
coNP and Function Problems

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 449

coNP

• By definition, coNP is the class of problems whose

complement is in NP.

– L ∈ coNP if and only if L̄ ∈ NP.

• NP problems have succinct certificates.a

• coNP is therefore the class of problems that have

succinct disqualifications:b

– A “no” instance possesses a short proof of its being a

“no” instance.

– Only “no” instances have such proofs.

aRecall Proposition 41 (p. 331).
bTo be proved in Proposition 54 (p. 459).

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 450

coNP (continued)

• Suppose L is a coNP problem.

• There exists a nondeterministic polynomial-time

algorithm M such that:

– If x ∈ L, then M(x) = “yes” for all computation

paths.

– If x �∈ L, then M(x) = “no” for some computation

path.

• If we swap “yes” and “no” in M , the new algorithm

decides L̄ ∈ NP in the classic sense (p. 108).

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 451

���

� ∉ �

���

��

���

��

���

� ∈ �

���

���

���

���

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 452

coNP (continued)

• So there are 3 major approaches to proving L ∈ coNP.

1. Prove L̄ ∈ NP.

– Especially when you already knew L̄ ∈ NP.

2. Prove that only “no” instances possess short proofs

(for their not being in L).a

3. Write an algorithm for it directly.

aRecall Proposition 41 (p. 331).

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 453

coNP (concluded)

• Clearly P ⊆ coNP.

• It is not known if

P = NP ∩ coNP.

– Contrast this with

R = RE ∩ coRE

(see p. 156).

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 454

Some coNP Problems

• sat complement ∈ coNP.

– sat complement is the complement of sat.

– Or, the disqualification is a truth assignment that

satisfies it.

• hamiltonian path complement ∈ coNP.

– hamiltonian path complement is the complement

of hamiltonian path.

– Or, the disqualification is a Hamiltonian path.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 455

Some coNP Problems (concluded)

• validity ∈ coNP.

– If φ is not valid, it can be disqualified very succinctly:

a truth assignment that does not satisfy it.

• optimal tsp (d) ∈ coNP.

– optimal tsp (d) asks if the optimal tour has a total

distance of B, where B is an input.a

– The disqualification is a tour with a length ≥ B plus

a tour with a length < B.

aDefined by Mr. Che-Wei Chang (R95922093) on September 27, 2006.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 456

A Nondeterministic Algorithm for sat complement
(See also p. 119)

φ is a boolean formula with n variables.

1: for i = 1, 2, . . . , n do

2: Guess xi ∈ { 0, 1 }; {Nondeterministic choice.}
3: end for

4: {Verification:}
5: if φ(x1, x2, . . . , xn) = 1 then

6: “no”;

7: else

8: “yes”;

9: end if

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 457

Analysis

• The algorithm decides language {φ : φ is unsatisfiable }.
– The computation tree is a complete binary tree of

depth n.

– Every computation path corresponds to a particular

truth assignment out of 2n.

– φ is unsatisfiable if and only if every truth

assignment falsifies φ.

– But every truth assignment falsifies φ if and only if

every computation path results in “yes.”

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 458

An Alternative Characterization of coNP

Proposition 54 Let L ⊆ Σ∗ be a language. Then L ∈ coNP

if and only if there is a polynomially decidable and

polynomially balanced relation R such that

L = {x : ∀y (x, y) ∈ R }.
(As on p. 330, we assume | y | ≤ |x |k for some k.)

• L̄ = {x : ∃y (x, y) ∈ ¬R }.
• Because ¬R remains polynomially balanced, L̄ ∈ NP by

Proposition 41 (p. 331).

• Hence L ∈ coNP by definition.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 459

coNP-Completeness

Proposition 55 L is NP-complete if and only if its

complement L̄ = Σ∗ − L is coNP-complete.

Proof (⇒; the ⇐ part is symmetric)

• Let L′ be any coNP language.

• Hence L′ ∈ NP.

• Let R be the reduction from L′ to L.

• So x ∈ L′ if and only if R(x) ∈ L.

