Graph Reachability

- Let $G(V, E)$ be a directed graph (digraph).
- Reachability asks, given nodes a and b, does G contain a path from a to b ?
- Can be easily solved in polynomial time by breadth-first search.
- How about its nondeterministic space complexity?

The First Try: NSPACE $(n \log n)$

1: Determine the number of nodes m; \{Note $m \leq n$.\}
2: $x_{1}:=a ;$ Assume $a \neq b$.\}
3: for $i=2,3, \ldots, m$ do
4: Guess $x_{i} \in\left\{v_{1}, v_{2}, \ldots, v_{m}\right\} ;$ \{The i th node. $\}$
end for
6: for $i=2,3, \ldots, m$ do
7: if $\left(x_{i-1}, x_{i}\right) \notin E$ then
8: "no";
9: end if
10: \quad if $x_{i}=b$ then
11: "yes";
12: end if
13: end for
14: "no";

In Fact, REACHABILITY $\in \operatorname{NSPACE}(\log n)$

1: Determine the number of nodes m; \{Note $m \leq n$.\}
2: $x:=a$;
3: for $i=2,3, \ldots, m$ do
4: Guess $y \in\left\{v_{1}, v_{2}, \ldots, v_{m}\right\} ;\{$ The next node. $\}$
5: if $(x, y) \notin E$ then
6: "no";
7: end if
8: \quad if $y=b$ then
9: "yes";
10: end if
11: $x:=y$;
12: end for
13: "no";

Space Analysis

- Variables m, i, x, and y each require $O(\log n)$ bits.
- Testing $(x, y) \in E$ is accomplished by consulting the input string with counters of $O(\log n)$ bits long.
- Hence

$$
\text { REACHABILITY } \in \text { NSPACE }(\log n) .
$$

- REACHABILITY with more than one terminal node also has the same complexity.
- In fact, REACHABILITY for undirected graphs is in SPACE $(\log n) .{ }^{\text {a }}$
- REACHABILITY $\in \mathrm{P}$ (see, e.g., p. 237).

[^0]
Undecidability

He [Turing] invented the idea of software, essentially[.]

It's software that's really
the important invention.

- Freeman Dyson (2015)

Universal Turing Machine ${ }^{\text {a }}$

- A universal Turing machine U interprets the input as the description of a TM M concatenated with the description of an input to that machine, $x .{ }^{\text {b }}$
- Both M and x are over the alphabet of U.
- U simulates M on x so that

$$
U(M ; x)=M(x) .
$$

- U is like a modern computer, which executes any valid machine code, or a Java virtual machine, which executes any valid bytecode.
${ }^{\text {a }}$ Turing (1936).
${ }^{\mathrm{b}}$ See pp. $57-58$ of the textbook.

The Halting Problem

- Undecidable problems are problems that have no algorithms.
- Equivalently, they are languages that are not recursive.
- We now define a concrete undecidable problem, the halting problem:

$$
H \triangleq\{M ; x: M(x) \neq \nearrow\} .
$$

- Does M halt on input x ?
- H is called the halting set.

H Is Recursively Enumerable

- Use the universal TM U to simulate M on x.
- When M is about to halt, U enters a "yes" state.
- If $M(x)$ diverges, so does U.
- This TM accepts H.

H Is Not Recursive ${ }^{\text {a }}$

- Suppose H is recursive.
- Then there is a TM M_{H} that decides H.
- Consider the program $D(M)$ that calls M_{H} :

1: if $M_{H}(M ; M)=$ "yes" then
2: $\quad \nearrow$; \{Writing an infinite loop is easy.\}
3: else
4: "yes";
5: end if
aTuring (1936).

H Is Not Recursive (concluded)

- Consider $D(D)$:
$-D(D)=\nearrow \Rightarrow M_{H}(D ; D)=" y e s " \Rightarrow D ; D \in H \Rightarrow$ $D(D) \neq \nearrow$, a contradiction.
- $D(D)=$ "yes" $\Rightarrow M_{H}(D ; D)="$ no" $\Rightarrow D ; D \notin H \Rightarrow$ $D(D)=\nearrow$, a contradiction.

