Boolean Functions

• An *n*-ary boolean function is a function

```
f: \{\, \mathtt{true}, \mathtt{false} \,\}^n \to \{\, \mathtt{true}, \mathtt{false} \,\}.
```

- It can be represented by a truth table.
- There are 2^{2^n} such boolean functions.
 - We can assign true or false to f for each of the 2^n truth assignments.

Boolean Functions (continued)

Assignment	Truth value
1	true or false
2	true or false
:	• •
2^n	true or false

- A boolean expression expresses a boolean function.
 - Think of its truth values under all possible truth assignments.

Boolean Functions (continued)

- A boolean function expresses a boolean expression.
 - $-\bigvee_{T \models \phi, \text{ literal } y_i \text{ is true in "row" } T} (y_1 \wedge \cdots \wedge y_n).^a$
 - * The implicant $y_1 \wedge \cdots \wedge y_n$ is called the **minterm** over $\{x_1, \ldots, x_n\}$ for T.
 - The size^b is $\leq n2^n \leq 2^{2n}$.
 - This DNF is optimal for the parity function, for example.^c

^aSimilar to **programmable logic array**. This is called the **table lookup representation** (Beigel, 1993).

^bWe count only the literals here.

^cDu & Ko (2000).

Boolean Functions (continued)

x_1	x_2	$f(x_1, x_2)$
0	0	1
0	1	1
1	0	0
1	1	1

The corresponding boolean expression:

$$(\neg x_1 \wedge \neg x_2) \vee (\neg x_1 \wedge x_2) \vee (x_1 \wedge x_2).$$

Boolean Functions (concluded)

Corollary 15 Every n-ary boolean function can be expressed by a boolean expression of size $O(n2^n)$.

- In general, the exponential length in n cannot be avoided (p. 209).
- The size of the truth table is also $O(n2^n)$.

^aThere are 2^n *n*-bit strings.

Boolean Circuits

- A boolean circuit is a graph C whose nodes are the gates.
- There are no cycles in C.
- All nodes have indegree (number of incoming edges) equal to 0, 1, or 2.
- Each gate has a **sort** from

$$\{ \text{true}, \text{false}, \lor, \land, \neg, x_1, x_2, \dots \}.$$

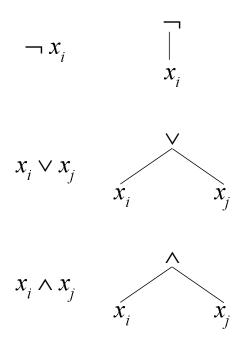
- There are n + 5 sorts.

Boolean Circuits (concluded)

- Gates with a sort from $\{ \text{true}, \text{false}, x_1, x_2, \dots \}$ are the **inputs** of C and have an indegree of zero.
- The **output gate**(s) has no outgoing edges.
- A boolean circuit computes a boolean function.
- A boolean function can be realized by *infinitely many* equivalent boolean circuits.

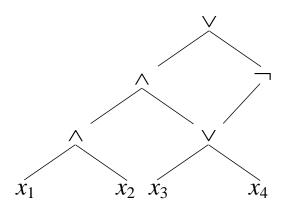
Boolean Circuits and Expressions

- They are equivalent representations.
- One can construct one from the other:



An Example

$$((x_1 \land x_2) \land (x_3 \lor x_4)) \lor (\neg (x_3 \lor x_4))$$



• Circuits are more economical because of the possibility of "sharing."

CIRCUIT SAT and CIRCUIT VALUE

CIRCUIT SAT: Given a circuit, is there a truth assignment such that the circuit outputs true?

• CIRCUIT SAT \in NP: Guess a truth assignment and then evaluate the circuit.^a

CIRCUIT VALUE: The same as CIRCUIT SAT except that the circuit has no variable gates.

• CIRCUIT VALUE \in P: Evaluate the circuit from the input gates gradually towards the output gate.

^aEssentially the same algorithm as the one on p. 119.

Some^a Boolean Functions Need Exponential Circuits^b

Theorem 16 For any $n \ge 2$, there is an n-ary boolean function f such that no boolean circuits with $2^n/(2n)$ or fewer gates can compute it.

- There are 2^{2^n} different *n*-ary boolean functions (p. 199).
- So it suffices to prove that the number of boolean circuits with $2^n/(2n)$ or fewer gates is less than 2^{2^n} .