• By the law of transposition, x �∈ L′ if and only if

R(x) �∈ L.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 460

coNP Completeness (concluded)

• So x ∈ L′ if and only if R(x) ∈ L̄.

• The same R is a reduction from L′ to L̄.

• This shows L̄ is coNP-hard.

• But L̄ ∈ coNP.

• This shows L̄ is coNP-complete.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 461

Some coNP-Complete Problems

• sat complement is coNP-complete.

• hamiltonian path complement is coNP-complete.

• validity is coNP-complete.

– φ is valid if and only if ¬φ is not satisfiable.

– φ ∈ validity if and only if ¬φ ∈ sat complement.

– The reduction from sat complement to validity

is hence easy: R(φ) = ¬φ.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 462

Possible Relations between P, NP, coNP

1. P = NP = coNP.

2. NP = coNP but P �= NP.

3. NP �= coNP and P �= NP.

• This is the current “consensus.”a

aCarl Gauss (1777–1855), “I could easily lay down a multitude of such

propositions, which one could neither prove nor dispose of.”

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 463

The Primality Problem

• An integer p is prime if p > 1 and all positive numbers

other than 1 and p itself cannot divide it.

• primes asks if an integer N is a prime number.

• Dividing N by 2, 3, . . . ,
√
N is not efficient.

– The length of N is only logN , but
√
N = 20.5 logN .

– It is an exponential-time algorithm.

• A polynomial-time algorithm for primes was not found

until 2002 by Agrawal, Kayal, and Saxena!

• The running time is Õ(log7.5 N).

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 464

1: if n = ab for some a, b > 1 then

2: return “composite”;

3: end if

4: for r = 2, 3, . . . , n − 1 do

5: if gcd(n, r) > 1 then

6: return “composite”;

7: end if

8: if r is a prime then

9: Let q be the largest prime factor of r − 1;

10: if q ≥ 4
√
r logn and n(r−1)/q �= 1 mod r then

11: break; {Exit the for-loop.}
12: end if

13: end if

14: end for{r − 1 has a prime factor q ≥ 4
√
r logn.}

15: for a = 1, 2, . . . , 2
√
r logn do

16: if (x − a)n �= (xn − a) mod (xr − 1) in Zn[x] then

17: return “composite”;

18: end if

19: end for

20: return “prime”; {The only place with “prime” output.}

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 465

The Primality Problem (concluded)

• Later, we will focus on efficient “randomized” algorithms

for primes (used in Mathematica, e.g.).

• NP ∩ coNP is the class of problems that have succinct

certificates and succinct disqualifications.

– Each “yes” instance has a succinct certificate.

– Each “no” instance has a succinct disqualification.

– No instances have both.

• We will see that primes ∈ NP ∩ coNP.

– In fact, primes ∈ P as mentioned earlier.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 466

Basic Modular Arithmeticsa

• Let m,n ∈ Z
+.

• m |n means m divides n; m is n’s divisor.

• We call the numbers 0, 1, . . . , n− 1 the residue modulo

n.

• The greatest common divisor of m and n is denoted

gcd(m,n).

• The r in Theorem 56 (p. 469) is a primitive root of p.

aCarl Friedrich Gauss.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 467

Basic Modular Arithmetics (concluded)

• We use

a ≡ b mod n

if n | (a− b).

– So 25 ≡ 38 mod 13.

• We use

a = b mod n

if b is the remainder of a divided by n.

– So 25 = 12 mod 13.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 468

Primitive Roots in Finite Fields

Theorem 56 (Lucas & Lehmer, 1927) a A number

p > 1 is a prime if and only if there is a number 1 < r < p

such that

1. rp−1 = 1 mod p, and

2. r(p−1)/q �= 1 mod p for all prime divisors q of p− 1.

• This r is called the primitive root or generator.

• We will prove one direction of the theorem later.b

aFrançois Edouard Anatole Lucas (1842–1891); Derrick Henry

Lehmer (1905–1991).
bSee pp. 480ff.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 469

Derrick Lehmera (1905–1991)

aInventor of the linear congruential generator in 1951.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 470

Pratt’s Theorem

Theorem 57 (Pratt, 1975) primes ∈ NP ∩ coNP.

