Turing Machines with Multiple Strings

- A k-string Turing machine (TM) is a quadruple $M=(K, \Sigma, \delta, s)$.
- K, Σ, s are as before.
- $\delta: K \times \Sigma^{k} \rightarrow(K \cup\{h$, "yes", "no" $\}) \times(\Sigma \times\{\leftarrow, \rightarrow,-\})^{k}$.
- All strings start with a \triangleright.
- The first string contains the input.
- Decidability and acceptability are the same as before.
- When TMs compute functions, the output is the last (k th) string.

PaLINDROME Revisited

- A 2 -string TM can decide palindrome in $O(n)$ steps.
- It copies the input to the second string.
- The cursor of the first string is positioned at the first symbol of the input.
- The cursor of the second string is positioned at the last symbol of the input.
- The symbols under the cursors are then compared.
- The two cursors are then moved in opposite directions until the ends are reached.
- The machine accepts if and only if the symbols under the two cursors are identical at all steps.

PALINDROME Revisited (concluded)

- The running times of a 2 -string TM and a single-string TM are quadratically related: n^{2} vs. n.
- This is consistent with the extended Church's thesis (p. 66).
- "Reasonable" models are related polynomially in running times.

Configurations and Yielding

- The concept of configuration and yielding is the same as before except that a configuration is a $(2 k+1)$-tuple

$$
\left(q, w_{1}, u_{1}, w_{2}, u_{2}, \ldots, w_{k}, u_{k}\right)
$$

$-w_{i} u_{i}$ is the i th string.

- The i th cursor is reading the last symbol of w_{i}.
- Recall that \triangleright is each w_{i} 's first symbol.
- The k-string TM's initial configuration is

Time seemed to be the most obvious measure of complexity. - Stephen Arthur Cook (1939-)

Time Complexity

- The multistring TM is the basis of our notion of the time expended by TMs.
- If a k-string TM M halts after t steps on input x, then the time required by M on input x is t.
- If $M(x)=\nearrow$, then the time required by M on x is ∞.

Time Complexity (concluded)

- Machine M operates within time $f(n)$ for $f: \mathbb{N} \rightarrow \mathbb{N}$ if for any input string x, the time required by M on x is at most $f(|x|)$.
$-|x|$ is the length of string x.
- Function $f(n)$ is a time bound for M.

Time Complexity Classes ${ }^{\text {a }}$

- Suppose language $L \subseteq(\Sigma-\{\bigsqcup\})^{*}$ is decided by a multistring TM operating in time $f(n)$.
- We say $L \in \operatorname{TIME}(f(n))$.
- $\operatorname{TIME}(f(n))$ is the set of languages decided by TMs with multiple strings operating within time bound $f(n)$.
- $\operatorname{TIME}(f(n))$ is a complexity class.
- Palindrome is in $\operatorname{TIME}(f(n))$, where $f(n)=O(n)$.
- Trivially, $\operatorname{TIME}(f(n)) \subseteq \operatorname{TIME}(g(n))$ if $f(n) \leq g(n)$ for all n.

[^0]Juris Hartmanis ${ }^{\text {a }}$ (1928-)

${ }^{\text {a }}$ Turing Award (1993).

Richard Edwin Stearns ${ }^{\text {a }}$ (1936-)

${ }^{\text {a }}$ Turing Award (1993).

The Simulation Technique

Theorem 3 Given any k-string M operating within time $f(n)$, there exists a (single-string) M^{\prime} operating within time $O\left(f(n)^{2}\right)$ such that $M(x)=M^{\prime}(x)$ for any input x.

- The single string of M^{\prime} implements the k strings of M.

The Proof

- Represent configuration $\left(q, w_{1}, u_{1}, w_{2}, u_{2}, \ldots, w_{k}, u_{k}\right)$ of M by this string of M^{\prime} :

$$
\left(q, \triangleright w_{1}^{\prime} u_{1} \triangleleft w_{2}^{\prime} u_{2} \triangleleft \cdots \triangleleft w_{k}^{\prime} u_{k} \triangleleft \triangleleft\right) .
$$

$-\triangleleft$ is a special delimiter.