^aCan be strengthened to "Almost all."

^bRiordan & Shannon (1942); Shannon (1949).

The Proof (concluded)

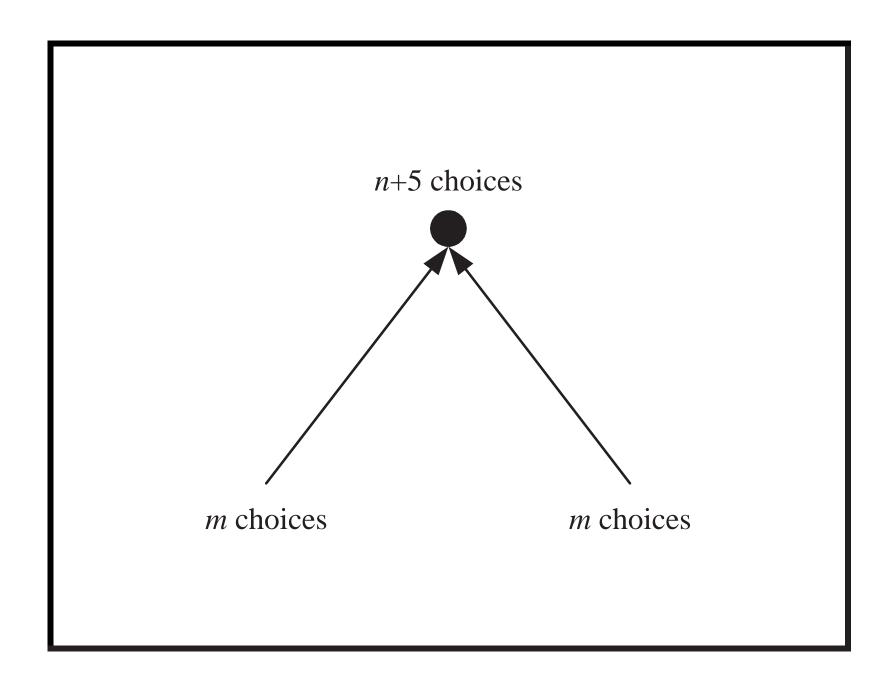
- There are at most $((n+5) \times m^2)^m$ boolean circuits with m or fewer gates (see next page).
- But $((n+5) \times m^2)^m < 2^{2^n}$ when $m = 2^n/(2n)$:

$$m \log_2((n+5) \times m^2)$$

$$= 2^n \left(1 - \frac{\log_2 \frac{4n^2}{n+5}}{2n}\right)$$

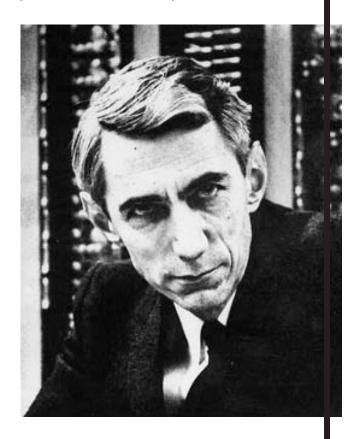
$$< 2^n$$

for $n \geq 2$.



Claude Elwood Shannon (1916–2001)

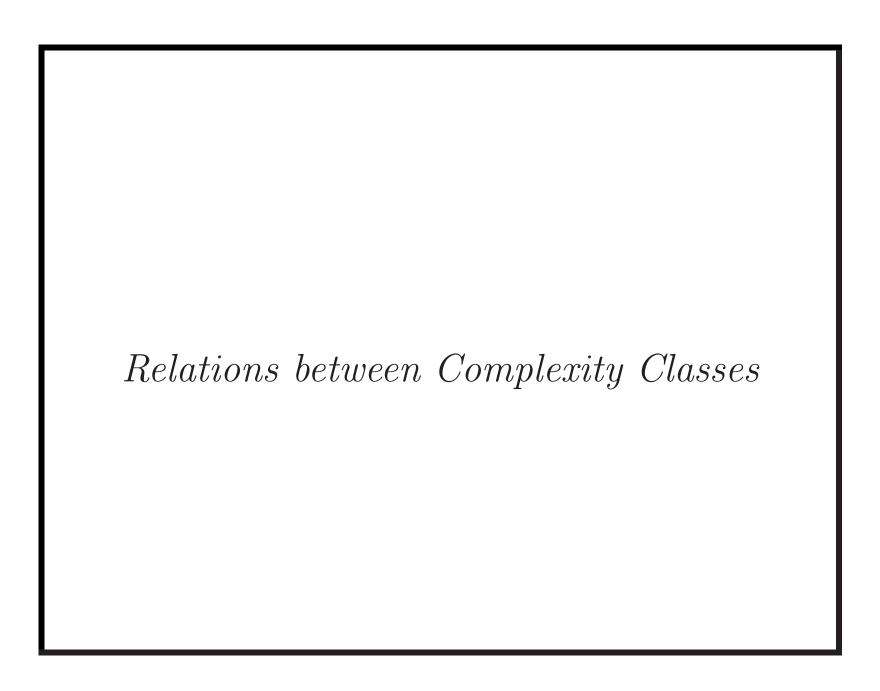
Howard Gardner (1987), "[Shannon's master's thesis is] possibly the most important, and also the most famous, master's thesis of the century."