• primes ∈ coNP because a succinct disqualification is a

proper divisor.

– A proper divisor of a number means it is not a prime.

• Now suppose p is a prime.

• p’s certificate includes the r in Theorem 56 (p. 469).

– There may be multiple choices for r.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 471

The Proof (continued)

• Use recursive doubling to check if rp−1 = 1 mod p in

time polynomial in the length of the input, log2 p.

– r, r2, r4, . . . mod p, a total of ∼ log2 p steps.

• We also need all prime divisors of p− 1: q1, q2, . . . , qk.

– Whether r, q1, . . . , qk are easy to find is irrelevant.

• Checking r(p−1)/qi �= 1 mod p is also easy.

• Checking q1, q2, . . . , qk are all the divisors of p− 1 is easy.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 472

The Proof (concluded)

• We still need certificates for the primality of the qi’s.

• The complete certificate is recursive and tree-like:

C(p) = (r; q1, C(q1), q2, C(q2), . . . , qk, C(qk)). (5)

• We next prove that C(p) is succinct.

• As a result, C(p) can be checked in polynomial time.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 473

A Certificate for 23a

• Note that 5 is a primitive root modulo 23 and

23− 1 = 22 = 2× 11.b

• So

C(23) = (5; 2, C(2), 11, C(11)).

• Note that 2 is a primitive root modulo 11 and

11− 1 = 10 = 2× 5.

• So

C(11) = (2; 2, C(2), 5, C(5)).

aThanks to a lively discussion on April 24, 2008.
bOther primitive roots are 7, 10, 11, 14, 15, 17, 19, 20, 21.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 474

A Certificate for 23 (concluded)

• Note that 2 is a primitive root modulo 5 and

5− 1 = 4 = 22.

• So

C(5) = (2; 2, C(2)).

• In summary,

C(23) = (5; 2, C(2), 11, (2; 2, C(2), 5, (2; 2, C(2)))).

– In Mathematica, PrimeQCertificate[23] yields

{ 23, 5, { 2, { 11, 2, { 2, { 5, 2, { 2 }}}}}}

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 475

The Succinctness of the Certificate

Lemma 58 The length of C(p) is at most quadratic at

5 log22 p.

• This claim holds when p = 2 or p = 3.

• In general, p− 1 has k ≤ log2 p prime divisors

q1 = 2, q2, . . . , qk.

– Reason:

2k ≤
k∏

i=1

qi ≤ p− 1.

• Note also that, as q1 = 2,

k∏
i=2

qi ≤ p− 1

2
. (6)

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 476

The Proof (continued)

• C(p) requires:

– 2 parentheses;

– 2k < 2 log2 p separators (at most 2 log2 p bits);

– r (at most log2 p bits);

– q1 = 2 and its certificate 1 (at most 5 bits);

– q2, . . . , qk (at most 2 log2 p bits);a

– C(q2), . . . , C(qk).

aWhy?

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 477

The Proof (concluded)

• C(p) is succinct because, by induction,

|C(p) | ≤ 5 log2 p+ 5 + 5
k∑

i=2

log22 qi

≤ 5 log2 p+ 5 + 5

(
k∑

i=2

log2 qi

)2

≤ 5 log2 p+ 5 + 5 log22
p− 1

2
by inequality (6)

< 5 log2 p+ 5 + 5[(log2 p)− 1]2

= 5 log22 p+ 10− 5 log2 p ≤ 5 log22 p

for p ≥ 4.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 478

Turning the Proof into an Algorithma

• How to turn the proof into a nondeterministic

polynomial-time algorithm?

• First, guess a log2 p-bit number r.

• Then guess up to log2 p numbers q1, q2, . . . , qk each

containing at most log2 p bits.

• Then recursively do the same thing for each of the qi to

form a certificate (5) on p. 473.

• Finally check if the two conditions of Theorem 56 (p.