- w_{i}^{\prime} is w_{i} with the first ${ }^{\mathrm{a}}$ and last symbols "primed."
- It serves the purpose of "," in a configuration. ${ }^{\text {b }}$
${ }^{\text {a }}$ The first symbol is of course \triangleright.
${ }^{\mathrm{b}} \mathrm{An}$ alternative is to use ($q, \triangleright w_{1}^{\prime}\left|u_{1} \triangleleft w_{2}^{\prime}\right| u_{2} \triangleleft \cdots \triangleleft w_{k}^{\prime} \mid u_{k} \triangleleft \triangleleft$) by priming only \triangleright in w_{i}, where " \mid " is a new symbol.

The Proof (continued)

- The first symbol of w_{i}^{\prime} is the primed version of $\triangleright: \triangleright^{\prime}$.
- Recall TM cursors are not allowed to move to the left of \triangleright (p.23).
- Now the cursor of M^{\prime} can move between the simulated strings of M. ${ }^{\text {a }}$
- The "priming" of the last symbol of each w_{i} ensures that M^{\prime} knows which symbol is under each cursor of $M .{ }^{\mathrm{b}}$
${ }^{\text {a }}$ Thanks to a lively discussion on September 22, 2009.
${ }^{\mathrm{b}}$ Added because of comments made by Mr. Che-Wei Chang (R95922093) on September 27, 2006.

The Proof (continued)

- The initial configuration of M^{\prime} is

$$
(s, \triangleright \triangleright^{\prime \prime} x \triangleleft \overbrace{\left.\triangleright^{\prime \prime} \triangleleft \cdots \triangleright^{\prime \prime} \triangleleft \triangleleft\right) .}^{k-1 \text { pairs }}
$$

- $\nabla^{\prime \prime}$ is double-primed because it is the beginning and the ending symbol as the cursor is reading it. ${ }^{\text {a }}$
- Again, think of it as a new symbol.

[^1]
The Proof (continued)

- We simulate each move of M thus:

1. M^{\prime} scans the string to pick up the k symbols under the cursors.

- The states of M^{\prime} must be enlarged to include $K \times \Sigma^{k}$ to remember them. ${ }^{\text {a }}$
- The transition functions of M^{\prime} must also reflect it.

2. M^{\prime} then changes the string to reflect the overwriting of symbols and cursor movements of M.
[^2]
The Proof (continued)

- It is possible that some strings of M need to be lengthened (see next page).
- The linear-time algorithm on p. 37 can be used for each such string.
- The simulation continues until M halts.
- M^{\prime} then erases all strings of M except the last one. ${ }^{\text {a }}$
${ }^{\text {a }}$ Because whatever appears on the string of M^{\prime} will be considered the output. So ∇^{\prime} s and $\nabla^{\prime \prime}$ s need to be removed.

The Proof (continued) ${ }^{\text {a }}$

string 1	string 2	string 3	string 4

string 1	string 2	string 3	string 4

${ }^{a}$ If we interleave the strings, the simulation may be easier. Contributed by Mr. Kai-Yuan Hou (B99201038, R03922014) on September 22, 2015. This is similar to constructing a single-string multi-track TM in, e.g., Hopcroft \& Ullman (1969).

The Proof (continued)

- Since M halts within time $f(|x|)$, none of its strings ever becomes longer than $f(|x|)$. ${ }^{\text {a }}$
- The length of the string of M^{\prime} at any time is $O(k f(|x|))$.
- Simulating each step of M takes, per string of M, $O(k f(|x|))$ steps.
- $O(f(|x|))$ steps to collect information from this string.
- $O(k f(|x|))$ steps to write and, if needed, to lengthen the string.

