Randomization vs. Nondeterminism^a

- What are the differences between randomized algorithms and nondeterministic algorithms?
- Think of a randomized algorithm as a nondeterministic one but with a probability associated with every guess/branch.
- So each computation path of a randomized algorithm has a probability associated with it.

^aContributed by Mr. Olivier Valery (D01922033) and Mr. Hasan Alhasan (D01922034) on November 27, 2012.

Monte Carlo Algorithms^a

- The randomized bipartite perfect matching algorithm is called a **Monte Carlo algorithm** in the sense that
 - If the algorithm finds that a matching exists, it is always correct (no false positives; no type 1 errors).
 - If the algorithm answers in the negative, then it may make an error (false negatives; type 2 errors).

^aMetropolis & Ulam (1949).

Monte Carlo Algorithms (continued)

- The algorithm makes a false negative with probability ≤ 0.5 .^a
- Again, this probability refers to b $prob[algorithm answers "no" \mid G \text{ has a perfect matching}]$

 $\operatorname{prob}[G \text{ has a perfect matching } | \operatorname{algorithm answers "no"}].$

not

^aEquivalently, among the coin flip sequences, at most half of them lead to the wrong answer.

^bIn general, prob[algorithm answers "no" | input is a yes instance].

Monte Carlo Algorithms (concluded)

- This probability 0.5 is *not* over the space of all graphs or determinants, but *over* the algorithm's own coin flips.
 - It holds for *any* bipartite graph.
- In contrast, to calculate $\operatorname{prob}[G \text{ has a perfect matching} | \operatorname{algorithm \ answers \ "no"}],$ we will need the distribution of G.
- But it is an empirical statement that is very hard to verify.

The Markov Inequality^a

Lemma 67 Let x be a random variable taking nonnegative integer values. Then for any k > 0,

$$\operatorname{prob}[x \ge kE[x]] \le 1/k$$
.

• Let p_i denote the probability that x = i.

$$E[x] = \sum_{i} ip_{i} = \sum_{i < kE[x]} ip_{i} + \sum_{i \ge kE[x]} ip_{i}$$

$$\geq \sum_{i \ge kE[x]} ip_{i} \ge kE[x] \sum_{i \ge kE[x]} p_{i}$$

$$\geq kE[x] \times \operatorname{prob}[x \ge kE[x]].$$

^aAndrei Andreyevich Markov (1856–1922).

Andrei Andreyevich Markov (1856–1922)

FSAT for k-SAT Formulas (p. 500)

- Let $\phi(x_1, x_2, \dots, x_n)$ be a k-sat formula.
- If ϕ is satisfiable, then return a satisfying truth assignment.
- Otherwise, return "no."
- We next propose a randomized algorithm for this problem.

A Random Walk Algorithm for ϕ in CNF Form

```
1: Start with an arbitrary truth assignment T;
 2: for i = 1, 2, ..., r do
      if T \models \phi then
        return "\phi is satisfiable with T";
 4:
      else
 5:
        Let c be an unsatisfied clause in \phi under T; {All of
        its literals are false under T.
        Pick any x of these literals at random;
 7:
        Modify T to make x true;
      end if
9:
10: end for
11: return "\phi is unsatisfiable";
```

3SAT vs. 2SAT Again

- Note that if ϕ is unsatisfiable, the algorithm will answer "unsatisfiable."
- The random walk algorithm needs expected exponential time for 3SAT.
 - In fact, it runs in expected $O((1.333 \cdots + \epsilon)^n)$ time with r = 3n, a much better than $O(2^n)$.
- We will show immediately that it works well for 2sat.
- The state of the art as of 2014 is expected $O(1.30704^n)$ time for 3SAT and expected $O(1.46899^n)$ time for 4SAT.^c

^aUse this setting per run of the algorithm.

^bSchöning (1999). Makino, Tamaki, & Yamamoto (2011) improve the bound to deterministic $O(1.3303^n)$.

^cHertli (2014).

Random Walk Works for 2SATa

Theorem 68 Suppose the random walk algorithm with $r = 2n^2$ is applied to any satisfiable 2SAT problem with n variables. Then a satisfying truth assignment will be discovered with probability at least 0.5.

- Let \hat{T} be a truth assignment such that $\hat{T} \models \phi$.
- Assume our starting T differs from \hat{T} in i values.
 - Their Hamming distance is i.
 - Recall T is arbitrary.