Comments

- The lower bound $2^n/(2n)$ is rather tight because an upper bound is $n2^n$ (p. 201).
- The proof counted the number of circuits.
 - Some circuits may not be valid at all.
 - Different circuits may also compute the same function.
- Both are fine because we only need an upper bound on the number of circuits.
- We do not need to consider the *outgoing* edges because they have been counted as incoming edges.^a

^aIf you prove it by considering outgoing edges, the bound will not be good. (Try it!)



It is, I own, not uncommon to be wrong in theory and right in practice.

— Edmund Burke (1729–1797),

A Philosophical Enquiry into the Origin of Our Ideas of the Sublime and Beautiful (1757)

The problem with QE is it works in practice, but it doesn't work in theory.

— Ben Bernanke (2014)

Proper (Complexity) Functions

- We say that $f : \mathbb{N} \to \mathbb{N}$ is a **proper (complexity)** function if the following hold:
 - -f is nondecreasing.
 - There is a k-string TM M_f such that $M_f(x) = \sqcap^{f(|x|)}$ for any x.^a
 - M_f halts after O(|x| + f(|x|)) steps.
 - $-M_f$ uses O(f(|x|)) space besides its input x.
- M_f 's behavior depends only on |x| not x's contents.
- M_f 's running time is bounded by f(n).

^aThe textbook calls " \square " the quasi-blank symbol. The use of $M_f(x)$ will become clear in Proposition 17 (p. 219).

Examples of Proper Functions

- Most "reasonable" functions are proper: c, $\lceil \log n \rceil$, polynomials of n, 2^n , \sqrt{n} , n!, etc.
- If f and g are proper, then so are f + g, fg, and 2^g .
- Nonproper functions when serving as the time bounds for complexity classes spoil "theory building."
 - For example, $TIME(f(n)) = TIME(2^{f(n)})$ for some recursive function f (the **gap theorem**).^b
- Only proper functions f will be used in TIME(f(n)), SPACE(f(n)), NTIME(f(n)), and NSPACE(f(n)).

^aFor f(g(n)), we need to add $f(n) \ge n$.

^bTrakhtenbrot (1964); Borodin (1972). Theorem 7.3 on p. 145 of the textbook proves it.

Precise Turing Machines

- A TM M is **precise** if there are functions f and g such that for every $n \in \mathbb{N}$, for every x of length n, and for every computation path of M,
 - M halts after precisely f(n) steps,^a and
 - All of its strings are of length precisely g(n) at halting.^b
 - * Recall that if M is a TM with input and output, we exclude the first and last strings.
- M can be deterministic or nondeterministic.

^aFully time constructible (Hopcroft & Ullman, 1979).

^bFully space constructible (Hopcroft & Ullman, 1979).

Precise TMs Are General

Proposition 17 Suppose a TM^a M decides L within time (space) f(n), where f is proper. Then there is a precise TM M' which decides L in time O(n + f(n)) (space O(f(n)), respectively).

- M' on input x first simulates the TM M_f associated with the proper function f on x.
- M_f 's output, of length f(|x|), will serve as a "yardstick" or an "alarm clock."

^aIt can be deterministic or nondeterministic.

The Proof (continued)

- Then M' simulates M(x).
- M'(x) halts when and only when the alarm clock runs out—even if M halts earlier.
- If f is a time bound:
 - The simulation of each step of M on x is matched by advancing the cursor on the "clock" string.
 - Because M' stops at the moment the "clock" string is exhausted—even if M(x) stops earlier, it is precise.
 - The time bound is therefore O(|x| + f(|x|)).

