Maximum Satisfiability

- Given a set of clauses, mAXSAT seeks the truth assignment that satisfies the most simultaneously.
- MAX2SAT is already NP-complete (p. 349), so MAXSAT is NP-complete.
- Consider the more general k-mAXGSAT for constant k.
- Let $\Phi=\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{m}\right\}$ be a set of boolean expressions in n variables.
- Each ϕ_{i} is a general expression involving up to k variables.
- k-mAXGSAT seeks the truth assignment that satisfies the most expressions simultaneously.

A Probabilistic Interpretation of an Algorithm

- Let ϕ_{i} involve $k_{i} \leq k$ variables and be satisfied by s_{i} of the $2^{k_{i}}$ truth assignments.
- A random truth assignment $\in\{0,1\}^{n}$ satisfies ϕ_{i} with probability $p\left(\phi_{i}\right)=s_{i} / 2^{k_{i}}$.
$-p\left(\phi_{i}\right)$ is easy to calculate as k is a constant.
- Hence a random truth assignment satisfies an average of

$$
p(\Phi)=\sum_{i=1}^{m} p\left(\phi_{i}\right)
$$

expressions ϕ_{i}.

The Search Procedure

- Clearly

$$
p(\Phi)=\frac{p\left(\Phi\left[x_{1}=\text { true }\right]\right)+p\left(\Phi\left[x_{1}=\text { false }\right]\right)}{2}
$$

- Select the $t_{1} \in\{$ true, false $\}$ such that $p\left(\Phi\left[x_{1}=t_{1}\right]\right)$ is the larger one.
- Note that $p\left(\Phi\left[x_{1}=t_{1}\right]\right) \geq p(\Phi)$.
- Repeat the procedure with expression $\Phi\left[x_{1}=t_{1}\right]$ until all variables x_{i} have been given truth values t_{i} and all ϕ_{i} are either true or false.

The Search Procedure (continued)

- By our hill-climbing procedure,

$$
\begin{aligned}
& p(\Phi) \\
\leq & p\left(\Phi\left[x_{1}=t_{1}\right]\right) \\
\leq & p\left(\Phi\left[x_{1}=t_{1}, x_{2}=t_{2}\right]\right) \\
\leq & \cdots \\
\leq & p\left(\Phi\left[x_{1}=t_{1}, x_{2}=t_{2}, \ldots, x_{n}=t_{n}\right]\right)
\end{aligned}
$$

- So at least $p(\Phi)$ expressions are satisfied by truth assignment $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$.

The Search Procedure (concluded)

- Note that the algorithm is deterministic!
- It is called the method of conditional expectations. ${ }^{\text {a }}$
${ }^{\text {a Erdős } \& ~ S e l f r i d g e ~(1973) ; ~ S p e n c e r ~(1987) . ~}$

Approximation Analysis

- The optimum is at most the number of satisfiable ϕ_{i}-i.e., those with $p\left(\phi_{i}\right)>0$.
- The ratio of algorithm's output vs. the optimum is ${ }^{\text {a }}$

$$
\geq \frac{p(\Phi)}{\sum_{p\left(\phi_{i}\right)>0} 1}=\frac{\sum_{i} p\left(\phi_{i}\right)}{\sum_{p\left(\phi_{i}\right)>0} 1} \geq \min _{p\left(\phi_{i}\right)>0} p\left(\phi_{i}\right)
$$

- This is a polynomial-time ϵ-approximation algorithm with $\epsilon=1-\min _{p\left(\phi_{i}\right)>0} p\left(\phi_{i}\right)$ by Eq. (20) on p. 732.
- Because $p\left(\phi_{i}\right) \geq 2^{-k}$ for a satisfiable ϕ_{i}, the heuristic is a polynomial-time ϵ-approximation algorithm with $\epsilon=1-2^{-k}$.

[^0]
Back to MAXSAT

- In mAXSAT, the ϕ_{i} 's are clauses (like $x \vee y \vee \neg z$).
- Hence $p\left(\phi_{i}\right) \geq 1 / 2$ (why?).
- The heuristic becomes a polynomial-time ϵ-approximation algorithm with $\epsilon=1 / 2$. ${ }^{\text {a }}$
- Suppose we set each boolean variable to true with probability $(\sqrt{5}-1) / 2$, the golden ratio.
- Then follow through the method of conditional expectations to derandomize it.

[^1]
Back to MAXSAT (concluded)

- We will obtain a $[(3-\sqrt{5})] / 2$-approximation algorithm. ${ }^{\text {a }}$
$-\operatorname{Note}[(3-\sqrt{5})] / 2 \approx 0.382$.
- If the clauses have k distinct literals,

$$
p\left(\phi_{i}\right)=1-2^{-k} .
$$

- The heuristic becomes a polynomial-time ϵ-approximation algorithm with $\epsilon=2^{-k}$.
- This is the best possible for $k \geq 3$ unless $\mathrm{P}=\mathrm{NP}$.
- All the results hold even if clauses are weighted.