^aPapadimitriou (1991).

The Proof

- Let t(i) denote the expected number of repetitions of the flipping step^a until a satisfying truth assignment is found.
- It can be shown that t(i) is finite.
- t(0) = 0 because it means that $T = \hat{T}$ and hence $T \models \phi$.
- If $T \neq \hat{T}$ or any other satisfying truth assignment, then we need to flip the coin at least once.
- We flip a coin to pick among the 2 literals of a clause not satisfied by the present T.
- At least one of the 2 literals is true under \hat{T} because \hat{T} satisfies all clauses.

^aThat is, Statement 7.

- So we have at least a 50% chance of moving closer to \hat{T} .
- Thus

$$t(i) \le \frac{t(i-1) + t(i+1)}{2} + 1$$

for 0 < i < n.

- Inequality is used because, for example, T may differ from \hat{T} in both literals.
- It must also hold that

$$t(n) \le t(n-1) + 1$$

because at i = n, we can only decrease i.

• Now, put the necessary relations together:

$$t(0) = 0, (10)$$

$$t(i) \le \frac{t(i-1) + t(i+1)}{2} + 1, \quad 0 < i < n, \quad (11)$$

$$t(n) \leq t(n-1) + 1. \tag{12}$$

• Technically, this is a one-dimensional random walk with an absorbing barrier at i = 0 and a reflecting barrier at i = n (if we replace " \leq " with "=").

^aThe proof in the textbook does exactly that. But a student pointed out difficulties with this proof technique on December 8, 2004. So our proof here uses the original inequalities.

• Add up the relations for

$$2t(1), 2t(2), 2t(3), \dots, 2t(n-1), t(n)$$
 to obtain^a

$$2t(1) + 2t(2) + \dots + 2t(n-1) + t(n)$$

$$\leq t(0) + t(1) + 2t(2) + \dots + 2t(n-2) + 2t(n-1) + t(n) + 2(n-1) + 1.$$

• Simplify it to yield

$$t(1) \le 2n - 1. \tag{13}$$

^aAdding up the relations for $t(1), t(2), t(3), \ldots, t(n-1)$ will also work, thanks to Mr. Yen-Wu Ti (D91922010).

• Add up the relations for $2t(2), 2t(3), \dots, 2t(n-1), t(n)$ to obtain

$$2t(2) + \dots + 2t(n-1) + t(n)$$

$$\leq t(1) + t(2) + 2t(3) + \dots + 2t(n-2) + 2t(n-1) + t(n) + 2(n-2) + 1.$$

• Simplify it to yield

$$t(2) \le t(1) + 2n - 3 \le 2n - 1 + 2n - 3 = 4n - 4$$

by Eq. (13) on p. 544.

• Continuing the process, we shall obtain

$$t(i) \le 2in - i^2.$$

• The worst upper bound happens when i = n, in which case

$$t(n) \le n^2$$
.

• We conclude that

$$t(i) \le t(n) \le n^2$$

for $0 \le i \le n$.

The Proof (concluded)

- So the expected number of steps is at most n^2 .
- The algorithm picks $r = 2n^2$.
- Apply the Markov inequality (p. 535) with k = 2 to yield the desired probability of 0.5.
- The proof does not yield a polynomial bound for 3SAT.^a

^aContributed by Mr. Cheng-Yu Lee (R95922035) on November 8, 2006.

Boosting the Performance

• We can pick $r = 2mn^2$ to have an error probability of

$$\leq \frac{1}{2m}$$

by Markov's inequality.

- Alternatively, with the same running time, we can run the " $r = 2n^2$ " algorithm m times.
- The error probability is now reduced to

$$\leq 2^{-m}$$
.

Primality Tests

- \bullet PRIMES asks if a number N is a prime.
- The classic algorithm tests if $k \mid N$ for $k = 2, 3, ..., \sqrt{N}$.
- But it runs in $\Omega(2^{(\log_2 N)/2})$ steps.

The Fermat Test for Primality

Fermat's "little" theorem (p. 486) suggests the following primality test for any given number N:

- 1: Pick a number a randomly from $\{1, 2, \dots, N-1\}$;
- 2: if $a^{N-1} \not\equiv 1 \bmod N$ then
- 3: **return** "N is composite";
- 4: else
- 5: **return** "N is (probably) a prime";
- 6: end if

The Fermat Test for Primality (concluded)

- Carmichael numbers are composite numbers that will pass the Fermat test for all $a \in \{1, 2, ..., N-1\}$.^a
 - The Fermat test will return "N is a prime" for all Carmichael numbers N.
- Unfortunately, there are infinitely many Carmichael numbers.^b
- In fact, the number of Carmichael numbers less than N exceeds $N^{2/7}$ for N large enough.
- So the Fermat test is an incorrect algorithm for PRIMES.

