used.

• It is perfectly secure if and only if the following hold.

– A key is chosen with uniform distribution.

– For each plaintext x and ciphertext y, there exists a

unique key e such that E(e, x) = y.

aShannon (1949).
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The One-Time Pada

1: Alice generates a random string r as long as x;

2: Alice sends r to Bob over a secret channel;

3: Alice sends x⊕ r to Bob over a public channel;

4: Bob receives y;

5: Bob recovers x := y ⊕ r;

aMauborgne & Vernam (1917); Shannon (1949). It was allegedly used

for the hotline between Russia and U.S.
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Analysis

• The one-time pad uses e = d = r.

• This is said to be a private-key cryptosystem.

• Knowing x and knowing r are equivalent.

• Because r is random and private, the one-time pad

achieves perfect secrecy.a

• The random bit string must be new for each round of

communication.

• But the assumption of a private channel is problematic.

aSee p. 640.
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Public-Key Cryptographya

• Suppose only d is private to Bob, whereas e is public

knowledge.

• Bob generates the (e, d) pair and publishes e.

• Anybody like Alice can send E(e, x) to Bob.

• Knowing d, Bob can recover x via

D(d,E(e, x)) = x.

aDiffie & Hellman (1976).
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Public-Key Cryptography (concluded)

• The assumptions are complexity-theoretic.

– It is computationally difficult to compute d from e.

– It is computationally difficult to compute x from y

without knowing d.
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Whitfield Diffiea (1944–)

aTuring Award (2016).
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Martin Hellmana (1945–)

aTuring Award (2016).
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Complexity Issues

• Given y and x, it is easy to verify whether E(e, x) = y.

• Hence one can always guess an x and verify.

• Cracking a public-key cryptosystem is thus in NP.

• A necessary condition for the existence of secure

public-key cryptosystems is P �= NP.

• But more is needed than P �= NP.

• For instance, it is not sufficient that D is hard to

compute in the worst case.

• It should be hard in “most” or “average” cases.
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One-Way Functions

A function f is a one-way function if the following hold.a

1. f is one-to-one.

2. For all x ∈ Σ∗, |x |1/k ≤ |f(x)| ≤ |x |k for some k > 0.

• f is said to be honest.

3. f can be computed in polynomial time.

4. f−1 cannot be computed in polynomial time.

• Exhaustive search works, but it must be slow.

aDiffie & Hellman (1976); Boppana & Lagarias (1986); Grollmann &

Selman (1988); Ko (1985); Ko, Long, & Du (1986); Watanabe (1985);

Young (1983).
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Existence of One-Way Functions (OWFs)

• Even if P �= NP, there is no guarantee that one-way

functions exist.

• No functions have been proved to be one-way.

• Is breaking glass a one-way function?
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Candidates of One-Way Functions

• Modular exponentiation f(x) = gx mod p, where g is a

primitive root of p.

– Discrete logarithm is hard.a

• The RSAb function f(x) = xe mod pq for an odd e

relatively prime to φ(pq).

– Breaking the RSA function is hard.

aConjectured to be 2n
ε
for some ε > 0 in both the worst-case sense

and average sense. Doable in time nO(log n) for finite fields of small char-

acteristic (Barbulescu, et al., 2013). It is in NP in some sense (Grollmann

& Selman, 1988).
bRivest, Shamir, & Adleman (1978).
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Candidates of One-Way Functions (concluded)

• Modular squaring f(x) = x2 mod pq.

– Determining if a number with a Jacobi symbol 1 is a

quadratic residue is hard—the quadratic

residuacity assumption (QRA).a

– Breaking it is as hard as factorization when

p ≡ q ≡ 3 mod 4.b

aDue to Gauss.
bRabin (1979).
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The Secret-Key Agreement Problem

• Exchanging messages securely using a private-key

cryptosystem requires Alice and Bob have the same

key.a

– An example is the r in the one-time pad.b

• How can they agree on the same secret key when the

channel is insecure?

• This is called the secret-key agreement problem.

