
Turing Machines with Multiple Strings

• A k-string Turing machine (TM) is a quadruple

M = (K,Σ, δ, s).

• K,Σ, s are as before.

• δ : K ×Σk → (K ∪{h, “yes”, “no”})× (Σ×{←,→,−})k.
• All strings start with a �.

• The first string contains the input.

• Decidability and acceptability are the same as before.

• When TMs compute functions, the output is the last

(kth) string.
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A 2-String TM

δ

�1000110000111001110001110���

�111110000�������������������
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palindrome Revisited

• A 2-string TM can decide palindrome in O(n) steps.

– It copies the input to the second string.

– The cursor of the first string is positioned at the first

symbol of the input.

– The cursor of the second string is positioned at the

last symbol of the input.

– The symbols under the cursors are then compared.

– The two cursors are then moved in opposite

directions until the ends are reached.

– The machine accepts if and only if the symbols under

the two cursors are identical at all steps.
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δ

�ababbaabbaabbaabbaba���

�ababbaabbaabbaabbaba���
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palindrome Revisited (concluded)

• The running times of a 2-string TM and a single-string

TM are quadratically related: n2 vs. n.

• This is consistent with the extended Church’s thesis (p.

66).

– “Reasonable” models are related polynomially in

running times.
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Configurations and Yielding

• The concept of configuration and yielding is the same as

before except that a configuration is a (2k + 1)-tuple

(q, w1, u1, w2, u2, . . . , wk, uk).

– wiui is the ith string.

– The ith cursor is reading the last symbol of wi.

– Recall that � is each wi’s first symbol.

• The k-string TM’s initial configuration is

(s,

2k︷ ︸︸ ︷
�, x︸︷︷︸

1

, �, ε︸︷︷︸
2

, �, ε︸︷︷︸
3

, . . . , �, ε︸︷︷︸
k

).
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Time seemed to be

the most obvious measure

of complexity.

— Stephen Arthur Cook (1939–)
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Time Complexity

• The multistring TM is the basis of our notion of the

time expended by TMs.

• If a k-string TM M halts after t steps on input x, then

the time required by M on input x is t.

• If M(x) =↗, then the time required by M on x is ∞.
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Time Complexity (concluded)

• Machine M operates within time f(n) for f : N→ N

if for any input string x, the time required by M on x is

at most f(|x |).
– |x | is the length of string x.

• Function f(n) is a time bound for M .
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Time Complexity Classesa

• Suppose language L ⊆ (Σ− {⊔})∗ is decided by a

multistring TM operating in time f(n).

• We say L ∈ TIME(f(n)).

• TIME(f(n)) is the set of languages decided by TMs

with multiple strings operating within time bound f(n).

• TIME(f(n)) is a complexity class.

– palindrome is in TIME(f(n)), where f(n) = O(n).

• Trivially, TIME(f(n)) ⊆ TIME(g(n)) if f(n) ≤ g(n) for

all n.

aHartmanis & Stearns (1965); Hartmanis, Lewis, & Stearns (1965).
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Juris Hartmanisa (1928–)

aTuring Award (1993).
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Richard Edwin Stearnsa (1936–)

aTuring Award (1993).
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The Simulation Technique

Theorem 3 Given any k-string M operating within time

f(n), there exists a (single-string) M ′ operating within time

O(f(n)2) such that M(x) = M ′(x) for any input x.

• The single string of M ′ implements the k strings of M .
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The Proof

• Represent configuration (q, w1, u1, w2, u2, . . . , wk, uk) of

M by this string of M ′:

(q,�w′
1u1 � w′

2u2 � · · ·� w′
kuk ��).

– � is a special delimiter.

– w′
i is wi with the firsta and last symbols “primed.”

– It serves the purpose of “,” in a configuration.b

aThe first symbol is of course �.
bAn alternative is to use (q,�w′

1|u1 � w′
2|u2 � · · · � w′

k|uk � �) by

priming only � in wi, where “|” is a new symbol.
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The Proof (continued)

• The first symbol of w′
i is the primed version of �: �′.

– Recall TM cursors are not allowed to move to the left

of � (p. 23).

– Now the cursor of M ′ can move between the

simulated strings of M .a

• The “priming” of the last symbol of each wi ensures that

M ′ knows which symbol is under each cursor of M .b

aThanks to a lively discussion on September 22, 2009.
bAdded because of comments made by Mr. Che-Wei Chang

(R95922093) on September 27, 2006.
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The Proof (continued)

• The initial configuration of M ′ is

(s,��′′ x�

k − 1 pairs︷ ︸︸ ︷
�′′ � · · ·�′′ ��).