^aCarmichael (1910). Lo (1994) mentions an investment strategy based on such numbers!

^bAlford, Granville, & Pomerance (1992).

Square Roots Modulo a Prime

- Equation $x^2 \equiv a \mod p$ has at most two (distinct) roots by Lemma 64 (p. 491).
 - The roots are called **square roots**.
 - Numbers a with square roots $and \gcd(a, p) = 1$ are called **quadratic residues**.
 - * They are

$$1^2 \mod p, 2^2 \mod p, \dots, (p-1)^2 \mod p.$$

• We shall show that a number either has two roots or has none, and testing which is the case is trivial.^a

^aBut no efficient *deterministic* general-purpose square-root-extracting algorithms are known yet.

Euler's Test

Lemma 69 (Euler) Let p be an odd prime and $a \neq 0 \mod p$.

1. If

$$a^{(p-1)/2} \equiv 1 \bmod p,$$

then $x^2 \equiv a \mod p$ has two roots.

2. If

$$a^{(p-1)/2} \not\equiv 1 \bmod p,$$

then

$$a^{(p-1)/2} \equiv -1 \bmod p$$

and $x^2 \equiv a \mod p$ has no roots.

- Let r be a primitive root of p.
- Fermat's "little" theorem says $r^{p-1} \equiv 1 \mod p$, so

$$r^{(p-1)/2}$$

is a square root of 1.

• In particular,

$$r^{(p-1)/2} \equiv 1 \text{ or } -1 \text{ mod } p.$$

- But as r is a primitive root, $r^{(p-1)/2} \not\equiv 1 \mod p$.
- Hence $r^{(p-1)/2} \equiv -1 \mod p$.

- Let $a = r^k \mod p$ for some k.
- Suppose $a^{(p-1)/2} \equiv 1 \mod p$.
- Then

$$1 \equiv a^{(p-1)/2} \equiv r^{k(p-1)/2} \equiv \left[r^{(p-1)/2} \right]^k \equiv (-1)^k \mod p.$$

• So k must be even.

- Suppose $a = r^{2j} \mod p$ for some $1 \le j \le (p-1)/2$.
- Then

$$a^{(p-1)/2} \equiv r^{j(p-1)} \equiv 1 \bmod p.$$

• The two distinct roots of a are

$$r^{j}, -r^{j} (\equiv r^{j+(p-1)/2} \bmod p).$$

- If $r^j \equiv -r^j \mod p$, then $2r^j \equiv 0 \mod p$, which implies $r^j \equiv 0 \mod p$, a contradiction as r is a primitive root.

- As $1 \le j \le (p-1)/2$, there are (p-1)/2 such a's.
- Each such $a \equiv r^{2j} \mod p$ has 2 distinct square roots.
- The square roots of all these a's are distinct.
 - The square roots of different a's must be different.
- Hence the set of square roots is $\{1, 2, \dots, p-1\}$.
- As a result,

$$a = r^{2j} \mod p, 1 \le j \le (p-1)/2,$$

exhaust all the quadratic residues.

The Proof (concluded)

- Suppose $a = r^{2j+1} \mod p$ now.
- Then it has no square roots because all the square roots have been taken.
- Finally,

$$a^{(p-1)/2} \equiv \left[r^{(p-1)/2} \right]^{2j+1} \equiv (-1)^{2j+1} \equiv -1 \mod p.$$

The Legendre Symbol^a and Quadratic Residuacity Test

• By Lemma 69 (p. 553),

$$a^{(p-1)/2} \bmod p = \pm 1$$

for $a \not\equiv 0 \bmod p$.

• For odd prime p, define the **Legendre symbol** $(a \mid p)$ as

$$(a \mid p) \stackrel{\triangle}{=} \left\{ \begin{array}{l} 0, & \text{if } p \mid a, \\ 1, & \text{if } a \text{ is a quadratic residue modulo } p, \\ -1, & \text{if } a \text{ is a quadratic nonresidue modulo } p. \end{array} \right.$$

• It is sometimes pronounced "a over p."