• It was solved by Diffie and Hellman (1976) using

one-way functions.

aSee p. 642.
bSee p. 641.
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The Diffie-Hellman Secret-Key Agreement Protocol

1: Alice and Bob agree on a large prime p and a primitive

root g of p; {p and g are public.}
2: Alice chooses a large number a at random;

3: Alice computes α = ga mod p;

4: Bob chooses a large number b at random;

5: Bob computes β = gb mod p;

6: Alice sends α to Bob, and Bob sends β to Alice;

7: Alice computes her key βa mod p;

8: Bob computes his key αb mod p;
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Analysis

• The keys computed by Alice and Bob are identical as

βa = gba = gab = αb mod p.

• To compute the common key from p, g, α, β is known as

the Diffie-Hellman problem.

• It is conjectured to be hard.a

• If discrete logarithm is easy, then one can solve the

Diffie-Hellman problem.

– Because a and b can then be obtained by Eve.

• But the other direction is still open.

aThis is the computational Diffie-Hellman assumption (CDH).
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The RSA Function

• Let p, q be two distinct primes.

• The RSA function is xe mod pq for an odd e relatively

prime to φ(pq).

– By Lemma 59 (p. 484),

φ(pq) = pq

(
1− 1

p

)(
1− 1

q

)
= pq − p− q + 1. (15)

• As gcd(e, φ(pq)) = 1, there is a d such that

ed ≡ 1 mod φ(pq),

which can be found by the Euclidean algorithm.a

aOne can think of d as e−1.
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A Public-Key Cryptosystem Based on RSA

• Bob generates p and q.

• Bob publishes pq and the encryption key e, a number

relatively prime to φ(pq).

– The encryption function is

y = xe mod pq.

– Bob calculates φ(pq) by Eq. (15) (p. 655).

– Bob then calculates d such that ed = 1 + kφ(pq) for

some k ∈ Z.
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A Public-Key Cryptosystem Based on RSA
(continued)

• The decryption function is

yd mod pq.

• It works because

yd = xed = x1+kφ(pq) = x mod pq

by the Fermat-Euler theorem when gcd(x, pq) = 1

(p. 489).
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A Public-Key Cryptosystem Based on RSA
(continued)

• What if x is not relatively prime to pq?a

• As φ(pq) = (p− 1)(q − 1),

ed = 1 + k(p− 1)(q − 1).

• Say x ≡ 0 mod p.

• Then

yd ≡ xed ≡ 0 ≡ x mod p.

aOf course, one would be unlucky here.
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A Public-Key Cryptosystem Based on RSA
(continued)

• On the other hand, either x �≡ 0 mod q or x ≡ 0 mod q.

• If x �≡ 0 mod q, then

yd ≡ xed ≡ xed−1x ≡ xk(p−1)(q−1)x ≡ (
xq−1

)k(p−1)
x

≡ x mod q.

by Fermat’s “little” theorem (p. 487).

• If x ≡ 0 mod q, then

yd ≡ xed ≡ 0 ≡ x mod q.
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A Public-Key Cryptosystem Based on RSA
(concluded)

• By the Chinese remainder theorem (p. 486),

yd ≡ xed ≡ 0 ≡ x mod pq,

even when x is not relatively prime to p.

• When x is not relatively prime to q, the same conclusion

holds.
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The “Security” of the RSA Function

• Factoring pq or calculating d from (e, pq) seems hard.

• Breaking the last bit of RSA is as hard as breaking the

RSA.a

• Recommended RSA key sizes:b

– 1024 bits up to 2010.

– 2048 bits up to 2030.

– 3072 bits up to 2031 and beyond.

aAlexi, Chor, Goldreich, & Schnorr (1988).
bRSA (2003). RSA was acquired by EMC in 2006 for 2.1 billion US

dollars.
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The “Security” of the RSA Function (continued)

• Recall that problem A is “harder than” problem B if

solving A results in solving B.

– Factorization is “harder than” breaking the RSA.