[^3]
The Proof (concluded)

- M^{\prime} takes $O\left(k^{2} f(|x|)\right)$ steps to simulate each step of M because there are k strings.
- As there are $f(|x|)$ steps of M to simulate, M^{\prime} operates within time $O\left(k^{2} f(|x|)^{2}\right)$. ${ }^{\text {a }}$

[^4]
Simulation with Two-String TMs

We can do better with two-string TMs.
Theorem 4 Given any k-string M operating within time $f(n), k>2$, there exists a two-string M^{\prime} operating within time $O(f(n) \log f(n))$ such that $M(x)=M^{\prime}(x)$ for any input x.

Linear Speedup ${ }^{\text {a }}$

Theorem 5 Let $L \in \operatorname{TIME}(f(n))$. Then for any $\epsilon>0$, $L \in \operatorname{TIME}\left(f^{\prime}(n)\right)$, where $f^{\prime}(n) \triangleq \epsilon f(n)+n+2$.

See Theorem 2.2 of the textbook for a proof.

[^5]
Implications of the Speedup Theorem

- State size can be traded for speed. ${ }^{\text {a }}$
- If the running time is $c n$ with $c>1$, then c can be made arbitrarily close to 1 .
- If the running time is superlinear, say $14 n^{2}+31 n$, then the constant in the leading term (14 in this example) can be made arbitrarily small.
- Arbitrary linear speedup can be achieved. ${ }^{\text {b }}$
- This justifies the big-O notation in the analysis of algorithms.

[^6]
P

- By the linear speedup theorem, any polynomial time bound can be represented by its leading term n^{k} for some $k \geq 1$.
- If $L \in \operatorname{TIME}\left(n^{k}\right)$ for some $k \in \mathbb{N}$, it is a polynomially decidable language.
- Clearly, $\operatorname{TIME}\left(n^{k}\right) \subseteq \operatorname{TIME}\left(n^{k+1}\right)$.
- The union of all polynomially decidable languages is denoted by P:

$$
\mathrm{P} \triangleq \bigcup_{k>0} \operatorname{TIME}\left(n^{k}\right)
$$

- P contains problems that can be efficiently solved.

Philosophers have explained space. They have not explained time. - Arnold Bennett (1867-1931), How To Live on 24 Hours a Day (1910)

I keep bumping into that silly quotation attributed to me that says 640 K of memory is enough.

- Bill Gates (1996)

Space Complexity

- Consider a k-string TM M with input x.
- Assume non- \bigsqcup is never written over by $\bigsqcup .^{\text {a }}$
- The purpose is not to artificially reduce the space needs (see below).
- If M halts in configuration

$$
\left(H, w_{1}, u_{1}, w_{2}, u_{2}, \ldots, w_{k}, u_{k}\right)
$$

then the space required by M on input x is

$$
\sum_{i=1}^{k}\left|w_{i} u_{i}\right|
$$

[^7]
Space Complexity (continued)

- Suppose we do not charge the space used only for input and output.
- Let $k>2$ be an integer.
- A k-string Turing machine with input and output is a k-string TM that satisfies the following conditions.
- The input string is read-only. ${ }^{\text {a }}$
- The cursor on the last string never moves to the left.
* The output string is essentially write-only.
- The cursor of the input string does not wander off into the $\bigsqcup \mathrm{s}$.

[^8]
Space Complexity (concluded)

- If M is a TM with input and output, then the space required by M on input x is

$$
\sum_{i=2}^{k-1}\left|w_{i} u_{i}\right|
$$

- Machine M operates within space bound $f(n)$ for $f: \mathbb{N} \rightarrow \mathbb{N}$ if for any input x, the space required by M on x is at most $f(|x|)$.

Space Complexity Classes

- Let L be a language.
- Then

$$
L \in \operatorname{SPACE}(f(n))
$$

if there is a TM with input and output that decides L and operates within space bound $f(n)$.

- $\operatorname{SPACE}(f(n))$ is a set of languages.
$-\operatorname{PALINDROME} \in \mathrm{SPACE}(\log n) .{ }^{\text {a }}$
- A linear speedup theorem similar to the one on p. 93 exists, so constant coefficients do not matter.

[^9]If she can hesitate as to "Yes," she ought to say "No" directly.