^aAndrien-Marie Legendre (1752–1833).

The Legendre Symbol and Quadratic Residuacity Test (concluded)

• Euler's test (p. 553) implies

$$a^{(p-1)/2} \equiv (a \mid p) \bmod p$$

for any odd prime p and any integer a.

• Note that $(ab \mid p) = (a \mid p)(b \mid p)$.

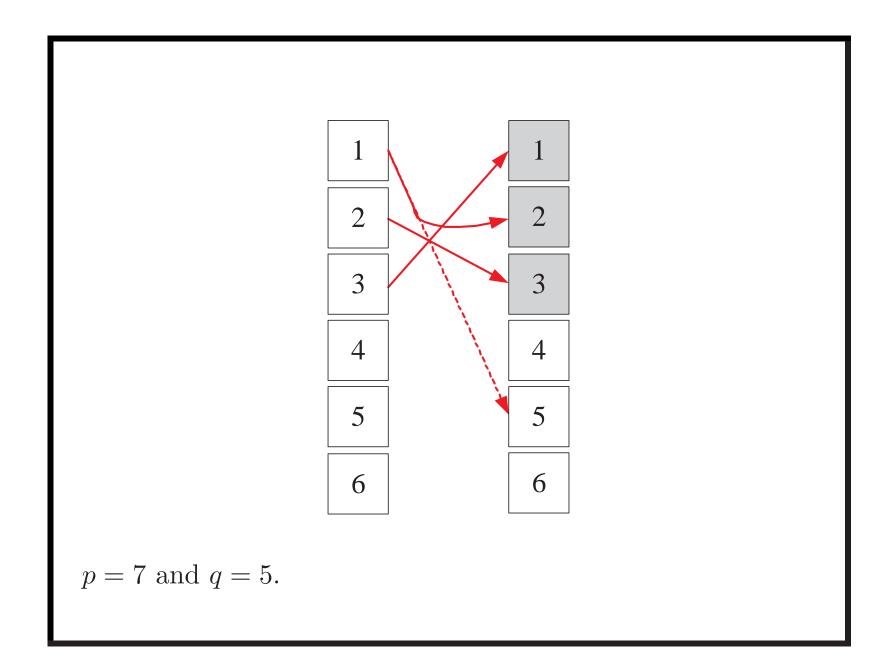
Gauss's Lemma

Lemma 70 (Gauss) Let p and q be two distinct odd primes. Then $(q | p) = (-1)^m$, where m is the number of residues in $R \stackrel{\triangle}{=} \{ iq \bmod p : 1 \le i \le (p-1)/2 \}$ that are greater than (p-1)/2.

- All residues in R are distinct.
 - If $iq = jq \mod p$, then $p \mid (j i) \text{ or } p \mid q$.
 - But neither is possible.
- No two elements of R add up to p.
 - If $iq + jq \equiv 0 \mod p$, then $p \mid (i+j) \text{ or } p \mid q$.
 - But neither is possible.

- Replace each of the m elements $a \in R$ such that a > (p-1)/2 by p-a.
 - This is equivalent to performing $-a \mod p$.
- Call the resulting set of residues R'.
- All numbers in R' are at most (p-1)/2.
- In fact, $R' = \{1, 2, \dots, (p-1)/2\}$ (see illustration next page).
 - Otherwise, two elements of R would add up to p, a which has been shown to be impossible.

^aBecause then $iq \equiv -jq \mod p$ for some $i \neq j$.



The Proof (concluded)

- Alternatively, $R' = \{ \pm iq \mod p : 1 \le i \le (p-1)/2 \}$, where exactly m of the elements have the minus sign.
- Take the product of all elements in the two representations of R'.
- So

$$[(p-1)/2]! \equiv (-1)^m q^{(p-1)/2} [(p-1)/2]! \mod p.$$

• Because gcd([(p-1)/2]!, p) = 1, the above implies

$$1 = (-1)^m q^{(p-1)/2} \bmod p.$$

Legendre's Law of Quadratic Reciprocity^a

- \bullet Let p and q be two distinct odd primes.
- The next result says (p | q) and (q | p) are distinct if and only if both p and q are $3 \mod 4$.