469) hold throughout the tree.

aContributed by Mr. Kai-Yuan Hou (B99201038, R03922014) on

November 24, 2015.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 479

Euler’sa Totient or Phi Function

• Let

Φ(n) = {m : 1 ≤ m < n, gcd(m,n) = 1 }
be the set of all positive integers less than n that are

prime to n.b

– Φ(12) = { 1, 5, 7, 11 }.
• Define Euler’s function of n to be φ(n) = |Φ(n) |.
• φ(p) = p− 1 for prime p, and φ(1) = 1 by convention.

• Euler’s function is not expected to be easy to compute

without knowing n’s factorization.

aLeonhard Euler (1707–1783).
bZ∗

n is an alternative notation.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 480

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 481

Leonhard Euler (1707–1783)

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 482

Three Properties of Euler’s Functiona

The inclusion-exclusion principleb can be used to prove the

following.

Lemma 59 If n = pe11 pe22 · · · pe�� is the prime factorization

of n, then

φ(n) = n
�∏

i=1

(
1− 1

pi

)
.

• For example, if n = pq, where p and q are distinct

primes, then

φ(n) = pq

(
1− 1

p

)(
1− 1

q

)
= pq − p− q + 1.

aSee p. 224 of the textbook.
bConsult any textbooks on discrete mathematics.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 483

Three Properties of Euler’s Function (concluded)

Corollary 60 φ(mn) = φ(m)φ(n) if gcd(m,n) = 1.

Lemma 61 (Gauss)
∑

m|n φ(m) = n.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 484

The Chinese Remainder Theorem

• Let n = n1n2 · · ·nk, where ni are pairwise relatively

prime.

• For any integers a1, a2, . . . , ak, the set of simultaneous

equations

x = a1 mod n1,

x = a2 mod n2,

...

x = ak mod nk,

has a unique solution modulo n for the unknown x.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 485

Fermat’s “Little” Theorema

Lemma 62 For all 0 < a < p, ap−1 = 1 mod p.

• Recall Φ(p) = { 1, 2, . . . , p− 1 }.
• Consider aΦ(p) = { am mod p : m ∈ Φ(p) }.
• aΦ(p) = Φ(p).

– aΦ(p) ⊆ Φ(p) as a remainder must be between 1 and

p− 1.

– Suppose am ≡ am′ mod p for m > m′, where
m,m′ ∈ Φ(p).

– That means a(m−m′) = 0 mod p, and p divides a or

m−m′, which is impossible.

aPierre de Fermat (1601–1665).

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 486

The Proof (concluded)

• Multiply all the numbers in Φ(p) to yield (p− 1)!.

• Multiply all the numbers in aΦ(p) to yield ap−1(p− 1)!.

• As aΦ(p) = Φ(p), we have

ap−1(p− 1)! ≡ (p− 1)! mod p.

• Finally, ap−1 = 1 mod p because p � |(p− 1)!.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 487

The Fermat-Euler Theorema

Corollary 63 For all a ∈ Φ(n), aφ(n) = 1 mod n.

• The proof is similar to that of Lemma 62 (p. 486).

• Consider aΦ(n) = { am mod n : m ∈ Φ(n) }.
• aΦ(n) = Φ(n).

– aΦ(n) ⊆ Φ(n) as a remainder must be between 0 and

n− 1 and relatively prime to n.

– Suppose am ≡ am′ mod n for m′ < m < n, where

m,m′ ∈ Φ(n).

– That means a(m−m′) = 0 mod n, and n divides a or

m−m′, which is impossible.
aProof by Mr. Wei-Cheng Cheng (R93922108, D95922011) on Novem-

ber 24, 2004.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 488

The Proof (concluded)a

• Multiply all the numbers in Φ(n) to yield
∏

m∈Φ(n) m.

• Multiply all the numbers in aΦ(n) to yield

aφ(n)
∏

m∈Φ(n) m.

• As aΦ(n) = Φ(n),

∏
m∈Φ(n)

m ≡ aφ(n)

⎛
⎝ ∏

m∈Φ(n)

m

⎞
⎠ mod n.