– �′′ is double-primed because it is the beginning and

the ending symbol as the cursor is reading it.a

– Again, think of it as a new symbol.

aAdded after the class discussion on September 20, 2011.
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The Proof (continued)

• We simulate each move of M thus:

1. M ′ scans the string to pick up the k symbols under

the cursors.

– The states of M ′ must be enlarged to include

K × Σk to remember them.a

– The transition functions of M ′ must also reflect it.

2. M ′ then changes the string to reflect the overwriting

of symbols and cursor movements of M .

aRecall the TM program on p. 31.
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The Proof (continued)

• It is possible that some strings of M need to be

lengthened (see next page).

– The linear-time algorithm on p. 37 can be used for

each such string.

• The simulation continues until M halts.

• M ′ then erases all strings of M except the last one.a

aBecause whatever appears on the string of M ′ will be considered the

output. So �′s and �′′s need to be removed.
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The Proof (continued)a

string 1 string 2 string 3 string 4

string 1 string 2 string 3 string 4

aIf we interleave the strings, the simulation may be easier. Con-

tributed by Mr. Kai-Yuan Hou (B99201038, R03922014) on September

22, 2015. This is similar to constructing a single-string multi-track TM

in, e.g., Hopcroft & Ullman (1969).
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The Proof (continued)

• Since M halts within time f(|x |), none of its strings

ever becomes longer than f(|x |).a

• The length of the string of M ′ at any time is O(kf(|x |)).
• Simulating each step of M takes, per string of M ,

O(kf(|x |)) steps.
– O(f(|x |)) steps to collect information from this

string.

– O(kf(|x |)) steps to write and, if needed, to lengthen

the string.

aWe tacitly assume f(n) ≥ n.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 90



The Proof (concluded)

• M ′ takes O(k2f(|x |)) steps to simulate each step of M

because there are k strings.

• As there are f(|x |) steps of M to simulate, M ′ operates
within time O(k2f(|x |)2).a

aIs the time reduced to O(kf(|x |)2) if the interleaving data structure

is adopted?
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Simulation with Two-String TMs

We can do better with two-string TMs.

Theorem 4 Given any k-string M operating within time

f(n), k > 2, there exists a two-string M ′ operating within

time O(f(n) log f(n)) such that M(x) = M ′(x) for any input

x.
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Linear Speedupa

Theorem 5 Let L ∈ TIME(f(n)). Then for any ε > 0,

L ∈ TIME(f ′(n)), where f ′(n) Δ
= εf(n) + n+ 2.

See Theorem 2.2 of the textbook for a proof.

aHartmanis & Stearns (1965).
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Implications of the Speedup Theorem

• State size can be traded for speed.a

• If the running time is cn with c > 1, then c can be made

arbitrarily close to 1.

• If the running time is superlinear, say 14n2 + 31n, then

the constant in the leading term (14 in this example)

can be made arbitrarily small.

– Arbitrary linear speedup can be achieved.b

– This justifies the big-O notation in the analysis of

algorithms.

amk · |Σ|3mk-fold increase to gain a speedup of O(m). No free lunch.
bCan you apply the theorem multiple times to achieve superlinear

speedup? Thanks to a question by a student on September 21, 2010.
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P

• By the linear speedup theorem, any polynomial time

bound can be represented by its leading term nk for

some k ≥ 1.

• If L ∈ TIME(nk) for some k ∈ N, it is a polynomially

decidable language.

– Clearly, TIME(nk) ⊆ TIME(nk+1).

• The union of all polynomially decidable languages is

denoted by P:

P
Δ
=

⋃
k>0

TIME(nk).

• P contains problems that can be efficiently solved.
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Philosophers have explained space.

They have not explained time.

— Arnold Bennett (1867–1931),

How To Live on 24 Hours a Day (1910)

I keep bumping into that silly quotation

attributed to me that says

640K of memory is enough.

— Bill Gates (1996)
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Space Complexity

• Consider a k-string TM M with input x.

• Assume non-
⊔

is never written over by
⊔
.a

– The purpose is not to artificially reduce the space

needs (see below).

• If M halts in configuration

(H,w1, u1, w2, u2, . . . , wk, uk),

then the space required by M on input x is

k∑
i=1

|wiui |.

aCorrected by Ms. Chuan-Ju Wang (R95922018, F95922018) on

September 27, 2006.
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Space Complexity (continued)

• Suppose we do not charge the space used only for input

and output.

• Let k > 2 be an integer.

• A k-string Turing machine with input and output

is a k-string TM that satisfies the following conditions.

– The input string is read-only.a

– The cursor on the last string never moves to the left.

∗ The output string is essentially write-only.