The Proof (concluded)

- If f is a space bound (sketch):
 - M' simulates M on the quasi-blanks of M_f 's output string.^a
 - The total space, not counting the input string, is O(f(n)).
 - But we still need a way to make sure there is no infinite loop.^b

^aThis is to make sure the space bound is precise.

^bSee the proof of Theorem 24 (p. 237).

Important Complexity Classes

- We write expressions like n^k to denote the union of all complexity classes, one for each value of k.
- For example,

$$NTIME(n^k) \stackrel{\Delta}{=} \bigcup_{j>0} NTIME(n^j).$$

Important Complexity Classes (concluded)

$$P \triangleq TIME(n^k),$$

$$NP \triangleq NTIME(n^k),$$

$$PSPACE \triangleq SPACE(n^k),$$

$$NPSPACE \triangleq NSPACE(n^k),$$

$$E \triangleq TIME(2^{kn}),$$

$$EXP \triangleq TIME(2^{n^k}),$$

$$NEXP \triangleq NTIME(2^{n^k}),$$

$$L \triangleq SPACE(\log n),$$

$$NL \triangleq NSPACE(\log n).$$

Complements of Nondeterministic Classes

- Recall that the complement of L, or \bar{L} , is the language $\Sigma^* L$.
 - SAT COMPLEMENT is the set of unsatisfiable boolean expressions.
- R, RE, and coRE are distinct (p. 158).
 - Again, coRE contains the complements of *languages* in RE, *not* languages that are not in RE.
- How about coC when C is a complexity class?

The Co-Classes

• For any complexity class C, coC denotes the class

$$\{L: \bar{L} \in \mathcal{C}\}.$$

- Clearly, if C is a deterministic time or space complexity class, then $C = \cos C$.
 - They are said to be **closed under complement**.
 - A deterministic TM deciding L can be converted to one that decides \bar{L} within the same time or space bound by reversing the "yes" and "no" states.^a
- Whether *non*deterministic classes for time are closed under complement is not known (see p. 111).

^aSee p. 155.

Comments

• As

$$coC = \{ L : \bar{L} \in C \},$$

 $L \in \mathcal{C}$ if and only if $\bar{L} \in \text{co}\mathcal{C}$.

- But it is not true that $L \in \mathcal{C}$ if and only if $L \notin \text{co}\mathcal{C}$.
 - $-\cos\mathcal{C}$ is not defined as $\bar{\mathcal{C}}$.
- For example, suppose $C = \{\{2, 4, 6, 8, 10, \dots\}, \dots\}$.
- Then $coC = \{\{1, 3, 5, 7, 9, \dots\}, \dots\}.$
- But $\bar{\mathcal{C}} = 2^{\{1,2,3,\dots\}} \{\{2,4,6,8,10,\dots\},\dots\}.$

The Quantified Halting Problem

- Let $f(n) \ge n$ be proper.
- Define

$$H_f \stackrel{\Delta}{=} \{ M; x : M \text{ accepts input } x \}$$
 after at most $f(|x|)$ steps $\}$,

where M is deterministic.

• Assume the input is binary as usual.

$H_f \in \mathsf{TIME}(f(n)^3)$

- For each input M; x, we simulate M on x with an alarm clock of length f(|x|).
 - Use the single-string simulator (p. 83), the universal TM (p. 135), and the linear speedup theorem (p. 93).
 - Our simulator accepts M; x if and only if M accepts x before the alarm clock runs out.
- From p. 90, the total running time is $O(\ell_M k_M^2 f(n)^2)$, where ℓ_M is the length to encode each symbol or state of M and k_M is M's number of strings.
- As $\ell_M k_M^2 = O(n)$, the running time is $O(f(n)^3)$, where the constant is independent of M.

$$H_f \not\in \mathsf{TIME}(f(\lfloor n/2 \rfloor))$$

- Suppose TM M_{H_f} decides H_f in time $f(\lfloor n/2 \rfloor)$.
- Consider machine:

• D_f on input M runs in the same time as M_{H_f} on input M; M, i.e., in time $f(\lfloor \frac{2n+1}{2} \rfloor) = f(n)$, where n = |M|.

^aA student pointed out on October 6, 2004, that this estimation forgets to include the time to write down M; M.