Lemma 71 (Legendre, 1785; Gauss)

$$(p | q)(q | p) = (-1)^{\frac{p-1}{2} \frac{q-1}{2}}.$$

^aFirst stated by Euler in 1751. Legendre (1785) did not give a correct proof. Gauss proved the theorem when he was 19. He gave at least 8 different proofs during his life. The 152nd proof appeared in 1963. A computer-generated formal proof was given in Russinoff (1990). As of 2008, there had been 4 such proofs. Wiedijk (2008), "the Law of Quadratic Reciprocity is the first nontrivial theorem that a student encounters in the mathematics curriculum."

- Sum the elements of R' in the previous proof in mod 2.
- On one hand, this is just $\sum_{i=1}^{(p-1)/2} i \mod 2$.
- On the other hand, the sum equals

$$mp + \sum_{i=1}^{(p-1)/2} \left(iq - p \left\lfloor \frac{iq}{p} \right\rfloor \right) \mod 2$$

$$= mp + \left(q \sum_{i=1}^{(p-1)/2} i - p \sum_{i=1}^{(p-1)/2} \left\lfloor \frac{iq}{p} \right\rfloor \right) \mod 2.$$

- m of the $iq \mod p$ are replaced by $p iq \mod p$.
- But signs are irrelevant under mod 2.
- -m is as in Lemma 70 (p. 561).

• Ignore odd multipliers to make the sum equal

$$m + \left(\sum_{i=1}^{(p-1)/2} i - \sum_{i=1}^{(p-1)/2} \left\lfloor \frac{iq}{p} \right\rfloor\right) \bmod 2.$$

- Equate the above with $\sum_{i=1}^{(p-1)/2} i$ modulo 2.
- Now simplify to obtain

$$m \equiv \sum_{i=1}^{(p-1)/2} \left\lfloor \frac{iq}{p} \right\rfloor \mod 2.$$

• $\sum_{i=1}^{(p-1)/2} \lfloor \frac{iq}{p} \rfloor$ is the number of integral points below the line

$$y = (q/p) x$$

for $1 \le x \le (p-1)/2$.

- Gauss's lemma (p. 561) says $(q | p) = (-1)^m$.
- Repeat the proof with p and q reversed.
- Then $(p | q) = (-1)^{m'}$, where m' is the number of integral points above the line y = (q/p)x for $1 \le y \le (q-1)/2$.

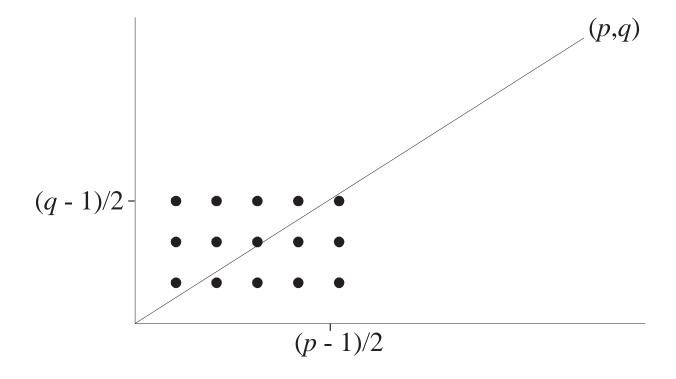
The Proof (concluded)

• As a result,

$$(p | q)(q | p) = (-1)^{m+m'}.$$

• But m+m' is the total number of integral points in the $[1,\frac{p-1}{2}]\times[1,\frac{q-1}{2}]$ rectangle, which is

$$\frac{p-1}{2} \, \frac{q-1}{2}.$$



Above, p = 11, q = 7, m = 7, m' = 8.

The Jacobi Symbol^a

- The Legendre symbol only works for odd *prime* moduli.
- The **Jacobi symbol** $(a \mid m)$ extends it to cases where m is not prime.
 - a is sometimes called the **numerator** and m the **denominator**.
- Trivially, $(1 \mid m) = 1$.
- Define (a | 1) = 1.

^aCarl Jacobi (1804–1851).

The Jacobi Symbol (concluded)

- Let $m = p_1 p_2 \cdots p_k$ be the prime factorization of m.
- When m > 1 is odd and gcd(a, m) = 1, then

$$(a \mid m) \stackrel{\Delta}{=} \prod_{i=1}^{k} (a \mid p_i).$$

- Note that the Jacobi symbol equals ± 1 .
- It reduces to the Legendre symbol when m is a prime.

Properties of the Jacobi Symbol

The Jacobi symbol has the following properties when it is defined.

1.
$$(ab | m) = (a | m)(b | m)$$
.