– The cursor of the input string does not wander off

into the
⊔
s.

aCalled an off-line TM in Hartmanis, Lewis, & Stearns (1965).
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Space Complexity (concluded)

• If M is a TM with input and output, then the space

required by M on input x is

k−1∑
i=2

|wiui |.

• Machine M operates within space bound f(n) for

f : N→ N if for any input x, the space required by M

on x is at most f(|x |).
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Space Complexity Classes

• Let L be a language.

• Then

L ∈ SPACE(f(n))

if there is a TM with input and output that decides L

and operates within space bound f(n).

• SPACE(f(n)) is a set of languages.

– palindrome ∈ SPACE(log n).a

• A linear speedup theorem similar to the one on p. 93

exists, so constant coefficients do not matter.

aKeep 3 counters.
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If she can hesitate as to “Yes,”

she ought to say “No” directly.

— Jane Austen (1775–1817),

Emma (1815)
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Nondeterminisma

• A nondeterministic Turing machine (NTM) is a

quadruple N = (K,Σ,Δ, s).

• K,Σ, s are as before.

• Δ ⊆ K × Σ× (K ∪ {h, “yes”, “no”})× Σ× {←,→,−} is
a relation, not a function.b

– For each state-symbol combination (q, σ), there may

be multiple valid next steps.

– Multiple lines of code may be applicable.

– But only one will be taken.

aRabin & Scott (1959).
bCorrected by Mr. Jung-Ying Chen (D95723006) on September 23,

2008.
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Nondeterminism (continued)

• As before, a program contains lines of code:

(q1, σ1, p1, ρ1, D1) ∈ Δ,

(q2, σ2, p2, ρ2, D2) ∈ Δ,

...

(qn, σn, pn, ρn, Dn) ∈ Δ.

• But we cannot write

δ(qi, σi) = (pi, ρi, Di)

as in the deterministic case (p. 24) anymore.
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Nondeterminism (concluded)

• A configuration yields another configuration in one step

if there exists a rule in Δ that makes this happen.

• There is only a single thread of computation.a

– Nondeterminism is not parallelism, multiprocessing,

multithreading, or quantum computation.

aThanks to a lively discussion on September 22, 2015.
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Michael O. Rabina (1931–)

aTuring Award (1976).
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Dana Stewart Scotta (1932–)

aTuring Award (1976).
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Computation Tree and Computation Path
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Decidability under Nondeterminism

• Let L be a language and N be an NTM.

• N decides L if for any x ∈ Σ∗, x ∈ L if and only if there

is a sequence of valid configurations that ends in “yes.”

• In other words,

– If x ∈ L, then N(x) = “yes” for some computation

path.

– If x �∈ L, then N(x) �= “yes” for all computation

paths.
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Decidability under Nondeterminism (continued)

• It is not required that the NTM halts in all computation

paths.a

• If x �∈ L, no nondeterministic choices should lead to a

“yes” state.

• The key is the algorithm’s overall behavior not whether

it gives a correct answer for each particular run.

• Note that determinism is a special case of

nondeterminism.

aSo “accepts” may be a more proper term. Some books use “decides”

only when the NTM always halts.
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Decidability under Nondeterminism (concluded)

• For example, suppose L is the set of primes.a

• Then we have the primality testing problem.

• An NTM N decides L if:

– If x is a prime, then N(x) = “yes” for some

computation path.

– If x is not a prime, then N(x) �= “yes” for all

computation paths.

aContributed by Mr. Yu-Ming Lu (R06723032) on March 7, 2019.
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Complementing a TM’s Halting States

• Let M decide L, and M ′ be M after “yes”↔ “no”.

• If M is a deterministic TM, then M ′ decides L̄.

– So M and M ′ decide languages that complement

each other.

• But if M is an NTM, then M ′ may not decide L̄.

– It is possible that M and M ′ accept the same input x

(see next page).

– So M and M ′ may accept languages that are not

even disjoint.
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Time Complexity under Nondeterminism

• Nondeterministic machine N decides L in time f(n),

where f : N→ N, if

– N decides L, and

– for any x ∈ Σ∗, N does not have a computation path

longer than f(|x |).
• We charge only the “depth” of the computation tree.
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Time Complexity Classes under Nondeterminism

• NTIME(f(n)) is the set of languages decided by NTMs

within time f(n).

• NTIME(f(n)) is a complexity class.
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NP (“Nondeterministic Polynomial”)

• Define

NP
Δ
=

⋃
k>0

NTIME(nk).

• Clearly P ⊆ NP.

• Think of NP as efficiently verifiable problems (see p.

333).

– Boolean satisfiability (p. 119 and p. 194).