• Finally, aφ(n) = 1 mod n because n � | ∏m∈Φ(n) m.

aSome typographical errors corrected by Mr. Jung-Ying Chen

(D95723006) on November 18, 2008.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 489

An Example

• As 12 = 22 × 3,

φ(12) = 12×
(
1− 1

2

)(
1− 1

3

)
= 4.

• In fact, Φ(12) = { 1, 5, 7, 11 }.
• For example,

54 = 625 = 1 mod 12.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 490

Exponents

• The exponent of m ∈ Φ(p) is the least k ∈ Z
+ such that

mk = 1 mod p.

• Every residue s ∈ Φ(p) has an exponent.

– 1, s, s2, s3, . . . eventually repeats itself modulo p, say

si ≡ sj mod p, i < j, which means sj−i = 1 mod p.

• If the exponent of m is k and m� = 1 mod p, then k | �.
– Otherwise, � = qk + a for 0 < a < k, and

m� = mqk+a ≡ ma ≡ 1 mod p, a contradiction.

Lemma 64 Any nonzero polynomial of degree k has at most

k distinct roots modulo p.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 491

Exponents and Primitive Roots

• From Fermat’s “little” theorem (p. 486), all exponents

divide p− 1.

• A primitive root of p is thus a number with exponent

p− 1.

• Let R(k) denote the total number of residues in

Φ(p) = { 1, 2, . . . , p− 1 } that have exponent k.

• We already knew that R(k) = 0 for k � |(p− 1).

• As every number has an exponent,∑
k | (p−1)

R(k) = p− 1.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 492

Size of R(k)

• Any a ∈ Φ(p) of exponent k satisfies xk = 1 mod p.

• By Lemma 64 (p. 491) there are at most k residues of

exponent k, i.e., R(k) ≤ k.

• Let s be a residue of exponent k.

• 1, s, s2, . . . , sk−1 are distinct modulo p.

– Otherwise, si ≡ sj mod p with i < j.

– Then sj−i = 1 mod p with j − i < k, a contradiction.

• As all these k distinct numbers satisfy xk = 1 mod p,

they comprise all the solutions of xk = 1 mod p.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 493

Size of R(k) (continued)

• But do all of them have exponent k (i.e., R(k) = k)?

• And if not (i.e., R(k) < k), how many of them do?

• Pick s�, where � < k.

• Suppose � �∈ Φ(k) with gcd(�, k) = d > 1.

• Then

(s�)k/d = (sk)�/d = 1 mod p.

• Therefore, s� has exponent at most k/d < k.

• So s� has exponent k only if � ∈ Φ(k).

• We conclude that

R(k) ≤ φ(k).

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 494

Size of R(k) (continued)

• Because all p− 1 residues have an exponent,

p− 1 =
∑

k | (p−1)

R(k) ≤
∑

k | (p−1)

φ(k) = p− 1

by Lemma 61 (p. 484).

• Hence

R(k) =

⎧⎨
⎩ φ(k), when k | (p− 1),

0, otherwise.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 495

Size of R(k) (concluded)

• Incidentally, we have shown that

g�, where � ∈ Φ(k),

are all the numbers with exponent k if g has exponent k.

• As R(p− 1) = φ(p− 1) > 0, p has primitive roots.

• This proves one direction of Theorem 56 (p. 469).

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 496

A Few Calculations

• Let p = 13.

• From p. 488 φ(p− 1) = 4.

• Hence R(12) = 4.

• Indeed, there are 4 primitive roots of p.

• As

Φ(p− 1) = { 1, 5, 7, 11 },
the primitive roots are

g1, g5, g7, g11,

where g is any primitive root.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 497

Function Problems

• Decision problems are yes/no problems (sat, tsp (d),

etc.).

• Function problems require a solution (a satisfying

truth assignment, a best tsp tour, etc.).

• Optimization problems are clearly function problems.

• What is the relation between function and decision

problems?

• Which one is harder?

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 498

Function Problems Cannot Be Easier than Decision
Problems

• If we know how to generate a solution, we can solve the

corresponding decision problem.

– If you can find a satisfying truth assignment

efficiently, then sat is in P.