2.
$$(a \mid m_1 m_2) = (a \mid m_1)(a \mid m_2)$$
.

3. If
$$a \equiv b \mod m$$
, then $(a \mid m) = (b \mid m)$.

4.
$$(-1 \mid m) = (-1)^{(m-1)/2}$$
 (by Lemma 70 on p. 561).

5.
$$(2 \mid m) = (-1)^{(m^2-1)/8}$$
.a

6. If a and m are both odd, then $(a \mid m)(m \mid a) = (-1)^{(a-1)(m-1)/4}$.

^aBy Lemma 70 (p. 561) and some parity arguments.

Properties of the Jacobi Symbol (concluded)

- Properties 3–6 allow us to calculate the Jacobi symbol without factorization.
 - It will also yield the same result as Euler's test^a when m is an odd prime.
- This situation is similar to the Euclidean algorithm.
- Note also that $(a \mid m) = 1/(a \mid m)$ because $(a \mid m) = \pm 1.$ ^b

^aRecall p. 553.

^bContributed by Mr. Huang, Kuan-Lin (B96902079, R00922018) on December 6, 2011.

Calculation of (2200 | 999)

$$(2200 | 999) = (202 | 999)$$

$$= (2 | 999)(101 | 999)$$

$$= (-1)^{(999^2 - 1)/8}(101 | 999)$$

$$= (-1)^{124750}(101 | 999) = (101 | 999)$$

$$= (-1)^{(100)(998)/4}(999 | 101) = (-1)^{24950}(999 | 101)$$

$$= (999 | 101) = (90 | 101) = (-1)^{(101^2 - 1)/8}(45 | 101)$$

$$= (-1)^{1275}(45 | 101) = -(45 | 101)$$

$$= -(-1)^{(44)(100)/4}(101 | 45) = -(101 | 45) = -(11 | 45)$$

$$= -(-1)^{(10)(44)/4}(45 | 11) = -(45 | 11)$$

$$= -(1 | 11) = -1.$$

A Result Generalizing Proposition 10.3 in the Textbook

Theorem 72 The group of set $\Phi(n)$ under multiplication $\mod n$ has a primitive root if and only if n is either 1, 2, 4, p^k , or $2p^k$ for some nonnegative integer k and an odd prime p.

This result is essential in the proof of the next lemma.

The Jacobi Symbol and Primality Test^a

Lemma 73 If $(M | N) \equiv M^{(N-1)/2} \mod N$ for all $M \in \Phi(N)$, then N is a prime. (Assume N is odd.)

- Assume N = mp, where p is an odd prime, gcd(m, p) = 1, and m > 1 (not necessarily prime).
- Let $r \in \Phi(p)$ such that $(r \mid p) = -1$.
- The Chinese remainder theorem says that there is an $M \in \Phi(N)$ such that

$$M = r \mod p,$$
 $M = 1 \mod m.$

^aMr. Clement Hsiao (B4506061, R88526067) pointed out that the text-book's proof for Lemma 11.8 is incorrect in January 1999 while he was a senior.

• By the hypothesis,

$$M^{(N-1)/2} = (M \mid N) = (M \mid p)(M \mid m) = -1 \mod N.$$

• Hence

$$M^{(N-1)/2} = -1 \mod m$$
.

• But because $M = 1 \mod m$,

$$M^{(N-1)/2} = 1 \bmod m,$$

a contradiction.

- Second, assume that $N = p^a$, where p is an odd prime and $a \ge 2$.
- By Theorem 72 (p. 576), there exists a primitive root r modulo p^a .
- From the assumption,

$$M^{N-1} = \left[M^{(N-1)/2}\right]^2 = (M|N)^2 = 1 \mod N$$

for all $M \in \Phi(N)$.

• As $r \in \Phi(N)$ (prove it), we have

$$r^{N-1} = 1 \bmod N.$$

• As r's exponent modulo $N = p^a$ is $\phi(N) = p^{a-1}(p-1)$,

$$p^{a-1}(p-1) \mid (N-1),$$

which implies that $p \mid (N-1)$.

• But this is impossible given that $p \mid N$.

- Third, assume that $N = mp^a$, where p is an odd prime, gcd(m, p) = 1, m > 1 (not necessarily prime), and a is even.
- The proof mimics that of the second case.
- By Theorem 72 (p. 576), there exists a primitive root r modulo p^a .
- From the assumption,

$$M^{N-1} = \left[M^{(N-1)/2}\right]^2 = (M|N)^2 = 1 \mod N$$

for all $M \in \Phi(N)$.