• The most important open problem in computer science

is whether P = NP.
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Simulating Nondeterministic TMs

Nondeterminism does not add power to TMs.

Theorem 6 Suppose language L is decided by an NTM N

in time f(n). Then it is decided by a 3-string deterministic

TM M in time O(cf(n)), where c > 1 is some constant

depending on N .

• On input x, M goes down every computation path of N

using depth-first search.

– M does not need to know f(n).

– As N is time-bounded, the depth-first search will not

run indefinitely.
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The Proof (concluded)

• If any path leads to “yes,” then M immediately enters

the “yes” state.

• If none of the paths lead to “yes,” then M enters the

“no” state.

• The simulation takes time O(cf(n)) for some c > 1

because the computation tree has that many nodes.

Corollary 7 NTIME(f(n))) ⊆ ⋃
c>1TIME(cf(n)).a

aMr. Kai-Yuan Hou (B99201038, R03922014) on October 6, 2015:
⋃

c>1 TIME(cf(n)) ⊆ NTIME(f(n)))?
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NTIME vs. TIME

• Does converting an NTM into a TM require exploring

all computation paths of the NTM as done in Theorem 6

(p. 116)?

• This is a key question in theory with important practical

implications.
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A Nondeterministic Algorithm for Satisfiability

φ is a boolean formula with n variables.

1: for i = 1, 2, . . . , n do

2: Guess xi ∈ { 0, 1 }; {Nondeterministic choices.}
3: end for

4: {Verification:}
5: if φ(x1, x2, . . . , xn) = 1 then

6: “yes”;

7: else

8: “no”;

9: end if
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Computation Tree for Satisfiability
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Analysis

• The computation tree is a complete binary tree of depth

n.

• Every computation path corresponds to a particular

truth assignmenta out of 2n.

• Recall that φ is satisfiable if and only if there is a truth

assignment that satisfies φ.

aEquivalently, a sequence of nondeterministic choices.
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Analysis (concluded)

• The algorithm decides language

{φ : φ is satisfiable }.

– Suppose φ is satisfiable.

∗ There is a truth assignment that satisfies φ.

∗ So there is a computation path that results in

“yes.”

– Suppose φ is not satisfiable.

∗ That means every truth assignment makes φ false.

∗ So every computation path results in “no.”

• General paradigm: Guess a “proof” then verify it.
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The Traveling Salesman Problem

• We are given n cities 1, 2, . . . , n and integer distance dij

between any two cities i and j.

• Assume dij = dji for convenience.

• The traveling salesman problem (tsp) asks for the

total distance of the shortest tour of the cities.a

• The decision version tsp (d) asks if there is a tour with

a total distance at most B, where B is an input.b

aEach city is visited exactly once.
bBoth problems are extremely important. They are equally hard

(p. 404 and p. 502).
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A Shortest Path
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A Nondeterministic Algorithm for tsp (d)
1: for i = 1, 2, . . . , n do

2: Guess xi ∈ { 1, 2, . . . , n }; {The ith city.}a
3: end for

4: {Verification:}
5: if x1, x2, . . . , xn are distinct and

∑n−1
i=1 dxi,xi+1 ≤ B then

6: “yes”;

7: else

8: “no”;

9: end if

aCan be made into a series of log2 n binary choices for each xi so

that the next-state count (2) is a constant, independent of input size.

Contributed by Mr. Chih-Duo Hong (R95922079) on September 27, 2006.
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Analysis

• Suppose the input graph contains at least one tour of

the cities with a total distance at most B.

– Then there is a computation path for that tour.a

– And it leads to “yes.”

• Suppose the input graph contains no tour of the cities

with a total distance at most B.

– Then every computation path leads to “no.”

aIt does not mean the algorithm will follow that path. It just means

such a computation path (i.e., a sequence of nondeterministic choices)

exists.
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Remarks on the P
?
= NP Open Problema

• Many practical applications depend on answers to the

P
?
= NP question.

• Verification of password should be easy (so it is in NP).

– A computer should not take a long time to let a user

log in.

• A password system should be hard to crack (loosely

speaking, cracking it should not be in P).

• It took logicians 63 years to settle the Continuum

Hypothesis; how long will it take for this one?

aContributed by Mr. Kuan-Lin Huang (B96902079, R00922018) on

September 27, 2011.
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Nondeterministic Space Complexity Classes

• Let L be a language.

• Then

L ∈ NSPACE(f(n))

if there is an NTM with input and output that decides L

and operates within space bound f(n).

• NSPACE(f(n)) is a set of languages.

• As in the linear speedup theorem,a constant coefficients

do not matter.

aTheorem 5 (p. 93).
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