- Jane Austen (1775-1817),

Emma (1815)

Nondeterminism ${ }^{\text {a }}$

- A nondeterministic Turing machine (NTM) is a quadruple $N=(K, \Sigma, \Delta, s)$.
- K, Σ, s are as before.
- $\Delta \subseteq K \times \Sigma \times(K \cup\{h$, "yes", "no" $\}) \times \Sigma \times\{\leftarrow, \rightarrow,-\}$ is a relation, not a function. ${ }^{\text {b }}$
- For each state-symbol combination (q, σ), there may be multiple valid next steps.
- Multiple lines of code may be applicable.
- But only one will be taken.

[^10]
Nondeterminism (continued)

- As before, a program contains lines of code:

$$
\begin{aligned}
\left(q_{1}, \sigma_{1}, p_{1}, \rho_{1}, D_{1}\right) & \in \Delta \\
\left(q_{2}, \sigma_{2}, p_{2}, \rho_{2}, D_{2}\right) & \in \Delta, \\
\vdots & \\
\left(q_{n}, \sigma_{n}, p_{n}, \rho_{n}, D_{n}\right) & \in \Delta .
\end{aligned}
$$

- But we cannot write

$$
\delta\left(q_{i}, \sigma_{i}\right)=\left(p_{i}, \rho_{i}, D_{i}\right)
$$

as in the deterministic case (p. 24) anymore.

Nondeterminism (concluded)

- A configuration yields another configuration in one step if there exists a rule in Δ that makes this happen.
- There is only a single thread of computation. ${ }^{\text {a }}$
- Nondeterminism is not parallelism, multiprocessing, multithreading, or quantum computation.

[^11]
Michael O. Rabin ${ }^{\text {a }}$ (1931-)

${ }^{\text {a }}$ Turing Award (1976).

Dana Stewart Scott ${ }^{\text {a }}$ (1932-)

${ }^{\text {a }}$ Turing Award (1976).

Computation Tree and Computation Path

Decidability under Nondeterminism

- Let L be a language and N be an NTM.
- N decides L if for any $x \in \Sigma^{*}, x \in L$ if and only if there is a sequence of valid configurations that ends in "yes."
- In other words,
- If $x \in L$, then $N(x)=$ "yes" for some computation path.
- If $x \notin L$, then $N(x) \neq$ "yes" for all computation paths.

Decidability under Nondeterminism (continued)

- It is not required that the NTM halts in all computation paths. ${ }^{\text {a }}$
- If $x \notin L$, no nondeterministic choices should lead to a "yes" state.
- The key is the algorithm's overall behavior not whether it gives a correct answer for each particular run.
- Note that determinism is a special case of nondeterminism.

[^12]
Decidability under Nondeterminism (concluded)

- For example, suppose L is the set of primes. ${ }^{\text {a }}$
- Then we have the primality testing problem.
- An NTM N decides L if:
- If x is a prime, then $N(x)=$ "yes" for some computation path.
- If x is not a prime, then $N(x) \neq$ "yes" for all computation paths.

[^13]
Complementing a TM's Halting States

- Let M decide L, and M^{\prime} be M after "yes" \leftrightarrow "no".
- If M is a deterministic TM, then M^{\prime} decides \bar{L}.
- So M and M^{\prime} decide languages that complement each other.
- But if M is an NTM, then M^{\prime} may not decide \bar{L}.
- It is possible that M and M^{\prime} accept the same input x (see next page).
- So M and M^{\prime} may accept languages that are not even disjoint.

Time Complexity under Nondeterminism

- Nondeterministic machine N decides L in time $f(n)$, where $f: \mathbb{N} \rightarrow \mathbb{N}$, if
- N decides L, and
- for any $x \in \Sigma^{*}, N$ does not have a computation path longer than $f(|x|)$.
- We charge only the "depth" of the computation tree.

Time Complexity Classes under Nondeterminism

- $\operatorname{NTIME}(f(n))$ is the set of languages decided by NTMs within time $f(n)$.
- $\operatorname{NTIME}(f(n))$ is a complexity class.