• In particular,

$$M^{N-1} = 1 \bmod p^a \tag{14}$$

for all $M \in \Phi(N)$.

• The Chinese remainder theorem says that there is an $M \in \Phi(N)$ such that

$$M = r \bmod p^a$$
,

$$M = 1 \mod m$$
.

• Because $M = r \mod p^a$ and Eq. (14),

$$r^{N-1} = 1 \bmod p^a.$$

The Proof (concluded)

• As r's exponent modulo $N = p^a$ is $\phi(N) = p^{a-1}(p-1)$,

$$p^{a-1}(p-1) | (N-1),$$

which implies that $p \mid (N-1)$.

• But this is impossible given that $p \mid N$.

The Number of Witnesses to Compositeness

Theorem 74 (Solovay & Strassen, 1977) If N is an odd composite, then $(M \mid N) \equiv M^{(N-1)/2} \mod N$ for at most half of $M \in \Phi(N)$.

- By Lemma 73 (p. 577) there is at least one $a \in \Phi(N)$ such that $(a \mid N) \not\equiv a^{(N-1)/2} \mod N$.
- Let $B \stackrel{\Delta}{=} \{b_1, b_2, \dots, b_k\} \subseteq \Phi(N)$ be the set of all distinct residues such that $(b_i | N) \equiv b_i^{(N-1)/2} \mod N$.
- Let $aB \stackrel{\Delta}{=} \{ ab_i \mod N : i = 1, 2, \dots, k \}.$
- Clearly, $aB \subseteq \Phi(N)$, too.

The Proof (concluded)

- $\bullet |aB| = k.$
 - $-ab_i \equiv ab_j \mod N \text{ implies } N \mid a(b_i b_j), \text{ which is impossible because } \gcd(a, N) = 1 \text{ and } N > |b_i b_j|.$
- $aB \cap B = \emptyset$ because $(ab_i)^{(N-1)/2} \equiv a^{(N-1)/2} b_i^{(N-1)/2} \not\equiv (a \mid N)(b_i \mid N) \equiv (ab_i \mid N).$
- Combining the above two results, we know

$$\frac{|B|}{\phi(N)} \le \frac{|B|}{|B \cup aB|} = 0.5.$$

```
1: if N is even but N \neq 2 then
     return "N is composite";
 3: else if N=2 then
    return "N is a prime";
 5: end if
6: Pick M \in \{2, 3, ..., N-1\} randomly;
7: if gcd(M, N) > 1 then
     return "N is composite";
9: else
     if (M \mid N) \equiv M^{(N-1)/2} \mod N then
10:
        return "N is (probably) a prime";
11:
     else
12:
     return "N is composite";
13:
     end if
14:
15: end if
```

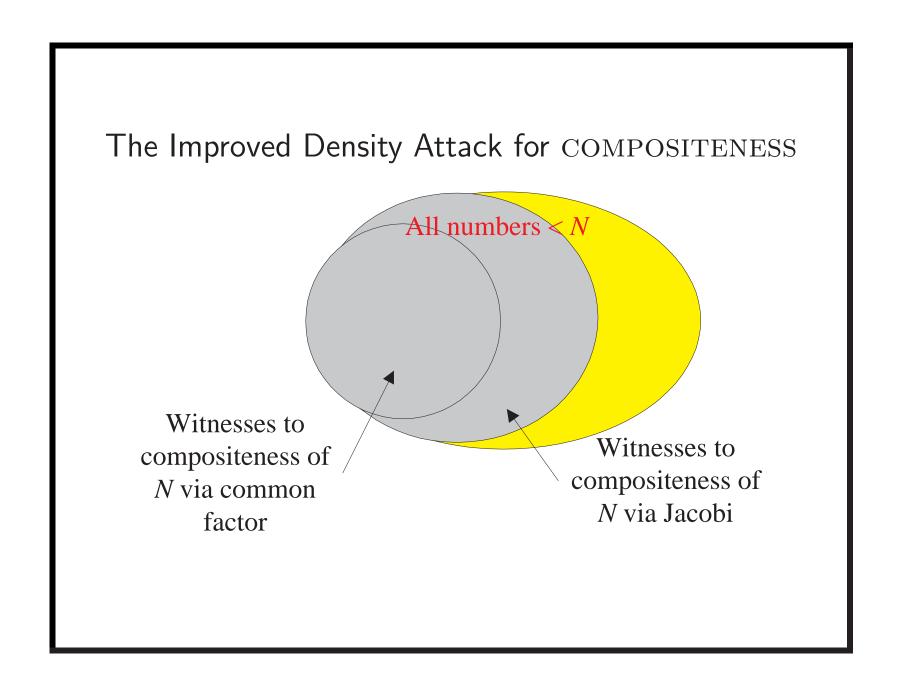
Analysis

- The algorithm certainly runs in polynomial time.
- There are no false positives (for COMPOSITENESS).
 - When the algorithm says the number is composite, it is always correct.

