
Theory of Computation

Final Examination on January 9, 2018

Fall Semester, 2017

Problem 1 (20 points) Suppose algorithm C runs in expected time T (n) and always

gives the right answer. How to turn it into a randomized algorithm that runs within time

O(T (n)) and gives a wrong answer with probability at most, say, 1/4.

Proof: Consider an algorithm that runs C for time kT (n) and rejects the input if C

does not stop within the time bound. By Markov’s inequality, this new algorithm runs in

time kT (n) and gives the wrong answer with probability ≤ 1/k. Pick k = 4.

Problem 2 (20 points) We showed in the class that all decision problems (decidable

or otherwise) can be solved by a circuit of size 2n+2 where n is the input length. So the

halting problem can be solved by a family of circuits that grow at most exponentially fast

in the input length. What is wrong with the argument?

Proof: Such a family exists. But there is no Turing machine (our computation model)

that can pick the right circuit given a halting problem of length n for all n.

Problem 3 (20 points) Recall that the circuit CC(X1, X2, . . .) returns true if and only

if some Xi is a clique of the input graph G(V,E). Let X = {X1, X2, . . . } and Y =

{Y1, Y2, . . . } be two set systems. (So Xi, Yj ⊆ V for all i and j.) Prove that CC({Xi∪Yj :

Xi ∈ X , Yj ∈ Y }) introduces no false positives and no false negatives over our positive

examples (graphs with a clique, i.e., a complete graph, of size k and other nodes being

isolated nodes) and negative examples (graphs generated by coloring).

Proof: Suppose CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y }) returns true. Then some Xi ∪ Yj is

a clique. Thus Xi ∈ X and Yj ∈ Y are cliques, making both CC(X) and CC(Y) return

true. So CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y }) introduces no false positives. (Alternatively,

you can start with a negative example that makes one of CC(X) and CC(Y) returns false,

then prove CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y }) must return false as well.)

On the other hand, suppose both CC(X) and CC(Y) accept a positive example with

a clique C of size k. This clique C must contain an Xi ∈ X and a Yj ∈ Y . As this

clique C also contains Xi ∪ Yj based on our definition of a positive example, the circuit

CC({Xi∪Yj : Xi ∈ X , Yj ∈ Y }) returns true. So this circuit introduces no false negatives.

Problem 4 (20 points) Calculate (2200|999) and (2017|999). (Answers without the

steps will not receive a credit.)

Proof: We have that

(2200|999) = (202|999) = (101|999) = (90|101) = −(45|101) = −(11|45) = −(1|11) = −1,

and

(2017|999) = (19|999) = −(11|19) = (8|11) = −(4|11) = (2|11) = −(1|11) = −1.

Problem 5 (20 points) Suppose there are n jobs to be assigned to m machines. Let

ti be the running time for job i ∈ {1, 2, . . . , n}, A[i] = j be an assignment for job i on

machine j ∈ {1, 2, . . . ,m}, and T [j] =
∑

A[i]=j ti be the total running time for machine

j. The makespan of A is the maximum time that any machine is busy, given by

makespan(A) = max
j

T [j].

The problem LoadBalance is to compute the minimal makespan of A. It is known that

the decision version of LoadBalance is NP-hard. Consider the following algorithm for

LoadBalance:

1: for i← 1 to m do

2: T [i]← 0;

3: end for

4: for i← 1 to n do

5: min← 1;

6: for j ← 2 to m do

7: if T [j] < T [min] then

8: min← j;

9: end if

10: end for

11: A[i]← min;

12: T [min]← T [min] + ti;

13: end for

14: return maxi{T [i]};
Show that this algorithm for LoadBalance is a 1

2
-approximation algorithm, meaning

that it returns a solution that is at most 2 times the optimum.

Proof: Let OPT be the optimal makespan. Note that OPT ≥ maxi ti and OPT ≥
1

m

∑n
i=1 ti. Suppose that machine i∗ has the largest total running time, and let j∗ be

the last job assigned to machine i∗. Since T [i∗] − tj∗ ≤ T [i] for all i ∈ {1, 2, . . . ,m},
T [i∗]− tj∗ is less than or equal to the average running time over all machines. Thus,

T [i∗]− tj∗ ≤
1

m

m∑
i=1

T [i] =
1

m

n∑
i=1

ti ≤ OPT.

We conclude that T [i∗] ≤ 2×OPT.

