Computing Theory

Midterm Examination on April 11, 2019
Spring Semester, 2019

Problem 1 (25 points) Define a single-string bidirectional Turing machine to be a
single-string Turing machine which has infinite tapes in both directions (left and right).
The computation is similar to an ordinary single-string Turing machine except that the
cursor never encounters an end to the tape as it moves left. The tapes of a single-string

bidirectional Turing machine is illustrated below.

Sketch how given any single-string bidirectional Turing machine M operating within time
f(n), there exists an ordinary single-string Turing machine M’ operating within time
O(f(n)) such that M (z) = M'(x) for any input x. (Remember to analyze the complexity.)

Proof: The construction of M’ to simulate M is illustrated as below.

(@]
o
3
©
D
X
—
<

O <

D
X
-+
<

v Vv
°
3
o
(@]

Construct M’ by “folding” the tapes of M at an arbitrary location, say the input string’s
left border (and assume the cursor starts at the first symbol of the string, without loss
of generality). If the symbol set of M is ¥, then the symbol set of M’ contains ¥2. We
will work on the program of M to obtain the desired program for M’. Assume, without
loss of generality, that the cursor of M’ starts at the first symbol of the input string.
To implement the two-way tape on a standard one-way tape, strings on the tape of M
will be interpreted as a folded string: The string selected from the top symbols refers to
the string of M to the right of the “fold”, whereas the string selected from the bottom
symbols refers to the string of M to the left of the “fold” but in a reverse order. See
the above illustration. If M works to the right of the “fold”, M’ will work on the top
symbols and follow the cursor instruction of M. If M moves to the left of the “fold”,

then M’ will use the bottom symbols and change left movements into right movements.

The more formal construction of M’ is described as follows. Modify the original program
of M(K,X,d,s) to obtain the new machine M'(K’,%’ ¢, s"), where K’ includes {(q,1) :
q € K,i € {t,b}}, where t and b represent the modes of M’ (the top and bottom modes),
and ¥ includes {(01,09) : 01,09 € X}. For every instruction (¢, o) = (p, p, D) of M, M’

will have the following instructions:

0'((q,1), (0, 2)) = ((p, 1), (p, x), D) for all z € .
_. #D=-—
8 ((g,0), (z,0)) = ((p,b), (x, p), D) for all x € X, where D' =< +, if D =—.
—, if D =+.

Also, M’ has the following instructions to reverse directions:

0'((q, 1), (>,1>))
0'((q,0), (>, 1))

((q,0), (>,>),—) for all ¢ € K.

((q,1), (>,1>), =) for all ¢ € K.

The input o’ = (27,2}, ...,2)) to M’ is the same as M’s input = = (x1, xs, ..., ,,) except

ey by

that o} = (x;,|]) and (>,) is the first symbol.

M’ takes at most 2 steps to simulate each step of M in the above (maybe less than
complete) formulation. As there are f(n) steps of M, M’ operates within time O(f(n)).

|
Problem 2 (25 points) Define the language

H. = {M | M halts on the empty string e.}.

Prove that H, is undecidable by reducing the halting problem to it. (Do not use Rice’s

theorem.)

Proof: Given the question “M;z € H?”, we construct the following machine:
M (y) - M(x).

Clearly, M halts on x if and only if M, halts on €. In other words, M;x € H if and only

if M, € H.. So if H, were recursive, H would be recursive, a contradiction. [|

Problem 3 (25 points) Prove that the language

k-REACHABILITY = {(G,a,b, k) |G is a directed graph where there exists a path of
length at most k& from node a to b.}

is in NL = NSPACE(logn).

Proof: The nondeterministic algorithm of k--REACHABILITY works as follows. Start
at node a and repeatly and nondeterministically select the next node from the current
node for up to k steps. If node b is ever reached, accept the input. Otherwise, reject the
input. The algorithm only needs to record the current node and the next node; hence it

runs in nondeterministic logarithmic space. |

Problem 4 (25 points) A NAND gate is a logic gate which produces an output “false”
only if all its inputs are true. The truth table of NAND gate is illustrated as bellow.

A B ANANDB
0

— = O O
O ==

1
0
1

Define a NAND Boolean circuit to be a Boolean circuit which contains only NAND
gates. The problem NAND CIRCUIT VALUE asks, given an NAND Boolean circuit
and a truth assignment to the input, what is the value of the output? Prove that
NAND CIRCUIT VALUE is P-complete.

Proof: It is clear that NAND CIRCUIT VALUE is in P. For any Boolean circuit, NOT,
AND, and OR gates can be replaced by following rules.

NOT z = 2 NAND =.
x AND y = (x NAND y) NAND (z NAND vy).
z OR y = (z NAND z) NAND (y NAND y).

We can transform any Boolean circuit into a NAND Boolean circuit by the above
local substitution. Thus we can reduce the problem CIRCUIT VALUE into NAND
CIRCUIT VALUE. Since CIRCUIT VALUE is P-complete, NAND CIRCUIT VALUE

is also P-complete. [|