Comments

- Two levels of interpretations of $M:^{\text {a }}$
- A sequence of 0s and 1s (data).
- An encoding of instructions (programs).
- There are no paradoxes with $D(D)$.
- Concepts should be familiar to computer scientists.
- Feed a C compiler to a C compiler, a Lisp interpreter to a Lisp interpreter, a sorting program to a sorting program, etc.

[^1]It seemed unworthy of a grown man to spend his time on such trivialities, but what was I to do? [...] The whole of the rest of my life might be consumed in looking at that blank sheet of paper. - Bertrand Russell (1872-1970), Autobiography, Vol. I (1967)

Self-Loop Paradoxes ${ }^{\text {a }}$

Russell's Paradox (1901): Consider $R=\{A: A \notin A\}$.

- If $R \in R$, then $R \notin R$ by definition.
- If $R \notin R$, then $R \in R$ also by definition.
- In either case, we have a "contradiction." b

Eubulides: The Cretan says, "All Cretans are liars."
Liar's Paradox: "This sentence is false."

[^2]
Self-Loop Paradoxes (continued)

Hypochondriac: a patient with imaginary symptoms and ailments. ${ }^{\text {a }}$

Sharon Stone in The Specialist (1994): "I'm not a woman you can trust."

Numbers 12:3, Old Testament: "Moses was the most humble person in all the world $[\cdots]$ " (attributed to Moses).

A restaurant in Boston: No Name Restaurant.
${ }^{\text {a }}$ Like Gödel and the pianist Glenn Gould (1932-1982).

Self-Loop Paradoxes (concluded)

The Egyptian Book of the Dead: "ye live in me and I would live in you." a

Jerome K. Jerome, Three Men in a Boat (1887): "How could I wake you, when you didn't wake me?"

Winston Churchill (January 23, 1948): "For my part, I consider that it will be found much better by all parties to leave the past to history, especially as I propose to write that history myself."

Nicola Lacey, A Life of H. L. A. Hart (2004): "Top Secret [MI5] Documents: Burn before Reading!"

[^3]
Bertrand Russell ${ }^{\text {a }}$ (1872-1970)

Norbort Wiener (1953),
"It is impossible to describe Bertrand Russell except by saying that he looks like the Mad Hatter."

Karl Popper (1974), "perhaps the greatest philosopher since Kant."

${ }^{\text {a }}$ Nobel Prize in Literature (1950).

Reductions in Proving Undecidability

- Suppose we are asked to prove that L is undecidable.
- Suppose L^{\prime} (such as H) is known to be undecidable.
- Find a computable transformation R (called reduction ${ }^{\text {a }}$) from L^{\prime} to L such that ${ }^{\text {b }}$

$$
\forall x\left\{x \in L^{\prime} \text { if and only if } R(x) \in L\right\} .
$$

- Now we can answer " $x \in L^{\prime}$?" for any x by answering " $R(x) \in L$?" because it has the same answer.
- L^{\prime} is said to be reduced to L.

[^4]

Reductions in Proving Undecidability (concluded)

- If L were decidable, " $R(x) \in L$?" becomes computable and we have an algorithm to decide L^{\prime}, a contradiction!
- So L must be undecidable.

Theorem 8 Suppose language L_{1} can be reduced to language L_{2}. If L_{1} is undecidable, then L_{2} is undecidable.

Special Cases and Reduction

- Suppose L_{1} can be reduced to L_{2}. ${ }^{\text {a }}$
- As the reduction R maps members of L_{1} to a subset of $L_{2},{ }^{\mathrm{b}}$ we may say L_{1} is a "special case" of $L_{2} .{ }^{\mathrm{c}}$
- That is one way to understand the use of the somewhat confusing term "reduction."
${ }^{\text {a }}$ Intuitively, L_{2} can be used to solve L_{1}.
${ }^{\mathrm{b}}$ Because R may not be onto.
${ }^{\mathrm{c}}$ Contributed by Ms. Mei-Chih Chang (D03922022) and Mr. Kai-Yuan Hou (B99201038, R03922014) on October 13, 2015.