[^2]
MAX CUT Revisited

- mAX CUT seeks to partition the nodes of graph $G=(V, E)$ into $(S, V-S)$ so that there are as many edges as possible between S and $V-S$.
- It is NP-complete (p. 384).
- Local search starts from a feasible solution and performs "local" improvements until none are possible.
- Next we present a local-search algorithm for max cut.

A 0.5-Approximation Algorithm for MAX CUT

1: $S:=\emptyset$;
2: while $\exists v \in V$ whose switching sides results in a larger cut do
3: \quad Switch the side of v;
4: end while
5: return S;

Analysis (continued)

- Partition $V=V_{1} \cup V_{2} \cup V_{3} \cup V_{4}$, where
- Our algorithm returns $\left(V_{1} \cup V_{2}, V_{3} \cup V_{4}\right)$.
- The optimum cut is $\left(V_{1} \cup V_{3}, V_{2} \cup V_{4}\right)$.
- Let $e_{i j}$ be the number of edges between V_{i} and V_{j}.
- Our algorithm returns a cut of size

$$
e_{13}+e_{14}+e_{23}+e_{24}
$$

- The optimum cut size is

$$
e_{12}+e_{34}+e_{14}+e_{23}
$$

Analysis (continued)

- For each node $v \in V_{1}$, its edges to $V_{3} \cup V_{4}$ cannot be outnumbered by those to $V_{1} \cup V_{2}$.
- Otherwise, v would have been moved to $V_{3} \cup V_{4}$ to improve the cut.
- Considering all nodes in V_{1} together, we have

$$
2 e_{11}+e_{12} \leq e_{13}+e_{14} .
$$

$-2 e_{11}$, because each edge in V_{1} is counted twice.

- The above inequality implies

$$
e_{12} \leq e_{13}+e_{14} .
$$

Analysis (concluded)

- Similarly,

$$
\begin{aligned}
e_{12} & \leq e_{23}+e_{24} \\
e_{34} & \leq e_{23}+e_{13} \\
e_{34} & \leq e_{14}+e_{24}
\end{aligned}
$$

- Add all four inequalities, divide both sides by 2 , and add the inequality $e_{14}+e_{23} \leq e_{14}+e_{23}+e_{13}+e_{24}$ to obtain

$$
e_{12}+e_{34}+e_{14}+e_{23} \leq 2\left(e_{13}+e_{14}+e_{23}+e_{24}\right)
$$

- The above says our solution is at least half the optimum.

Remarks

- A 0.12-approximation algorithm exists. ${ }^{\text {a }}$
- 0.059-approximation algorithms do not exist unless $\mathrm{NP}=\mathrm{ZPP} .^{\mathrm{b}}$
${ }^{\text {a }}$ Goemans \& Williamson (1995).
${ }^{\mathrm{b}}$ Håstad (1997).

Approximability, Unapproximability, and Between

- Some problems have approximation thresholds less than 1.
- KNAPSACK has a threshold of 0 (p. 782).
- NODE COVER (p. 738), BIN PACKING, and MAXSAT ${ }^{\text {a }}$ have a threshold larger than 0 .
- The situation is maximally pessimistic for TSP (p. 757) and INDEPENDENT SET, $^{\text {b }}$ which cannot be approximated - Their approximation threshold is 1.

[^3]
Unapproximability of $\mathrm{TSP}^{\mathrm{a}}$

Theorem 83 The approximation threshold of TSP is 1 unless $P=N P$.

- Suppose there is a polynomial-time ϵ-approximation algorithm for TSP for some $\epsilon<1$.
- We shall construct a polynomial-time algorithm to solve the NP-complete hamiltonian cycle.
- Given any graph $G=(V, E)$, construct a TSP with $|V|$ cities with distances

$$
d_{i j}=\left\{\begin{array}{cl}
1, & \text { if }[i, j] \in E, \\
\frac{|V|}{1-\epsilon}, & \text { otherwise } .
\end{array}\right.
$$

[^4]
The Proof (continued)

- Run the alleged approximation algorithm on this TSP instance.
- Note that if a tour includes edges of length $|V| /(1-\epsilon)$, then the tour costs more than $|V|$.
- Note also that no tour has a cost less than $|V|$.
- Suppose a tour of cost $|V|$ is returned.
- Then every edge on the tour exists in the original graph G.
- So this tour is a Hamiltonian cycle on G.

