Theory of Computation

Final Examination on January 9, 2018 Fall Semester, 2017

Problem 1 (20 points) Suppose algorithm C runs in expected time T(n) and always gives the right answer. How to turn it into a randomized algorithm that runs within time O(T(n)) and gives a wrong answer with probability at most, say, 1/4.

Proof: Consider an algorithm that runs C for time kT(n) and rejects the input if C does not stop within the time bound. By Markov's inequality, this new algorithm runs in time kT(n) and gives the wrong answer with probability $\leq 1/k$. Pick k = 4.

Problem 2 (20 points) We showed in the class that all decision problems (decidable or otherwise) can be solved by a circuit of size 2^{n+2} where *n* is the input length. So the halting problem can be solved by a family of circuits that grow at most exponentially fast in the input length. What is wrong with the argument?

Proof: Such a family exists. But there is no Turing machine (our computation model) that can pick the right circuit given a halting problem of length n for all n.

Problem 3 (20 points) Recall that the circuit $CC(X_1, X_2, ...)$ returns true if and only if some X_i is a clique of the input graph G(V, E). Let $\mathcal{X} = \{X_1, X_2, ...\}$ and $\mathcal{Y} = \{Y_1, Y_2, ...\}$ be two set systems. (So $X_i, Y_j \subseteq V$ for all i and j.) Prove that $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ introduces no false positives and no false negatives over our positive examples (graphs with a clique, i.e., a complete graph, of size k and other nodes being isolated nodes) and negative examples (graphs generated by coloring).

Proof: Suppose $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ returns true. Then some $X_i \cup Y_j$ is a clique. Thus $X_i \in \mathcal{X}$ and $Y_j \in \mathcal{Y}$ are cliques, making both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return true. So $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ introduces no false positives. (Alternatively, you can start with a negative example that makes one of $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ returns false, then prove $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ must return false as well.)

On the other hand, suppose both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ accept a positive example with a clique \mathcal{C} of size k. This clique \mathcal{C} must contain an $X_i \in \mathcal{X}$ and a $Y_j \in \mathcal{Y}$. As this clique \mathcal{C} also contains $X_i \cup Y_j$ based on our definition of a positive example, the circuit $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ returns true. So this circuit introduces no false negatives.

Problem 4 (20 points) Calculate (2200|999) and (2017|999). (Answers without the steps will not receive a credit.)

Proof: We have that

(2200|999) = (202|999) = (101|999) = (90|101) = -(45|101) = -(11|45) = -(1|11) = -1,

and

$$(2017|999) = (19|999) = -(11|19) = (8|11) = -(4|11) = (2|11) = -(1|11) = -1$$

Problem 5 (20 points) Suppose there are *n* jobs to be assigned to *m* machines. Let t_i be the running time for job $i \in \{1, 2, ..., n\}$, A[i] = j be an assignment for job *i* on machine $j \in \{1, 2, ..., m\}$, and $T[j] = \sum_{A[i]=j} t_i$ be the total running time for machine *j*. The makespan of *A* is the maximum time that any machine is busy, given by

$$makespan(A) = \max_{j} T[j].$$

The problem LOADBALANCE is to compute the minimal makespan of A. It is known that the decision version of LOADBALANCE is NP-hard. Consider the following algorithm for LOADBALANCE:

```
1: for i \leftarrow 1 to m do
         T[i] \leftarrow 0;
 2:
 3: end for
 4: for i \leftarrow 1 to n do
         \min \leftarrow 1;
 5:
         for j \leftarrow 2 to m do
 6:
              if T[j] < T[\min] then
 7:
                  \min \leftarrow j;
 8:
              end if
 9:
         end for
10:
         A[i] \leftarrow \min;
11:
         T[\min] \leftarrow T[\min] + t_i;
12:
13: end for
14: return \max_{i} \{T[i]\};
```

Show that this algorithm for LOADBALANCE is a $\frac{1}{2}$ -approximation algorithm, meaning that it returns a solution that is at most 2 times the optimum.

Proof: Let OPT be the optimal makespan. Note that $OPT \ge \max_i t_i$ and $OPT \ge \frac{1}{m} \sum_{i=1}^n t_i$. Suppose that machine i^* has the largest total running time, and let j^* be the last job assigned to machine i^* . Since $T[i^*] - t_{j^*} \le T[i]$ for all $i \in \{1, 2, \ldots, m\}$, $T[i^*] - t_{j^*}$ is less than or equal to the average running time over all machines. Thus,

$$T[i^*] - t_{j^*} \le \frac{1}{m} \sum_{i=1}^m T[i] = \frac{1}{m} \sum_{i=1}^n t_i \le \text{OPT}.$$

We conclude that $T[i^*] \leq 2 \times \text{OPT}$.