– If you can find the best tsp tour efficiently, then tsp

(d) is in P.

• But we shall see that decision problems can be as hard

as the corresponding function problems. immediately.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 499

fsat

• fsat is this function problem:

– Let φ(x1, x2, . . . , xn) be a boolean expression.

– If φ is satisfiable, then return a satisfying truth

assignment.

– Otherwise, return “no.”

• We next show that if sat ∈ P, then fsat has a

polynomial-time algorithm.

• sat is a subroutine (black box) that returns “yes” or

“no” on the satisfiability of the input.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 500

An Algorithm for fsat Using sat
1: t := ε; {Truth assignment.}
2: if φ ∈ sat then

3: for i = 1, 2, . . . , n do

4: if φ[xi = true] ∈ sat then

5: t := t ∪ { xi = true };
6: φ := φ[xi = true];

7: else

8: t := t ∪ { xi = false };
9: φ := φ[xi = false];

10: end if

11: end for

12: return t;

13: else

14: return “no”;

15: end if

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 501

Analysis

• If sat can be solved in polynomial time, so can fsat.

– There are ≤ n+ 1 calls to the algorithm for sat.a

– Boolean expressions shorter than φ are used in each

call to the algorithm for sat.

• Hence sat and fsat are equally hard (or easy).

• Note that this reduction from fsat to sat is not a Karp

reduction.b

• Instead, it calls sat multiple times as a subroutine, and

its answers guide the search on the computation tree.

aContributed by Ms. Eva Ou (R93922132) on November 24, 2004.
bRecall p. 262 and p. 266.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 502

tsp and tsp (d) Revisited

• We are given n cities 1, 2, . . . , n and integer distances

dij = dji between any two cities i and j.

• tsp (d) asks if there is a tour with a total distance at

most B.

• tsp asks for a tour with the shortest total distance.

– The shortest total distance is at most
∑

i,j dij .

∗ Recall that the input string contains d11, . . . , dnn.

• Thus the shortest total distance is less than 2|x | in
magnitude, where x is the input (why?).

• We next show that if tsp (d) ∈ P, then tsp has a

polynomial-time algorithm.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 503

An Algorithm for tsp Using tsp (d)

1: Perform a binary search over interval [0, 2|x |] by calling

tsp (d) to obtain the shortest distance, C;

2: for i, j = 1, 2, . . . , n do

3: Call tsp (d) with B = C and dij = C + 1;

4: if “no” then

5: Restore dij to its old value; {Edge [i, j] is critical.}
6: end if

7: end for

8: return the tour with edges whose dij ≤ C;

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 504

Analysis

• An edge which is not on any remaining optimal tours

will be eliminated, with its dij set to C + 1.

• So the algorithm ends with n edges which are not

eliminated (why?).

• This is true even if there are multiple optimal tours!a

aThanks to a lively class discussion on November 12, 2013.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 505

Analysis (concluded)

• There are O(|x |+n2) calls to the algorithm for tsp (d).

• Each call has an input length of O(|x |).
• So if tsp (d) can be solved in polynomial time, so can

tsp.

• Hence tsp (d) and tsp are equally hard (or easy).

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 506

Randomized Computation

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 507

I know that half my advertising works,

I just don’t know which half.

— John Wanamaker

I know that half my advertising is

a waste of money,

I just don’t know which half!

— McGraw-Hill ad.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 508

Randomized Algorithmsa

• Randomized algorithms flip unbiased coins.

• There are important problems for which there are no

known efficient deterministic algorithms but for which

very efficient randomized algorithms exist.

– Extraction of square roots, for instance.

• There are problems where randomization is necessary.

– Secure protocols.

• Randomized version can be more efficient.

– Parallel algorithms for maximal independent set.b

aRabin (1976); Solovay & Strassen (1977).
b“Maximal” (a local maximum) not “maximum” (a global maximum).

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 509

Randomized Algorithms (concluded)

• Are randomized algorithms algorithms?a

• Coin flips are occasionally used in politics.b

aPascal, “Truth is so delicate that one has only to depart the least

bit from it to fall into error.”
bIn the 2016 Iowa Democratic caucuses, e.g. (see

http://edition.cnn.com/2016/02/02/politics/hillary-clinton-coin

-flip-iowa-bernie-sanders/index.html).