The Proof (concluded)

• First,

$$D_f(D_f) = \text{"yes"}$$

- $\Rightarrow D_f; D_f \notin H_f$
- \Rightarrow D_f does not accept D_f within time $f(|D_f|)$
- $\Rightarrow D_f(D_f) =$ "no" as $D_f(D_f)$ runs in time $f(|D_f|)$,

a contradiction

• Similarly, $D_f(D_f) = \text{"no"} \Rightarrow D_f(D_f) = \text{"yes."}$

The Time Hierarchy Theorem

Theorem 18 If $f(n) \ge n$ is proper, then

$$TIME(f(n)) \subseteq TIME(f(2n+1)^3).$$

• The quantified halting problem makes it so.

Corollary 19 $P \subseteq E$.

- $P \subseteq TIME(2^n)$ because $poly(n) \le 2^n$ for n large enough.
- But by Theorem 18,

TIME
$$(2^n) \subsetneq \text{TIME} ((2^{2n+1})^3) \subseteq E$$
.

• So $P \subsetneq E$.

The Space Hierarchy Theorem

Theorem 20 (Hennie & Stearns, 1966) If f(n) is proper, then

 $SPACE(f(n)) \subseteq SPACE(f(n) \log f(n)).$

Corollary 21 $L \subseteq PSPACE$.

Nondeterministic Time Hierarchy Theorems

Theorem 22 (Cook, 1973) $NTIME(n^r) \subseteq NTIME(n^s)$ whenever $1 \le r < s$.

Theorem 23 (Seiferas, Fischer, & Meyer, 1978) If $T_1(n)$ and $T_2(n)$ are proper, then

$$NTIME(T_1(n)) \subsetneq NTIME(T_2(n))$$

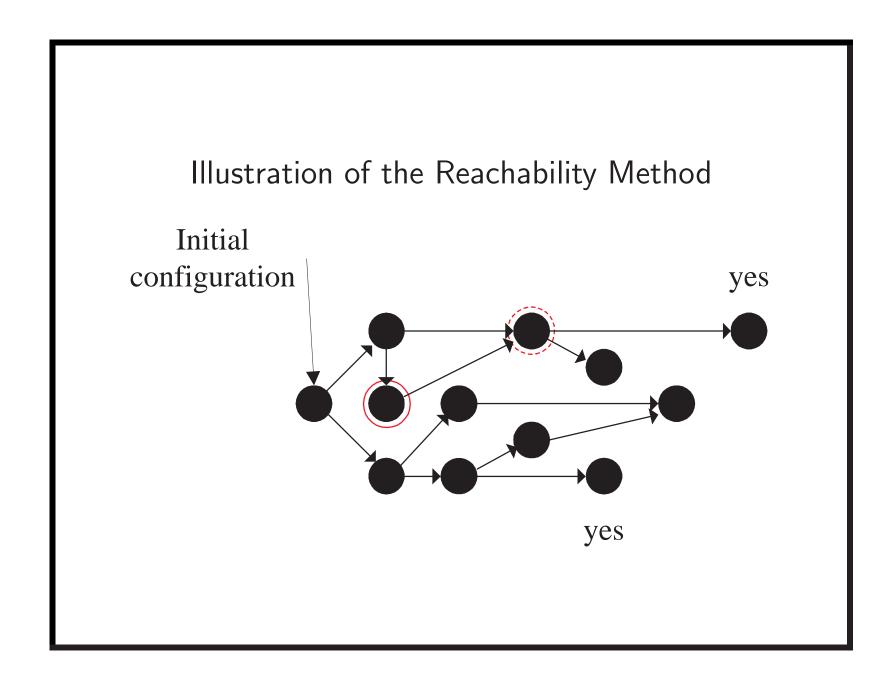
whenever $T_1(n+1) = o(T_2(n))$.

The Reachability Method

- The computation of a time-bounded TM can be represented by a directed graph.
- The TM's configurations constitute the nodes.
- There is a directed edge from node x to node y if x yields y in one step.
- The start node representing the initial configuration has zero in-degree.

The Reachability Method (concluded)

- When the TM is nondeterministic, a node may have an out-degree greater than one.
 - The graph is the same as the computation tree earlier.
 - But identical configurations are merged into one node.
- So M accepts the input if and only if there is a path from the start node to a node with a "yes" state.
- It is the reachability problem.