Subsets and Decidability

- Suppose L_{1} is undecidable and $L_{1} \subseteq L_{2}$.
- Is L_{2} undecidable? ${ }^{\text {a }}$
- It depends.
- When $L_{2}=\Sigma^{*}, L_{2}$ is decidable: Just answer "yes."
- If $L_{2}-L_{1}$ is decidable, then L_{2} is undecidable.
- Clearly,

$$
x \in L_{1} \text { if and only if } x \in L_{2} \text { and } x \notin L_{2}-L_{1} .
$$

- Therefore, if L_{2} were decidable, then L_{1} would be.

[^5]
Subsets and Decidability (concluded)

- Suppose L_{2} is decidable and $L_{1} \subseteq L_{2}$.
- Is L_{1} decidable?
- It depends again.
- When $L_{1}=\emptyset, L_{1}$ is decidable: Just answer "no."
- But if $L_{2}=\Sigma^{*}$ and $L_{1}=H$, then L_{1} is undecidable.

The Universal Halting Problem

- The universal halting problem:

$$
H^{*} \triangleq\{M: M \text { halts on all inputs }\} .
$$

- It is also called the totality problem.

H^{*} Is Not Recursive ${ }^{\text {a }}$

- We will reduce H to H^{*}.
- Given the question " $M ; x \in H$?", construct the following machine (this is the reduction): ${ }^{\text {b }}$

$$
M_{x}(y)\{M(x) ;\}
$$

- M halts on x if and only if M_{x} halts on all inputs.
- In other words, $M ; x \in H$ if and only if $M_{x} \in H^{*}$.
- So if H^{*} were recursive (recall the box for L on p. 147), H would be recursive, a contradiction.

[^6]
More Undecidability

- $\{M ; x$: there is a y such that $M(x)=y\}$.
- $\{M ; x$:
the computation M on input x uses all states of M \}.
- $\{M ; x ; y: M(x)=y\}$.

Complements of Recursive Languages

The complement of L, denoted by \bar{L}, is the language $\Sigma^{*}-L$.

Lemma 9 If L is recursive, then so is \bar{L}.

- Let L be decided by M, which is deterministic.
- Swap the "yes" state and the "no" state of M.
- The new machine decides \bar{L}. ${ }^{\text {a }}$
${ }^{\text {a }}$ Recall p. 111.

Recursive and Recursively Enumerable Languages

Lemma 10 (Kleene's theorem; Post, 1944) L is
recursive if and only if both L and \bar{L} are recursively enumerable.

- Suppose both L and \bar{L} are recursively enumerable, accepted by M and \bar{M}, respectively.
- Simulate M and M in an interleaved fashion.
- If M accepts, then halt on state "yes" because $x \in L$.
- If \bar{M} accepts, then halt on state "no" because $x \notin L$. ${ }^{\text {a }}$
- The other direction is trivial.

[^7]
A Very Useful Corollary and Its Consequences

Corollary $11 L$ is recursively enumerable but not recursive, then \bar{L} is not recursively enumerable.

- Suppose \bar{L} is recursively enumerable.
- Then both L and \bar{L} are recursively enumerable.
- By Lemma 10 (p. 156), L is recursive, a contradiction.

Corollary $12 \bar{H}$ is not recursively enumerable. ${ }^{\text {a }}$
${ }^{\text {a Recall that }} \bar{H} \triangleq\{M ; x: M(x)=\nearrow\}$.

$R, R E$, and coRE

RE: The set of all recursively enumerable languages.
coRE: The set of all languages whose complements are recursively enumerable.
\mathbf{R} : The set of all recursive languages.

