# Theory of Computation 

Final Examination on January 9, 2018

Fall Semester, 2017
Problem 1 (20 points) Suppose algorithm $C$ runs in expected time $T(n)$ and always gives the right answer. How to turn it into a randomized algorithm that runs within time $O(T(n))$ and gives a wrong answer with probability at most, say, $1 / 4$.

Proof: Consider an algorithm that runs $C$ for time $k T(n)$ and rejects the input if $C$ does not stop within the time bound. By Markov's inequality, this new algorithm runs in time $k T(n)$ and gives the wrong answer with probability $\leq 1 / k$. Pick $k=4$.

Problem 2 (20 points) We showed in the class that all decision problems (decidable or otherwise) can be solved by a circuit of size $2^{n+2}$ where $n$ is the input length. So the halting problem can be solved by a family of circuits that grow at most exponentially fast in the input length. What is wrong with the argument?

Proof: Such a family exists. But there is no Turing machine (our computation model) that can pick the right circuit given a halting problem of length $n$ for all $n$.

Problem 3 (20 points) Recall that the circuit $\mathrm{CC}\left(X_{1}, X_{2}, \ldots\right)$ returns true if and only if some $X_{i}$ is a clique of the input graph $G(V, E)$. Let $\mathcal{X}=\left\{X_{1}, X_{2}, \ldots\right\}$ and $\mathcal{Y}=$ $\left\{Y_{1}, Y_{2}, \ldots\right\}$ be two set systems. (So $X_{i}, Y_{j} \subseteq V$ for all $i$ and $j$.) Prove that $\mathrm{CC}\left(\left\{X_{i} \cup Y_{j}\right.\right.$ : $\left.\left.X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y}\right\}\right)$ introduces no false positives and no false negatives over our positive examples (graphs with a clique, i.e., a complete graph, of size $k$ and other nodes being isolated nodes) and negative examples (graphs generated by coloring).

Proof: Suppose $\operatorname{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y}\right\}\right)$ returns true. Then some $X_{i} \cup Y_{j}$ is a clique. Thus $X_{i} \in \mathcal{X}$ and $Y_{j} \in \mathcal{Y}$ are cliques, making both $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$ return true. So $\mathrm{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y}\right\}\right)$ introduces no false positives. (Alternatively, you can start with a negative example that makes one of $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$ returns false, then prove $\operatorname{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y}\right\}\right)$ must return false as well.)

On the other hand, suppose both $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$ accept a positive example with a clique $\mathcal{C}$ of size $k$. This clique $\mathcal{C}$ must contain an $X_{i} \in \mathcal{X}$ and a $Y_{j} \in \mathcal{Y}$. As this clique $\mathcal{C}$ also contains $X_{i} \cup Y_{j}$ based on our definition of a positive example, the circuit $\mathrm{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y}\right\}\right)$ returns true. So this circuit introduces no false negatives.

Problem 4 (20 points) Calculate (2200|999) and (2017|999). (Answers without the steps will not receive a credit.)

Proof: We have that
$(2200 \mid 999)=(202 \mid 999)=(101 \mid 999)=(90 \mid 101)=-(45 \mid 101)=-(11 \mid 45)=-(1 \mid 11)=-1$,
and

$$
(2017 \mid 999)=(19 \mid 999)=-(11 \mid 19)=(8 \mid 11)=-(4 \mid 11)=(2 \mid 11)=-(1 \mid 11)=-1 .
$$

Problem 5 (20 points) Suppose there are $n$ jobs to be assigned to $m$ machines. Let $t_{i}$ be the running time for job $i \in\{1,2, \ldots, n\}, A[i]=j$ be an assignment for job $i$ on machine $j \in\{1,2, \ldots, m\}$, and $T[j]=\sum_{A[i]=j} t_{i}$ be the total running time for machine $j$. The makespan of $A$ is the maximum time that any machine is busy, given by

$$
\operatorname{makespan}(A)=\max _{j} T[j]
$$

The problem LoadBalance is to compute the minimal makespan of $A$. It is known that the decision version of LoadBalance is NP-hard. Consider the following algorithm for LoadBalance:

```
for \(i \leftarrow 1\) to \(m\) do
```

    \(T[i] \leftarrow 0 ;\)
    end for
for $i \leftarrow 1$ to $n$ do
$\min \leftarrow 1 ;$
for $j \leftarrow 2$ to $m$ do
if $T[j]<T[\min ]$ then
$\min \leftarrow j ;$
end if
end for
$A[i] \leftarrow$ min;
$T[\min ] \leftarrow T[\min ]+t_{i} ;$
end for
return $\max _{i}\{T[i]\}$;

Show that this algorithm for LOADBALANCE is a $\frac{1}{2}$-approximation algorithm, meaning that it returns a solution that is at most 2 times the optimum.

Proof: Let OPT be the optimal makespan. Note that OPT $\geq \max _{i} t_{i}$ and OPT $\geq$ $\frac{1}{m} \sum_{i=1}^{n} t_{i}$. Suppose that machine $i^{*}$ has the largest total running time, and let $j^{*}$ be the last job assigned to machine $i^{*}$. Since $T\left[i^{*}\right]-t_{j^{*}} \leq T[i]$ for all $i \in\{1,2, \ldots, m\}$, $T\left[i^{*}\right]-t_{j^{*}}$ is less than or equal to the average running time over all machines. Thus,

$$
T\left[i^{*}\right]-t_{j^{*}} \leq \frac{1}{m} \sum_{i=1}^{m} T[i]=\frac{1}{m} \sum_{i=1}^{n} t_{i} \leq \mathrm{OPT} .
$$

We conclude that $T\left[i^{*}\right] \leq 2 \times$ OPT.

