Computing Theory

Midterm Examination on April 11, 2019
Spring Semester, 2019
Problem 1 (25 points) Define a single-string bidirectional Turing machine to be a single-string Turing machine which has infinite tapes in both directions (left and right). The computation is similar to an ordinary single-string Turing machine except that the cursor never encounters an end to the tape as it moves left. The tapes of a single-string bidirectional Turing machine is illustrated below.

				\mathbf{c}	\mathbf{o}	\mathbf{m}	\mathbf{p}	\mathbf{l}	\mathbf{e}	\mathbf{x}	\mathbf{i}	\mathbf{t}	\mathbf{y}				

The tapes of an ordinary single-string Turing machine is illustrated below.

\triangleright	\mathbf{c}	\mathbf{o}	\mathbf{m}	\mathbf{p}	\mathbf{l}	\mathbf{e}	\mathbf{x}	\mathbf{i}	\mathbf{t}	\mathbf{y}			

Sketch how given any single-string bidirectional Turing machine M operating within time $f(n)$, there exists an ordinary single-string Turing machine M^{\prime} operating within time $O(f(n))$ such that $M(x)=M^{\prime}(x)$ for any input x. (Remember to analyze the complexity.)

Proof: The construction of M^{\prime} to simulate M is illustrated as below.

				\mathbf{c}	\mathbf{o}	\mathbf{m}	\mathbf{p}	\mathbf{l}	\mathbf{e}	\mathbf{x}	\mathbf{i}	\mathbf{t}	\mathbf{y}				

\mathbf{e}	\mathbf{x}	\mathbf{i}	\mathbf{t}	\mathbf{y}				
\mathbf{l}	\mathbf{p}	\mathbf{m}	\mathbf{o}	\mathbf{c}				

\triangleright	\mathbf{e}	\mathbf{x}	\mathbf{i}	\mathbf{t}	\mathbf{y}				
\triangleright	\mathbf{l}	\mathbf{p}	\mathbf{m}	\mathbf{o}	\mathbf{c}				

Construct M^{\prime} by "folding" the tapes of M at an arbitrary location, say the input string's left border (and assume the cursor starts at the first symbol of the string, without loss of generality). If the symbol set of M is Σ, then the symbol set of M^{\prime} contains Σ^{2}. We will work on the program of M to obtain the desired program for M^{\prime}. Assume, without loss of generality, that the cursor of M^{\prime} starts at the first symbol of the input string. To implement the two-way tape on a standard one-way tape, strings on the tape of M will be interpreted as a folded string: The string selected from the top symbols refers to the string of M to the right of the "fold", whereas the string selected from the bottom symbols refers to the string of M to the left of the "fold" but in a reverse order. See the above illustration. If M works to the right of the "fold", M^{\prime} will work on the top symbols and follow the cursor instruction of M. If M moves to the left of the "fold", then M^{\prime} will use the bottom symbols and change left movements into right movements.

The more formal construction of M^{\prime} is described as follows. Modify the original program of $M(K, \Sigma, \delta, s)$ to obtain the new machine $M^{\prime}\left(K^{\prime}, \Sigma^{\prime}, \delta^{\prime}, s^{\prime}\right)$, where K^{\prime} includes $\{(q, i)$: $q \in K, i \in\{t, b\}\}$, where t and b represent the modes of M^{\prime} (the top and bottom modes), and Σ^{\prime} includes $\left\{\left(\sigma_{1}, \sigma_{2}\right): \sigma_{1}, \sigma_{2} \in \Sigma\right\}$. For every instruction $\delta(q, \sigma)=(p, \rho, D)$ of M, M^{\prime} will have the following instructions:

$$
\begin{aligned}
& \delta^{\prime}((q, t),(\sigma, x))=((p, t),(\rho, x), D) \text { for all } x \in \Sigma \\
& \delta^{\prime}((q, b),(x, \sigma))=\left((p, b),(x, \rho), D^{\prime}\right) \text { for all } x \in \Sigma, \text { where } D^{\prime}= \begin{cases}-, & \text { if } D=- \\
\leftarrow, & \text { if } D=\rightarrow \\
\rightarrow, & \text { if } D=\leftarrow\end{cases}
\end{aligned}
$$

Also, M^{\prime} has the following instructions to reverse directions:

$$
\begin{aligned}
& \delta^{\prime}((q, t),(\triangleright, \triangleright))=((q, b),(\triangleright, \triangleright), \rightarrow) \text { for all } q \in K . \\
& \delta^{\prime}((q, b),(\triangleright, \triangleright))=((q, t),(\triangleright, \triangleright), \rightarrow) \text { for all } q \in K .
\end{aligned}
$$

The input $x^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)$ to M^{\prime} is the same as M 's input $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ except that $x_{i}^{\prime}=\left(x_{i}, \bigsqcup\right)$ and $(\triangleright, \triangleright)$ is the first symbol.
M^{\prime} takes at most 2 steps to simulate each step of M in the above (maybe less than complete) formulation. As there are $f(n)$ steps of M, M^{\prime} operates within time $O(f(n))$.

Problem 2 (25 points) Define the language

$$
H_{\epsilon}=\{M \mid M \text { halts on the empty string } \epsilon .\} \text {. }
$$

Prove that H_{ϵ} is undecidable by reducing the halting problem to it. (Do not use Rice's theorem.)

Proof: Given the question " $M ; x \in H$?", we construct the following machine:

$$
M_{x}(y): M(x) .
$$

Clearly, M halts on x if and only if M_{x} halts on ϵ. In other words, $M ; x \in H$ if and only if $M_{x} \in H_{\epsilon}$. So if H_{ϵ} were recursive, H would be recursive, a contradiction.

Problem 3 (25 points) Prove that the language

$$
\begin{aligned}
& k \text {-REACHABILITY }=\{(G, a, b, k) \mid G \text { is a directed graph where there exists a path of } \\
&\text { length at most } k \text { from node } a \text { to } b .\}
\end{aligned}
$$

is in NL $=\operatorname{NSPACE}(\log n)$.
Proof: The nondeterministic algorithm of k-REACHABILITY works as follows. Start at node a and repeatly and nondeterministically select the next node from the current node for up to k steps. If node b is ever reached, accept the input. Otherwise, reject the input. The algorithm only needs to record the current node and the next node; hence it runs in nondeterministic logarithmic space.

Problem 4 (25 points) A NAND gate is a logic gate which produces an output "false" only if all its inputs are true. The truth table of NAND gate is illustrated as bellow.

A	B	A NAND B
0	0	1
0	1	1
1	0	1
1	1	0

Define a NAND Boolean circuit to be a Boolean circuit which contains only NAND gates. The problem NAND CIRCUIT VALUE asks, given an NAND Boolean circuit and a truth assignment to the input, what is the value of the output? Prove that NAND CIRCUIT VALUE is P-complete.

Proof: It is clear that NAND CIRCUIT VALUE is in P. For any Boolean circuit, NOT, AND, and OR gates can be replaced by following rules.

$$
\begin{aligned}
\text { NOT } x & =x \text { NAND } x . \\
x \text { AND } y & =(x \text { NAND } y) \text { NAND }(x \text { NAND } y) . \\
x \text { OR } y & =(x \text { NAND } x) \text { NAND }(y \text { NAND } y) .
\end{aligned}
$$

We can transform any Boolean circuit into a NAND Boolean circuit by the above local substitution. Thus we can reduce the problem CIRCUIT VALUE into NAND CIRCUIT VALUE. Since CIRCUIT VALUE is P-complete, NAND CIRCUIT VALUE is also P -complete.