- Note that coRE is not $\overline{\mathrm{RE}}$.
$-\operatorname{coRE} \triangleq\{L: \bar{L} \in \operatorname{RE}\}=\{\bar{L}: L \in \operatorname{RE}\}$.
$-\overline{\mathrm{RE}} \triangleq\{L: L \notin \mathrm{RE}\}$.

R, RE, and coRE (concluded)

- $\mathrm{R}=\mathrm{RE} \cap \operatorname{coRE}$ (p. 156).
- There exist languages in RE but not in R and not in coRE.
- Such as H (p. 137, p. 138, and p. 157).
- There are languages in coRE but not in RE.
- Such as \bar{H} (p. 157).
- There are languages in neither RE nor coRE.

H Is Complete for RE^{a}

- Let L be any recursively enumerable language.
- Assume M accepts L.
- Clearly, one can decide whether $x \in L$ by asking if $M: x \in H$.
- Hence all recursively enumerable languages are reducible to H !
- H is said to be $\mathbf{R E}$-complete.
${ }^{\text {a Post (1944). }}$

Notations

- Suppose M is a TM accepting L.
- Write $L(M)=L$.
- In particular, if $M(x)=\nearrow$ for all x, then $L(M)=\emptyset$.
- If $M(x)$ is never "yes" nor \nearrow (as required by the definition of acceptance), we also let $L(M)=\emptyset$.

Nontrivial Properties of Sets in RE

- A property of the recursively enumerable languages can be defined by the set \mathcal{C} of all the recursively enumerable languages that satisfy it.
- The property of finite recursively enumerable languages is

$$
\{L: L=L(M) \text { for a TM } M, L \text { is finite }\} .
$$

- A property is trivial if $\mathcal{C}=\mathrm{RE}$ or $\mathcal{C}=\emptyset$.
- Answer to a trivial property is always "yes" or always "no."

Nontrivial Properties of Sets in RE (concluded)

- Here is a trivial property (always yes): Does the TM accept a recursively enumerable language? ${ }^{\text {a }}$
- A property is nontrivial if $\mathcal{C} \neq \mathrm{RE}$ and $\mathcal{C} \neq \emptyset$.
- In other words, answer to a nontrivial property is "yes" for some TMs and "no" for others.
- Here is a nontrivial property: Does the TM accept an empty language? ${ }^{\text {b }}$
- Up to now, all nontrivial properties (of recursively enumerable languages) are undecidable (pp. 153-154).
- In fact, Rice's theorem confirms that.

$$
\begin{aligned}
& { }^{\mathrm{a}} \mathrm{Or}, L(M) \in \mathrm{RE} ? \\
& { }^{\mathrm{b}} \mathrm{Or}, L(M)=\emptyset ?
\end{aligned}
$$

Rice's Theorem

Theorem 13 (Rice, 1956) Suppose $\mathcal{C} \neq \emptyset$ is a proper subset of the set of all recursively enumerable languages. Then the question " $L(M) \in \mathcal{C}$?" is undecidable.

- Note that the input is a TM program M.
- Assume that $\emptyset \notin \mathcal{C}$ (otherwise, repeat the proof for the class of all recursively enumerable languages not in \mathcal{C}).
- Let $L \in \mathcal{C}$ be accepted by TM M_{L} (recall that $\left.\mathcal{C} \neq \emptyset\right)$.
- Let M_{H} accept the undecidable language H.
- M_{H} exists (p. 137).

The Proof (continued)

- Construct machine $M_{x}(y)$:

$$
\text { if } M_{H}(x)=\text { "yes" then } M_{L}(y) \text { else }
$$

- On the next page, we will prove that

$$
\begin{equation*}
x \in H \text { if and only if } L\left(M_{x}\right) \in \mathcal{C} . \tag{1}
\end{equation*}
$$

- As a result, the halting problem is reduced to deciding $L\left(M_{x}\right) \in \mathcal{C}$.
- Hence $L\left(M_{x}\right) \in \mathcal{C}$ must be undecidable, and we are done.