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 510

“Four Most Important Randomized Algorithms”a

1. Primality testing.b

2. Graph connectivity using random walks.c

3. Polynomial identity testing.d

4. Algorithms for approximate counting.e

aTrevisan (2006).
bRabin (1976); Solovay & Strassen (1977).
cAleliunas, Karp, Lipton, Lovász, & Rackoff (1979).
dSchwartz (1980); Zippel (1979).
eSinclair & Jerrum (1989).

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 511

Bipartite Perfect Matching

• We are given a bipartite graph G = (U, V,E).

– U = {u1, u2, . . . , un }.
– V = { v1, v2, . . . , vn }.
– E ⊆ U × V .

• We are asked if there is a perfect matching.

– A permutation π of { 1, 2, . . . , n } such that

(ui, vπ(i)) ∈ E

for all i ∈ { 1, 2, . . . , n }.
• A perfect matching contains n edges.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 512

A Perfect Matching in a Bipartite Graph

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 513

Symbolic Determinants

• We are given a bipartite graph G.

• Construct the n× n matrix AG whose (i, j)th entry AG
ij

is a symbolic variable xij if (ui, vj) ∈ E and 0 otherwise:

AG
ij =

⎧⎨
⎩ xij , if (ui, vj) ∈ E,

0, othersie.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 514

lyuu
刪劃線

lyuu
取代文字
wis

Symbolic Determinants (continued)

• The matrix for the bipartite graph G on p. 513 isa

AG =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 x13 x14 0

0 x22 0 0 0

x31 0 0 0 x35

x41 0 x43 x44 0

x51 0 0 0 x55

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

aThe idea is similar to the Tanner graph in coding theory by Tanner

(1981).

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 515

Symbolic Determinants (concluded)

• The determinant of AG is

det(AG) =
∑
π

sgn(π)
n∏

i=1

AG
i,π(i). (8)

– π ranges over all permutations of n elements.

– sgn(π) is 1 if π is the product of an even number of

transpositions and −1 otherwise.a

• det(AG) contains n! terms, many of which may be 0s.

aEquivalently, sgn(π) = 1 if the number of (i, j)s such that i < j and

π(i) > π(j) is even. Contributed by Mr. Hwan-Jeu Yu (D95922028) on

May 1, 2008.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 516

Determinant and Bipartite Perfect Matching

• In
∑

π sgn(π)
∏n

i=1 A
G
i,π(i), note the following:

– Each summand corresponds to a possible perfect

matching π.

– Nonzero summands
∏n

i=1A
G
i,π(i) are distinct

monomials and will not cancel.

• det(AG) is essentially an exhaustive enumeration.

Proposition 65 (Edmonds, 1967) G has a perfect

matching if and only if det(AG) is not identically zero.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 517

Perfect Matching and Determinant (p. 513)

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 518

Perfect Matching and Determinant (concluded)

• The matrix is (p. 515)

AG =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 x13 x14 0

0 x22 0 0 0

x31 0 0 0 x35

x41 0 x43 x44 0

x51 0 0 0 x55

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

• det(AG) = −x14x22x35x43x51 + x13x22x35x44x51 +

x14x22x31x43x55 − x13x22x31x44x55.

• Each nonzero term denotes a perfect matching, and vice

versa.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 519

How To Test If a Polynomial Is Identically Zero?

• det(AG) is a polynomial in n2 variables.

• It has, potentially, exponentially many terms.

• Expanding the determinant polynomial is thus infeasible.

• If det(AG) ≡ 0, then it remains zero if we substitute

arbitrary integers for the variables x11, . . . , xnn.

• When det(AG) �≡ 0, what is the likelihood of obtaining a

zero?