NP ("Nondeterministic Polynomial")

- Define

$$
\mathrm{NP} \triangleq \bigcup_{k>0} \operatorname{NTIME}\left(n^{k}\right) .
$$

- Clearly $\mathrm{P} \subseteq \mathrm{NP}$.
- Think of NP as efficiently verifiable problems (see p. 333).
- Boolean satisfiability (p. 119 and p. 194).
- The most important open problem in computer science is whether $\mathrm{P}=\mathrm{NP}$.

Simulating Nondeterministic TMs

Nondeterminism does not add power to TMs.
Theorem 6 Suppose language L is decided by an NTM N in time $f(n)$. Then it is decided by a 3-string deterministic $T M M$ in time $O\left(c^{f(n)}\right)$, where $c>1$ is some constant depending on N.

- On input x, M goes down every computation path of N using depth-first search.
- M does not need to know $f(n)$.
- As N is time-bounded, the depth-first search will not run indefinitely.

The Proof (concluded)

- If any path leads to "yes," then M immediately enters the "yes" state.
- If none of the paths lead to "yes," then M enters the "no" state.
- The simulation takes time $O\left(c^{f(n)}\right)$ for some $c>1$ because the computation tree has that many nodes.

Corollary $7 \operatorname{NTIME}(f(n))) \subseteq \bigcup_{c>1} \operatorname{TIME}\left(c^{f(n)}\right) .{ }^{\mathrm{a}}$

[^14]
NTIME vs. TIME

- Does converting an NTM into a TM require exploring all computation paths of the NTM as done in Theorem 6 (p. 116)?
- This is a key question in theory with important practical implications.

A Nondeterministic Algorithm for Satisfiability

ϕ is a boolean formula with n variables.
1: for $i=1,2, \ldots, n$ do
2: Guess $x_{i} \in\{0,1\} ;\{$ Nondeterministic choices. $\}$
3: end for
4: \{Verification:\}
5: if $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1$ then
6: "yes";
7: else
8: "no";
9: end if

Computation Tree for Satisfiability

Analysis

- The computation tree is a complete binary tree of depth n.
- Every computation path corresponds to a particular truth assignment ${ }^{\text {a }}$ out of 2^{n}.
- Recall that ϕ is satisfiable if and only if there is a truth assignment that satisfies ϕ.

[^15]
Analysis (concluded)

- The algorithm decides language

$$
\{\phi: \phi \text { is satisfiable }\} .
$$

- Suppose ϕ is satisfiable.
* There is a truth assignment that satisfies ϕ.
* So there is a computation path that results in "yes."
- Suppose ϕ is not satisfiable.
* That means every truth assignment makes ϕ false.
* So every computation path results in "no."
- General paradigm: Guess a "proof" then verify it.

The Traveling Salesman Problem

- We are given n cities $1,2, \ldots, n$ and integer distance $d_{i j}$ between any two cities i and j.
- Assume $d_{i j}=d_{j i}$ for convenience.
- The traveling salesman problem (TSP) asks for the total distance of the shortest tour of the cities. ${ }^{\text {a }}$
- The decision version TSP (D) asks if there is a tour with a total distance at most B, where B is an input. ${ }^{\text {b }}$

[^16]

A Nondeterministic Algorithm for TSP (D)

1: for $i=1,2, \ldots, n$ do
2: Guess $x_{i} \in\{1,2, \ldots, n\} ;\{\text { The } i \text { th city. }\}^{a}$
3: end for
4: \{Verification:\}
5: if $x_{1}, x_{2}, \ldots, x_{n}$ are distinct and $\sum_{i=1}^{n-1} d_{x_{i}, x_{i+1}} \leq B$ then
6: "yes";
7: else
8: "no";
9: end if
${ }^{\text {a }}$ Can be made into a series of $\log _{2} n$ binary choices for each x_{i} so that the next-state count (2) is a constant, independent of input size. Contributed by Mr. Chih-Duo Hong (R95922079) on September 27, 2006.