The Proof (concluded)

- Suppose $x \in H$, i.e., $M_{H}(x)=$ "yes."
- $M_{x}(y)$ determines this, and it either accepts y or never halts, depending on whether $y \in L$.
- Hence $L\left(M_{x}\right)=L \in \mathcal{C}$.
- Suppose $M_{H}(x)=\nearrow$.
- M_{x} never halts.
- $L\left(M_{x}\right)=\emptyset \notin \mathcal{C}$.

Comments

- \mathcal{C} must be arbitrary.
- The following $M_{x}(y)$, though similar, will not work:

$$
\text { if } M_{L}(y)=\text { "yes" then } M_{H}(x) \text { else } \nearrow .
$$

- Rice's theorem is about properties of the languages accepted by Turing machines.
- It then says any nontrivial property is undecidable.
- Rice's theorem is not about Turing machines themselves, such as "Does a TM contain 5 states?"

Consequences of Rice's Theorem

Corollary 14 The following properties of recursively enumerative sets are undecidable.

- Emptiness.
- Finiteness.
- Recursiveness.
- Σ^{*}.
- Regularity. ${ }^{\text {a }}$
- Context-freedom. ${ }^{\text {b }}$
${ }^{a}$ Is it a regular language?
${ }^{\mathrm{b}}$ Is it a context-free language?

Undecidability in Logic and Mathematics

- First-order logic is undecidable (answer to Hilbert's (1928) Entscheidungsproblem). ${ }^{\text {a }}$
- Natural numbers with addition and multiplication is undecidable. ${ }^{\text {b }}$
- Rational numbers with addition and multiplication is undecidable. ${ }^{\text {c }}$
${ }^{\mathrm{a}}$ Church (1936).
${ }^{\text {b }}$ Rosser (1937).
${ }^{c}$ Robinson (1948).

Undecidability in Logic and Mathematics (concluded)

- Natural numbers with addition and equality is decidable and complete. ${ }^{\text {a }}$
- Elementary theory of groups is undecidable. ${ }^{\text {b }}$

[^8]
Julia Hall Bowman Robinson (1919-1985)

Alfred Tarski (1901-1983)

Boolean Logic

Both of us had said the very same thing. Did we both speak the truth -or one of us did -or neither? - Joseph Conrad (1857-1924), Lord Jim (1900)

Boolean Logic ${ }^{\text {a }}$

Boolean variables: x_{1}, x_{2}, \ldots.
Literals: $x_{i}, \neg x_{i}$.
Boolean connectives: \vee, \wedge, \neg.
Boolean expressions: Boolean variables, $\neg \phi$ (negation), $\phi_{1} \vee \phi_{2}$ (disjunction), $\phi_{1} \wedge \phi_{2}$ (conjunction).

- $\bigvee_{i=1}^{n} \phi_{i}$ stands for $\phi_{1} \vee \phi_{2} \vee \cdots \vee \phi_{n}$.
- $\bigwedge_{i=1}^{n} \phi_{i}$ stands for $\phi_{1} \wedge \phi_{2} \wedge \cdots \wedge \phi_{n}$.

Implications: $\phi_{1} \Rightarrow \phi_{2}$ is a shorthand for $\neg \phi_{1} \vee \phi_{2}$.
Biconditionals: $\phi_{1} \Leftrightarrow \phi_{2}$ is a shorthand for

$$
\left(\phi_{1} \Rightarrow \phi_{2}\right) \wedge\left(\phi_{2} \Rightarrow \phi_{1}\right)
$$

[^9]
Truth Assignments

- A truth assignment T is a mapping from boolean variables to truth values true and false.
- A truth assignment is appropriate to boolean expression ϕ if it defines the truth value for every variable in ϕ.
- $\left\{x_{1}=\right.$ true, $x_{2}=$ false $\}$ is appropriate to $x_{1} \vee x_{2}$.
$-\left\{x_{2}=\right.$ true,$x_{3}=$ false $\}$ is not appropriate to $x_{1} \vee x_{2}$.