– It is not hard to show that calculating Euler’s phi

functiona is “harder than” breaking the RSA.

– Factorization is “harder than” calculating Euler’s phi

function (see Lemma 59 on p. 484).

– So factorization is harder than calculating Euler’s phi

function, which is harder than breaking the RSA.

aWhen the input is not factorized!
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The “Security” of the RSA Function (concluded)

• Factorization cannot be NP-hard unless NP = coNP.a

• So breaking the RSA is unlikely to imply P = NP.

• But numbers can be factorized efficiently by quantum

computers.b

• RSA was alleged to have received 10 million US dollars

from the government to promote unsecure p and q.c

aBrassard (1979).
bShor (1994).
cMenn (2013).
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Adi Shamir, Ron Rivest, and Leonard Adleman
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Ron Rivesta (1947–)

aTuring Award (2002).
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Adi Shamira (1952–)

aTuring Award (2002).
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A Parallel History

• Diffie and Hellman’s solution to the secret-key

agreement problem led to public-key cryptography.

• In 1973, the RSA public-key cryptosystem was invented

in Britain before the Diffie-Hellman secret-key

agreement scheme.a

aEllis, Cocks, and Williamson of the Communications Electronics Se-

curity Group of the British Government Communications Head Quarters

(GCHQ).
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Is a forged signature the same sort of thing

as a genuine signature,

or is it a different sort of thing?

— Gilbert Ryle (1900–1976),

The Concept of Mind (1949)

“Katherine, I gave him the code.

He verified the code.”

“But did you verify him?”

— The Numbers Station (2013)
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Digital Signaturesa

• Alice wants to send Bob a signed document x.

• The signature must unmistakably identifies the sender.

• Both Alice and Bob have public and private keys

eAlice, eBob, dAlice, dBob.

• Every cryptosystem guarantees D(d,E(e, x)) = x.

• Assume the cryptosystem also satisfies the commutative

property

E(e,D(d, x)) = D(d,E(e, x)). (16)

– E.g., the RSA system satisfies it as (xd)e = (xe)d.

aDiffie & Hellman (1976).
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Digital Signatures Based on Public-Key Systems

• Alice signs x as

(x,D(dAlice, x)).

• Bob receives (x, y) and verifies the signature by checking

E(eAlice, y) = E(eAlice, D(dAlice, x)) = x

based on Eq. (16).

• The claim of authenticity is founded on the difficulty of

inverting EAlice without knowing the key dAlice.
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Blind Signaturesa

• There are applications where the document author

(Alice) and the signer (Bob) are different parties.

• Sender privacy: We do not want Bob to see the

document.

– Anonymous electronic voting systems, digital cash

schemes, anonymous payments, etc.

• Idea: The document is blinded by Alice before it is

signed by Bob.

• The resulting blind signature can be publicly verified

against the original, unblinded document x as before.

aChaum (1983).
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Blind Signatures Based on RSA

Blinding by Alice:

1: Pick r ∈ Z∗
n randomly;

2: Send

x′ = xre mod n

to Bob; {x is blinded by re.}
• Note that r → re mod n is a one-to-one correspondence.

• Hence re mod n is a random number, too.

• As a result, x′ is random and leaks no information, even

if x has any structure.
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Blind Signatures Based on RSA (continued)

Signing by Bob with his private decryption key d:

1: Send the blinded signature

s′ = (x′)d mod n

to Alice;
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Blind Signatures Based on RSA (continued)

The RSA signature of Alice:

1: Alice obtains the signature s = s′r−1 mod n;

• This works because

s ≡ s′r−1 ≡ (x′)dr−1 ≡ (xre)dr−1 ≡ xdred−1 ≡ xd mod n

by the properties of the RSA function.

• Note that only Alice knows r.
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Blind Signatures Based on RSA (concluded)

• Anyone can verify the document was signed by Bob by

checking with Bob’s encryption key e the following:

se ≡ x mod n.

• But Bob does not know s is related to x′ (thus Alice).
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