
Computing Theory

Midterm Examination on April 11, 2019

Spring Semester, 2019

Problem 1 (25 points) Define a single-string bidirectional Turing machine to be a

single-string Turing machine which has infinite tapes in both directions (left and right).

The computation is similar to an ordinary single-string Turing machine except that the

cursor never encounters an end to the tape as it moves left. The tapes of a single-string

bidirectional Turing machine is illustrated below.

c o m p l e x i t y

The tapes of an ordinary single-string Turing machine is illustrated below.

▷ c o m p l e x i t y

Sketch how given any single-string bidirectional Turing machine M operating within time

f(n), there exists an ordinary single-string Turing machine M ′ operating within time

O(f(n)) such that M(x) = M ′(x) for any input x. (Remember to analyze the complexity.)

Proof: The construction of M ′ to simulate M is illustrated as below.

c o m p l e x i t y

l p m o c

e x i t y

▷
▷

e

l

x

p

i

m

t

o

y

c



Construct M ′ by “folding” the tapes of M at an arbitrary location, say the input string’s

left border (and assume the cursor starts at the first symbol of the string, without loss

of generality). If the symbol set of M is Σ, then the symbol set of M ′ contains Σ2. We

will work on the program of M to obtain the desired program for M ′. Assume, without

loss of generality, that the cursor of M ′ starts at the first symbol of the input string.

To implement the two-way tape on a standard one-way tape, strings on the tape of M

will be interpreted as a folded string: The string selected from the top symbols refers to

the string of M to the right of the “fold”, whereas the string selected from the bottom

symbols refers to the string of M to the left of the “fold” but in a reverse order. See

the above illustration. If M works to the right of the “fold”, M ′ will work on the top

symbols and follow the cursor instruction of M . If M moves to the left of the “fold”,

then M ′ will use the bottom symbols and change left movements into right movements.

The more formal construction of M ′ is described as follows. Modify the original program

of M(K,Σ, δ, s) to obtain the new machine M ′(K ′,Σ′, δ′, s′), where K ′ includes {(q, i) :

q ∈ K, i ∈ {t, b}}, where t and b represent the modes of M ′ (the top and bottom modes),

and Σ′ includes {(σ1, σ2) : σ1, σ2 ∈ Σ}. For every instruction δ(q, σ) = (p, ρ,D) of M , M ′

will have the following instructions:

δ′((q, t), (σ, x)) = ((p, t), (ρ, x), D) for all x ∈ Σ.

δ′((q, b), (x, σ)) = ((p, b), (x, ρ), D′) for all x ∈ Σ, where D′ =


−, if D = −.
←, if D =→ .

→, if D =← .

Also, M ′ has the following instructions to reverse directions:

δ′((q, t), (B,B)) = ((q, b), (B,B),→) for all q ∈ K.
δ′((q, b), (B,B)) = ((q, t), (B,B),→) for all q ∈ K.

The input x′ = (x′1, x
′
2, ..., x

′
n) to M ′ is the same as M ’s input x = (x1, x2, ..., xn) except

that x′i = (xi,
⊔

) and (B,B) is the first symbol.

M ′ takes at most 2 steps to simulate each step of M in the above (maybe less than

complete) formulation. As there are f(n) steps of M , M ′ operates within time O(f(n)).

Problem 2 (25 points) Define the language

Hε = {M |M halts on the empty string ε.}.

Prove that Hε is undecidable by reducing the halting problem to it. (Do not use Rice’s

theorem.)



Proof: Given the question “M ;x ∈ H?”, we construct the following machine:

Mx(y) : M(x).

Clearly, M halts on x if and only if Mx halts on ε. In other words, M ;x ∈ H if and only

if Mx ∈ Hε. So if Hε were recursive, H would be recursive, a contradiction.

Problem 3 (25 points) Prove that the language

k-REACHABILITY = {(G, a, b, k) |G is a directed graph where there exists a path of

length at most k from node a to b.}

is in NL = NSPACE(log n).

Proof: The nondeterministic algorithm of k-REACHABILITY works as follows. Start

at node a and repeatly and nondeterministically select the next node from the current

node for up to k steps. If node b is ever reached, accept the input. Otherwise, reject the

input. The algorithm only needs to record the current node and the next node; hence it

runs in nondeterministic logarithmic space.

Problem 4 (25 points) A NAND gate is a logic gate which produces an output “false”

only if all its inputs are true. The truth table of NAND gate is illustrated as bellow.

A B A NAND B

0 0 1

0 1 1

1 0 1

1 1 0

Define a NAND Boolean circuit to be a Boolean circuit which contains only NAND

gates. The problem NAND CIRCUIT VALUE asks, given an NAND Boolean circuit

and a truth assignment to the input, what is the value of the output? Prove that

NAND CIRCUIT VALUE is P-complete.

Proof: It is clear that NAND CIRCUIT VALUE is in P. For any Boolean circuit, NOT,

AND, and OR gates can be replaced by following rules.

NOT x = x NAND x.

x AND y = (x NAND y) NAND (x NAND y).

x OR y = (x NAND x) NAND (y NAND y).

We can transform any Boolean circuit into a NAND Boolean circuit by the above

local substitution. Thus we can reduce the problem CIRCUIT VALUE into NAND

CIRCUIT VALUE. Since CIRCUIT VALUE is P-complete, NAND CIRCUIT VALUE

is also P-complete.