Analysis

- Suppose the input graph contains at least one tour of the cities with a total distance at most B.
- Then there is a computation path for that tour. ${ }^{\text {a }}$
- And it leads to "yes."
- Suppose the input graph contains no tour of the cities with a total distance at most B.
- Then every computation path leads to "no."

[^17]
Remarks on the $\mathrm{P} \stackrel{?}{=}$ NP Open Problem ${ }^{\text {a }}$

- Many practical applications depend on answers to the $\mathrm{P} \stackrel{?}{=} \mathrm{NP}$ question.
- Verification of password should be easy (so it is in NP).
- A computer should not take a long time to let a user $\log \mathrm{in}$.
- A password system should be hard to crack (loosely speaking, cracking it should not be in P).
- It took logicians 63 years to settle the Continuum Hypothesis; how long will it take for this one?

[^18]
Nondeterministic Space Complexity Classes

- Let L be a language.
- Then

$$
L \in \operatorname{NSPACE}(f(n))
$$

if there is an NTM with input and output that decides L and operates within space bound $f(n)$.

- NSPACE $(f(n))$ is a set of languages.
- As in the linear speedup theorem, ${ }^{\text {a }}$ constant coefficients do not matter.

[^19]
[^0]: ${ }^{\text {a }}$ Hartmanis \& Stearns (1965); Hartmanis, Lewis, \& Stearns (1965).

[^1]: ${ }^{\text {a }}$ Added after the class discussion on September 20, 2011.

[^2]: ${ }^{\text {a }}$ Recall the TM program on p .31.

[^3]: ${ }^{\text {a }}$ We tacitly assume $f(n) \geq n$.

[^4]: ${ }^{\text {a }}$ Is the time reduced to $O\left(k f(|x|)^{2}\right)$ if the interleaving data structure is adopted?

[^5]: ${ }^{\text {a }}$ Hartmanis \& Stearns (1965).

[^6]: ${ }^{\mathrm{a}} m^{k} \cdot|\Sigma|^{3 m k}$-fold increase to gain a speedup of $O(m)$. No free lunch.
 ${ }^{\mathrm{b}}$ Can you apply the theorem multiple times to achieve superlinear speedup? Thanks to a question by a student on September 21, 2010.

[^7]: ${ }^{\text {a }}$ Corrected by Ms. Chuan-Ju Wang (R95922018, F95922018) on September 27, 2006.

[^8]: ${ }^{\text {a }}$ Called an off-line TM in Hartmanis, Lewis, \& Stearns (1965).

[^9]: ${ }^{\text {a }}$ Keep 3 counters.

[^10]: ${ }^{\text {a }}$ Rabin \& Scott (1959).
 ${ }^{\mathrm{b}}$ Corrected by Mr. Jung-Ying Chen (D95723006) on September 23, 2008.

[^11]: ${ }^{\text {a }}$ Thanks to a lively discussion on September 22, 2015.

[^12]: aSo "accepts" may be a more proper term. Some books use "decides" only when the NTM always halts.

[^13]: ${ }^{\text {a }}$ Contributed by Mr. Yu-Ming Lu (R06723032) on March 7, 2019.

[^14]: ${ }^{\text {a }}$ Mr. Kai-Yuan Hou (B99201038, R03922014) on October 6, 2015: $\left.\bigcup_{c>1} \operatorname{TIME}\left(c^{f(n)}\right) \subseteq \operatorname{NTIME}(f(n))\right) ?$

[^15]: ${ }^{\text {a }}$ Equivalently, a sequence of nondeterministic choices.

[^16]: ${ }^{\text {a }}$ Each city is visited exactly once.
 ${ }^{\text {b }}$ Both problems are extremely important. They are equally hard (p. 404 and p. 502).

[^17]: ${ }^{\text {a }}$ It does not mean the algorithm will follow that path. It just means such a computation path (i.e., a sequence of nondeterministic choices) exists.

[^18]: ${ }^{\text {a }}$ Contributed by Mr. Kuan-Lin Huang (B96902079, R00922018) on September 27, 2011.

[^19]: ${ }^{\text {a }}$ Theorem 5 (p. 93).