Satisfaction

- $T \models \phi$ means boolean expression ϕ is true under T; in other words, T satisfies ϕ.
- ϕ_{1} and ϕ_{2} are equivalent, written

$$
\phi_{1} \equiv \phi_{2},
$$

if for any truth assignment T appropriate to both of them, $T \models \phi_{1}$ if and only if $T \models \phi_{2}$.

Truth Table ${ }^{a}$

- Suppose ϕ has n boolean variables.
- A truth table contains 2^{n} rows.
- Each row corresponds to one truth assignment of the n variables and records the truth value of ϕ under it.
- A truth table can be used to prove if two boolean expressions are equivalent.
- Just check if they give identical truth values under all appropriate truth assignments.

[^10]

A Second Truth Table

p	q	$p \vee q$
0	0	0
0	1	1
1	0	1
1	1	1

\section*{A Third Truth Table
 | p | $\neg p$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |}

Proof of Equivalency by the Truth Table:

$$
p \Rightarrow q \equiv \neg q \Rightarrow \neg p
$$

p	q	$p \Rightarrow q$	$\neg q \Rightarrow \neg p$
0	0	1	1
0	1	1	1
1	0	0	0
1	1	1	1

De Morgan's Laws ${ }^{\text {a }}$

- De Morgan's laws state that

$$
\begin{aligned}
\neg\left(\phi_{1} \wedge \phi_{2}\right) & \equiv \neg \phi_{1} \vee \neg \phi_{2}, \\
\neg\left(\phi_{1} \vee \phi_{2}\right) & \equiv \neg \phi_{1} \wedge \neg \phi_{2} .
\end{aligned}
$$

- Here is a proof of the first law:

ϕ_{1}	ϕ_{2}	$\neg\left(\phi_{1} \wedge \phi_{2}\right)$	$\neg \phi_{1} \vee \neg \phi_{2}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

${ }^{\text {a }}$ Augustus DeMorgan (1806-1871) or William of Ockham (12881348).

Conjunctive Normal Forms

- A boolean expression ϕ is in conjunctive normal form (CNF) if

$$
\phi=\bigwedge_{i=1}^{n} C_{i},
$$

where each clause C_{i} is the disjunction of zero or more literals. ${ }^{\text {a }}$

- For example,

$$
\left(x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{2} \vee x_{3}\right)
$$

- Convention: An empty CNF is satisfiable, but a CNF containing an empty clause is not.

[^11]
Disjunctive Normal Forms

- A boolean expression ϕ is in disjunctive normal form (DNF) if

$$
\phi=\bigvee_{i=1}^{n} D_{i}
$$

where each implicant ${ }^{\text {a }}$ or simply term D_{i} is the conjunction of zero or more literals.

- For example,

$$
\left(x_{1} \wedge x_{2}\right) \vee\left(x_{1} \wedge \neg x_{2}\right) \vee\left(x_{2} \wedge x_{3}\right) .
$$

[^12]
Clauses and Implicants

- The V of clauses yields a clause.
- For example,

$$
\begin{aligned}
& \left(x_{1} \vee x_{2}\right) \vee\left(x_{1} \vee \neg x_{2}\right) \vee\left(x_{2} \vee x_{3}\right) \\
= & x_{1} \vee x_{2} \vee x_{1} \vee \neg x_{2} \vee x_{2} \vee x_{3} .
\end{aligned}
$$

- The \wedge of implicants yields an implicant.
- For example,

$$
\begin{aligned}
& \left(x_{1} \wedge x_{2}\right) \wedge\left(x_{1} \wedge \neg x_{2}\right) \wedge\left(x_{2} \wedge x_{3}\right) \\
= & x_{1} \wedge x_{2} \wedge x_{1} \wedge \neg x_{2} \wedge x_{2} \wedge x_{3} .
\end{aligned}
$$

Any Expression ϕ Can Be Converted into CNFs and DNFs
$\phi=x_{j}:$

- This is trivially true.
$\phi=\neg \phi_{1}$ and a CNF is sought:
- Turn ϕ_{1} into a DNF.
- Apply de Morgan's laws to make a CNF for ϕ.
$\phi=\neg \phi_{1}$ and a DNF is sought:
- Turn ϕ_{1} into a CNF.
- Apply de Morgan's laws to make a DNF for ϕ.