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 520

Number of Roots of a Polynomial

Lemma 66 (Schwartz, 1980) Let p(x1, x2, . . . , xm) �≡ 0 be

a polynomial in m variables each of degree at most d. Let

M ∈ Z
+. Then the number of m-tuples

(x1, x2, . . . , xm) ∈ { 0, 1, . . . ,M − 1 }m

such that p(x1, x2, . . . , xm) = 0 is

≤ mdMm−1.

• By induction on m (consult the textbook).

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 521

Density Attack

• The density of roots in the domain is at most

mdMm−1

Mm
=

md

M
. (9)

• So suppose p(x1, x2, . . . , xm) �≡ 0.

• Then a random

(x1, x2, . . . , xm) ∈ { 0, 1, . . . ,M − 1 }m

has a probability of ≤ md/M of being a root of p.

• Note that M is under our control!

– One can raise M to lower the error probability, e.g.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 522

Density Attack (concluded)

Here is a sampling algorithm to test if p(x1, x2, . . . , xm) �≡ 0.

1: Choose i1, . . . , im from { 0, 1, . . . ,M − 1 } randomly;

2: if p(i1, i2, . . . , im) �= 0 then

3: return “p is not identically zero”;

4: else

5: return “p is (probably) identically zero”;

6: end if

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 523

Analysis

• If p(x1, x2, . . . , xm) ≡ 0 , the algorithm will always be

correct as p(i1, i2, . . . , im) = 0.

• Suppose p(x1, x2, . . . , xm) �≡ 0.

– The algorithm will answer incorrectly with

probability at most md/M by Eq. (9) on p. 522.

• We next return to the original problem of bipartite

perfect matching.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 524

A Randomized Bipartite Perfect Matching Algorithma

1: Choose n2 integers i11, . . . , inn from { 0, 1, . . . , 2n2 − 1 }
randomly; {So M = 2n2.}

2: Calculate det(AG(i11, . . . , inn)) by Gaussian elimination;

3: if det(AG(i11, . . . , inn)) �= 0 then

4: return “G has a perfect matching”;

5: else

6: return “G has (probably) no perfect matchings”;

7: end if

aLovász (1979). According to Paul Erdős, Lovász wrote his first sig-

nificant paper “at the ripe old age of 17.”

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 525

Analysis

• If G has no perfect matchings, the algorithm will always

be correct as det(AG(i11, . . . , inn)) = 0.

• Suppose G has a perfect matching.

– The algorithm will answer incorrectly with

probability at most md/M = 0.5 with m = n2, d = 1

and M = 2n2 in Eq. (9) on p. 522.

• Run the algorithm independently k times.

• Output “G has no perfect matchings” if and only if all

say “(probably) no perfect matchings.”

• The error probability is now reduced to at most 2−k.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 526

Lószló Lovász (1948–)

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 527

Remarksa

• Note that we are calculating

prob[algorithm answers “no” |G has no perfect matchings],

prob[algorithm answers “yes” |G has a perfect matching].

• We are not calculatingb

prob[G has no perfect matchings | algorithm answers “no”],

prob[G has a perfect matching | algorithm answers “yes”].

aThanks to a lively class discussion on May 1, 2008.
bNumerical Recipes in C (1988), “statistics is not a branch of math-

ematics!” Similar issues arise in MAP (maximum a posteriori) estimates

and ML (maximum likelihood) estimates.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 528

But How Large Can det(AG(i11, . . . , inn)) Be?

• It is at mosta

n!
(
2n2
)n

.

• Stirling’s formula says n! ∼ √
2πn (n/e)n.

• Hence

log2 det(A
G(i11, . . . , inn)) = O(n log2 n)

bits are sufficient for representing the determinant.

• We skip the details about how to make sure that all

intermediate results are of polynomial size.

aIn fact, it can be lowered to 2O(log2 n) (Csanky, 1975)!

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 529

An Intriguing Questiona

• Is there an (i11, . . . , inn) that will always give correct

answers for the algorithm on p. 525?

• A theorem on p. 620 shows that such an (i11, . . . , inn)

exists!

– Whether it can be found efficiently is another matter.

• Once (i11, . . . , inn) is available, the algorithm can be

made deterministic.

aThanks to a lively class discussion on November 24, 2004.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 530