Relations between Complexity Classes

Theorem 24 Suppose f(n) is proper. Then

- 1. $SPACE(f(n)) \subseteq NSPACE(f(n)),$ $TIME(f(n)) \subseteq NTIME(f(n)).$
- 2. NTIME $(f(n)) \subseteq SPACE(f(n))$.
- 3. NSPACE $(f(n)) \subseteq \text{TIME}(k^{\log n + f(n)})$.
- Proof of 2:
 - Explore the computation *tree* of the NTM for "yes."
 - Specifically, generate an f(n)-bit sequence denoting the nondeterministic choices over f(n) steps.

Proof of Theorem 24(2)

- (continued)
 - Simulate the NTM based on the choices.
 - Recycle the space and repeat the above steps.
 - Halt with "yes" when a "yes" is encountered or "no" if the tree is exhausted.
 - Each path simulation consumes at most O(f(n)) space because it takes O(f(n)) time.
 - The total space is O(f(n)) because space is recycled.

Proof of Theorem 24(3)

• Let k-string NTM

$$M = (K, \Sigma, \Delta, s)$$

with input and output decide $L \in NSPACE(f(n))$.

- Use the reachability method on the configuration graph of M on input x of length n.
- A configuration is a (2k+1)-tuple

$$(q, w_1, u_1, w_2, u_2, \dots, w_k, u_k).$$

Proof of Theorem 24(3) (continued)

• We only care about

$$(q, i, w_2, u_2, \dots, w_{k-1}, u_{k-1}),$$

where i is an integer between 0 and n for the position of the first cursor.

• The number of configurations is therefore at most

$$|K| \times (n+1) \times |\Sigma|^{2(k-2)f(n)} = O(c_1^{\log n + f(n)})$$
 (2)

for some $c_1 > 1$, which depends on M.

• Add edges to the configuration graph based on M's transition function.

Proof of Theorem 24(3) (concluded)

- $x \in L \Leftrightarrow$ there is a path in the configuration graph from the initial configuration to a configuration of the form ("yes", i, \ldots).^a
- This is REACHABILITY on a graph with $O(c_1^{\log n + f(n)})$ nodes.
- It is in TIME $(c^{\log n + f(n)})$ for some c > 1 because REACHABILITY \in TIME (n^j) for some j and

$$\left[c_1^{\log n + f(n)}\right]^{j} = (c_1^{j})^{\log n + f(n)}.$$

^aThere may be many of them.

Space-Bounded Computation and Proper Functions

- In the definition of *space-bounded* computations earlier (p. 109), the TMs are not required to halt at all.
- When the space is bounded by a proper function f, computations can be assumed to halt:
 - Run the TM associated with f to produce a quasi-blank output of length f(n) first.
 - The space-bounded computation must repeat a configuration if it runs for more than $c^{\log n + f(n)}$ steps for some c > 1.^a

^aSee Eq. (2) on p. 240.

Space-Bounded Computation and Proper Functions (concluded)

- (continued)
 - So an infinite loop occurs during simulation for a computation path longer than $c^{\log n + f(n)}$ steps.
 - Hence we only simulate up to $c^{\log n + f(n)}$ time steps per computation path.

A Grand Chain of Inclusions^a

• It is an easy application of Theorem 24 (p. 237) that

$$L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP$$
.

- By Corollary 21 (p. 232), we know $L \subseteq PSPACE$.
- So the chain must break somewhere between L and EXP.
- It is suspected that all four inclusions are proper.
- But there are no proofs yet.

^aWith input from Mr. Chin-Luei Chang (B89902053, R93922004, D95922007) on October 22, 2004.

What Is Wrong with the Proof?^a

• By Theorem 24(2) (p. 237),

$$NL \subseteq TIME\left(k^{O(\log n)}\right) \subseteq TIME\left(n^{c_1}\right)$$

for some $c_1 > 0$.

• By Theorem 18 (p. 231),

TIME
$$(n^{c_1}) \subseteq \text{TIME } (n^{c_2}) \subseteq P$$

for some $c_2 > c_1$.

• So

$$NL \neq P$$
.

^aContributed by Mr. Yuan-Fu Shao (R02922083) on November 11, 2014.