Analysis (concluded)

- The probability of a false negative (again, for COMPOSITENESS) is at most one half.
 - Suppose the input is composite.
 - By Theorem 74 (p. 584), $\operatorname{prob}[\operatorname{algorithm\ answers\ "no"} \mid N \text{ is composite}] \leq 0.5.$
 - Note that we are not referring to the probability that N is composite when the algorithm says "no."
- So it is a Monte Carlo algorithm for Compositeness.^a

a Not PRIMES.



Randomized Complexity Classes; RP

- Let N be a polynomial-time precise NTM that runs in time p(n) and has 2 nondeterministic choices at each step.
- N is a **polynomial Monte Carlo Turing machine** for a language L if the following conditions hold:
 - If $x \in L$, then at least half of the $2^{p(n)}$ computation paths of N on x halt with "yes" where n = |x|.
 - If $x \notin L$, then all computation paths halt with "no."
- The class of all languages with polynomial Monte Carlo
 TMs is denoted **RP** (randomized polynomial time).^a

^aAdleman & Manders (1977).

Comments on RP

- In analogy to Proposition 41 (p. 331), a "yes" instance of an RP problem has many certificates (witnesses).
- There are no false positives.
- If we associate nondeterministic steps with flipping fair coins, then we can phrase RP in the language of probability.
 - If $x \in L$, then N(x) halts with "yes" with probability at least 0.5.
 - If $x \notin L$, then N(x) halts with "no."

Comments on RP (concluded)

- The probability of false negatives is ≤ 0.5 .
- But any constant ϵ between 0 and 1 can replace 0.5.
 - Repeat the algorithm $k \stackrel{\Delta}{=} \lceil -\frac{1}{\log_2 \epsilon} \rceil$ times and answer "no" only if all the runs answer "no."
 - The probability of false negatives becomes $\epsilon^k \leq 0.5$.

Where RP Fits

- $P \subseteq RP \subseteq NP$.
 - A deterministic TM is like a Monte Carlo TM except that all the coin flips are ignored.
 - A Monte Carlo TM is an NTM with more demands on the number of accepting paths.
- Compositeness $\in RP$; a primes $\in coRP$; primes $\in RP$.
 - In fact, primes $\in P^c$
- $RP \cup coRP$ is an alternative "plausible" notion of efficient computation.

^aRabin (1976); Solovay & Strassen (1977).

^bAdleman & Huang (1987).

^cAgrawal, Kayal, & Saxena (2002).

ZPP^a (Zero Probabilistic Polynomial)

- The class **ZPP** is defined as $RP \cap coRP$.
- A language in ZPP has *two* Monte Carlo algorithms, one with no false positives (RP) and the other with no false negatives (coRP).
- If we repeatedly run both Monte Carlo algorithms, eventually one definite answer will come (unlike RP).
 - A positive answer from the one without false positives.
 - A negative answer from the one without false negatives.

^aGill (1977).

The ZPP Algorithm (Las Vegas)

```
1: {Suppose L \in ZPP.}
 2: \{N_1 \text{ has no false positives, and } N_2 \text{ has no false} \}
   negatives.
 3: while true do
     if N_1(x) = \text{"yes"} then
        return "yes";
 6: end if
 7: if N_2(x) = \text{"no"} then
 8: return "no";
      end if
9:
10: end while
```

ZPP (concluded)

- The *expected* running time for the correct answer to emerge is polynomial.
 - The probability that a run of the 2 algorithms does not generate a definite answer is 0.5 (why?).
 - Let p(n) be the running time of each run of the while-loop.
 - The expected running time for a definite answer is

$$\sum_{i=1}^{\infty} 0.5^{i} i p(n) = 2p(n).$$

• Essentially, ZPP is the class of problems that can be solved, without errors, in expected polynomial time.