Any Expression ϕ Can Be Converted into CNFs and DNFs (continued)

$\phi=\phi_{1} \vee \phi_{2}$ and a DNF is sought:

- Make ϕ_{1} and ϕ_{2} DNFs.
$\phi=\phi_{1} \vee \phi_{2}$ and a CNF is sought:
- Turn ϕ_{1} and ϕ_{2} into CNFs, ${ }^{\text {a }}$

$$
\phi_{1}=\bigwedge_{i=1}^{n_{1}} A_{i}, \quad \phi_{2}=\bigwedge_{j=1}^{n_{2}} B_{j}
$$

- Set

$$
\phi=\bigwedge_{i=1}^{n_{1}} \bigwedge_{j=1}^{n_{2}}\left(A_{i} \vee B_{j}\right)
$$

${ }^{\text {a Corrected by Mr. Chun-Jie Yang (R99922150) on November 9, } 2010 . ~}$

Any Expression ϕ Can Be Converted into CNFs and DNFs (concluded)

$\phi=\phi_{1} \wedge \phi_{2}$ and a CNF is sought:

- Make ϕ_{1} and ϕ_{2} CNFs.
$\phi=\phi_{1} \wedge \phi_{2}$ and a DNF is sought:
- Turn ϕ_{1} and ϕ_{2} into DNFs,

$$
\phi_{1}=\bigvee_{i=1}^{n_{1}} A_{i}, \quad \phi_{2}=\bigvee_{j=1}^{n_{2}} B_{j}
$$

- Set

$$
\phi=\bigvee_{i=1}^{n_{1}} \bigvee_{j=1}^{n_{2}}\left(A_{i} \wedge B_{j}\right)
$$

An Example: Turn $\neg((a \wedge y) \vee(z \vee w))$ into a DNF

$$
\begin{array}{cl}
& \neg((a \wedge y) \vee(z \vee w)) \\
\neg(\mathrm{CNF} \mathrm{\vee CNF}) & \neg(((a) \wedge(y)) \vee((z \vee w))) \\
\neg(\mathrm{CNF}) & \neg((a \vee z \vee w) \wedge(y \vee z \vee w)) \\
= & \text { de Morgan } \\
= & \neg(a \vee z \vee w) \vee \neg(y \vee z \vee w) \\
\text { de Morgan } & (\neg a \wedge \neg z \wedge \neg w) \vee(\neg y \wedge \neg z \wedge \neg w) .
\end{array}
$$

Functional Completeness

- A set of logical connectives is called functionally complete if every boolean expression is equivalent to one involving only these connectives.
- The set $\{\neg, \vee, \wedge\}$ is functionally complete.
- Every boolean expression can be turned into a CNF, which involves only \neg, \vee, and \wedge.
- The sets $\{\neg, \vee\}$ and $\{\neg, \wedge\}$ are functionally complete. ${ }^{\text {a }}$
- By the above result and de Morgan's laws.
- $\{$ NAND $\}$ and $\{$ NOR $\}$ are functionally complete. ${ }^{\text {b }}$

> aPost (1921).
${ }^{\text {b }}$ Peirce (c. 1880); Sheffer (1913).

Satisfiability

- A boolean expression ϕ is satisfiable if there is a truth assignment T appropriate to it such that $T \models \phi$.
- ϕ is valid or a tautology, ${ }^{\text {a }}$ written $\models \phi$, if $T \models \phi$ for all T appropriate to ϕ.

[^13]
Satisfiability (concluded)

- ϕ is unsatisfiable or a contradiction if ϕ is false under all appropriate truth assignments.
- Or, equivalently, if $\neg \phi$ is valid (prove it).
- ϕ is a contingency if ϕ is neither a tautology nor a contradiction.