What Is Wrong with the Proof? (concluded)

• Recall from p. 222 that $\mathrm{TIME}(k^{O(\log n)})$ is a shorthand for

$$\bigcup_{j>0} \text{TIME}\left(j^{O(\log n)}\right).$$

• So the correct proof runs more like

$$NL \subseteq \bigcup_{j>0} TIME \left(j^{O(\log n)}\right) \subseteq \bigcup_{c>0} TIME \left(n^c\right) = P.$$

• And

$$NL \neq P$$

no longer follows.

Nondeterministic and Deterministic Space

• By Theorem 6 (p. 116),

$$NTIME(f(n)) \subseteq TIME(c^{f(n)}),$$

an exponential gap.

- There is no proof yet that the exponential gap is inherent.
- How about NSPACE vs. SPACE?
- Surprisingly, the relation is only quadratic—a polynomial—by Savitch's theorem.

Savitch's Theorem

Theorem 25 (Savitch, 1970)

REACHABILITY $\in SPACE(\log^2 n)$.

- Let G(V, E) be a graph with n nodes.
- For $i \geq 0$, let

mean there is a path from node x to node y of length at most 2^i .

• There is a path from x to y if and only if

$$PATH(x, y, \lceil \log n \rceil)$$

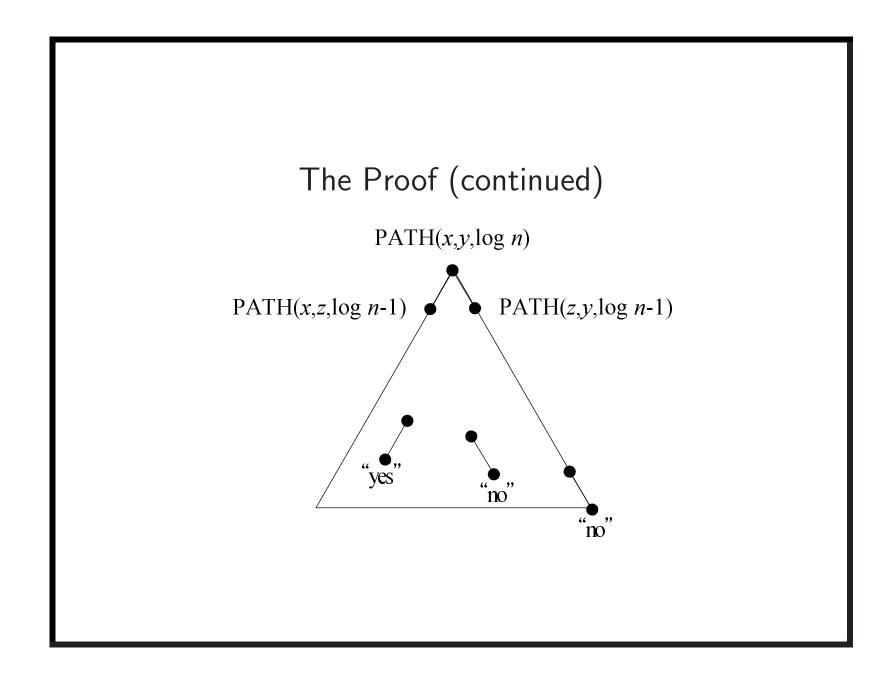
holds.

The Proof (continued)

- For i > 0, PATH(x, y, i) if and only if there exists a z such that PATH(x, z, i 1) and PATH(z, y, i 1).
- For PATH(x, y, 0), check the input graph or if x = y.
- Compute PATH $(x, y, \lceil \log n \rceil)$ with a depth-first search on a graph with nodes (x, y, i)s (see next page).^a
- Like stacks in recursive calls, we keep only the current path's (x, y, i)s.
- The space requirement is proportional to the depth of the tree ($\lceil \log n \rceil$) times the size of the items stored at each node.

^aContributed by Mr. Chuan-Yao Tan on October 11, 2011.

```
The Proof (continued): Algorithm for PATH(x, y, i)
1: if i = 0 then
   if x = y or (x, y) \in E then
   return true;
   else
5: return false;
   end if
7: else
    for z = 1, 2, ..., n do
   if PATH(x, z, i - 1) and PATH(z, y, i - 1) then
9:
         return true;
10:
   end if
11:
   end for
12:
    return false;
13:
14: end if
```



The Proof (concluded)

- Depth is $\lceil \log n \rceil$, and each node (x, y, i) needs space $O(\log n)$.
- The total space is $O(\log^2 n)$.