Ludwig Wittgenstein (1889-1951)

Wittgenstein
"Whereof one cannot speak, thereof one must be silent."

SATISFIABILITY (SAT)

- The length of a boolean expression is the length of the string encoding it.
- satisfiability (sat): Given a CNF ϕ, is it satisfiable?
- Solvable in exponential time on a TM by the truth table method.
- Solvable in polynomial time on an NTM, hence in NP (p. 119).
- A most important problem in settling the "P $\xlongequal{?} \mathrm{NP}$ " problem (p. 317).

UNSATISFIABILITY (UNSAT or SAT COMPLEMENT) and VALIDITY

- UNSAT (SAT COMPLEMENT): Given a boolean expression ϕ, is it unsatisfiable?
- validity: Given a boolean expression ϕ, is it valid?
$-\phi$ is valid if and only if $\neg \phi$ is unsatisfiable.
$-\phi$ and $\neg \phi$ are basically of the same length.
- So unsat and validity have the same complexity.
- Both are solvable in exponential time on a TM by the truth table method.

Relations among sAT, UNSAT, and VALIDITY

- The negation of an unsatisfiable expression is a valid expression.
- None of the three problems-satisfiability, unsatisfiability, validity - are known to be in P.

[^0]: ${ }^{\text {a }}$ Reingold (2005).

[^1]: ${ }^{\text {a }}$ Eckert \& Mauchly (1943); von Neumann (1945); Turing (1946).

[^2]: ${ }^{\text {a}}$ E.g., Quine (1966), The Ways of Paradox and Other Essays and Hofstadter (1979), Gödel, Escher, Bach: An Eternal Golden Braid.
 ${ }^{\mathrm{b}}$ Gottlob Frege (1848-1925) to Bertrand Russell in 1902, "Your discovery of the contradiction [...] has shaken the basis on which I intended to build arithmetic."

[^3]: asee also John 14:10 and 17:21.

[^4]: ${ }^{\text {a }}$ Post (1944).
 ${ }^{\text {b }}$ Contributed by Mr. Tai-Dai Chou (J93922005) on May 19, 2005.

[^5]: ${ }^{\text {a }}$ Contributed by Ms. Mei-Chih Chang (D03922022) on October 13, 2015.

[^6]: ${ }^{\text {a }}$ Kleene (1936).
 ${ }^{\mathrm{b}}$ Simplified by Mr. Chih-Hung Hsieh (D95922003) on October 5, 2006. M_{x} ignores its input $y ; x$ is part of M_{x} 's code but not M_{x} 's input.

[^7]: ${ }^{\text {a }}$ Either M or \bar{M} (but not both) must accept the input and halt.

[^8]: ${ }^{\text {a }}$ Presburger's Master's thesis (1928), his only work in logic. The direction was suggested by Tarski. Mojz̄esz Presburger (1904-1943) died in a concentration camp during World War II.
 ${ }^{\mathrm{b}}$ Tarski (1949).

[^9]: ${ }^{\text {a }}$ George Boole (1815-1864) in 1847.

[^10]: ${ }^{\text {a }}$ Post (1921); Wittgenstein (1922). Here, 1 is used to denote true; 0 is used to denote false. This is called the standard representation (Beigel, 1993).

[^11]: ${ }^{\text {a }}$ Improved by Mr. Aufbu Huang (R95922070) on October 5, 2006.

[^12]: ${ }^{\mathrm{a}} D_{i}$ implies ϕ, thus the term.

[^13]: ${ }^{a}$ Wittgenstein (1922). Wittgenstein is one of the most important philosophers of all time. Russell (1919), "The importance of 'tautology" for a definition of mathematics was pointed out to me by my former pupil Ludwig Wittgenstein, who was working on the problem. I do not know whether he has solved it, or even whether he is alive or dead." "God has arrived," the great economist Keynes (1883-1946) said of him on January 18, 1928, "I met him on the $5: 15$ train."