The Proof (concluded)

- Suppose a tour that includes an edge of length $|V| /(1-\epsilon)$ is returned.
- The total length of this tour exceeds $|V| /(1-\epsilon) .{ }^{\text {a }}$
- Because the algorithm is ϵ-approximate, the optimum is at least $1-\epsilon$ times the returned tour's length.
- The optimum tour has a cost exceeding $|V|$.
- Hence G has no Hamiltonian cycles.

[^5]
METRIC TSP

- mETRIC TSP is similar to TSP.
- But the distances must satisfy the triangular inequality:

$$
d_{i j} \leq d_{i k}+d_{k j}
$$

for all i, j, k.

- Inductively,

$$
d_{i j} \leq d_{i k}+d_{k l}+\cdots+d_{z j}
$$

A 0.5-Approximation Algorithm for METRIC TSP ${ }^{\text {a }}$

- It suffices to present an algorithm with the approximation ratio of

$$
\frac{c(M(x))}{\operatorname{OPT}(x)} \leq 2
$$

(see p. 733).
${ }^{\text {a }}$ Choukhmane (1978); Iwainsky, Canuto, Taraszow, \& Villa (1986); Kou, Markowsky, \& Berman (1981); Plesník (1981).

A 0.5-Approximation Algorithm for METRIC TSP (concluded)

1: $T:=$ a minimum spanning tree of G;
2: $T^{\prime}:=$ duplicate the edges of T plus their cost; \{Note: T^{\prime} is an Eulerian multigraph.\}
3: $C:=$ an Euler cycle of T^{\prime};
4: Remove repeated nodes of C; $\{$ "Shortcutting." $\}$
5: return C;

Analysis

- Let C_{opt} be an optimal TSP tour.
- Note first that

$$
\begin{equation*}
c(T) \leq c\left(C_{\mathrm{opt}}\right) . \tag{21}
\end{equation*}
$$

- $C_{\text {opt }}$ is a spanning tree after the removal of one edge.
- But T is a minimum spanning tree.
- Because T^{\prime} doubles the edges of T,

$$
c\left(T^{\prime}\right)=2 c(T) .
$$

Analysis (concluded)

- Because of the triangular inequality, "shortcutting" does not increase the cost.
$-(1,2,3,2,1,4, \ldots) \rightarrow(1,2,3,4, \ldots)$, a Hamiltonian cycle.
- Thus

$$
c(C) \leq c\left(T^{\prime}\right)
$$

- Combine all the inequalities to yield

$$
c(C) \leq c\left(T^{\prime}\right)=2 c(T) \leq 2 c\left(C_{\mathrm{opt}}\right)
$$

as desired.

A 100-Node Example

Cities

The cost is 7.72877 .

A 100-Node Example (continued)

The minimum spanning tree T.

A 100-Node Example (continued)

"Shortcutting" the repeated nodes on the Euler cycle C.

A 100-Node Example (concluded)

The cost is $10.5718 \leq 2 \times 7.72877=15.4576$.

A (1/3)-Approximation Algorithm for metric TSP ${ }^{\text {a }}$

- It suffices to present an algorithm with the approximation ratio of

$$
\frac{c(M(x))}{\operatorname{OPT}(x)} \leq \frac{3}{2}
$$

(see p. 733).

- This is the best approximation ratio for METRIC TSP as of 2016 !

[^6]
A (1/3)-Approximation Algorithm for METRIC TSP (concluded)

1: $T:=$ a minimum spanning tree of G;
2: $V^{\prime}:=$ the set of nodes with an odd degree in $T ;\left\{\left|V^{\prime}\right|\right.$ must be even by a well-known parity result.\}
3: $G^{\prime}:=$ the induced subgraph of G by $V^{\prime} ;\left\{G^{\prime}\right.$ is a complete graph on V^{\prime}.\}
4: $M:=$ a minimum-cost perfect matching of G^{\prime};
5: $G^{\prime \prime}:=T \cup M ;\left\{G^{\prime \prime}\right.$ is an Eulerian multigraph. $\}$
6: $C:=$ an Euler cycle of $G^{\prime \prime}$;
7: Remove repeated nodes of C; \{"Shortcutting." \}
8: return C;

Analysis

- Let $C_{\text {opt }}$ be an optimal TSP tour.
- By Eq. (21) on p. 763,

$$
\begin{equation*}
c(T) \leq c\left(C_{\mathrm{opt}}\right) . \tag{22}
\end{equation*}
$$

- Let C^{\prime} be $C_{\text {opt }}$ on V^{\prime} by "shortcutting."
- $C_{\text {opt }}$ is a Hamiltonian cycle on V.
- Replace any path $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ on $C_{\text {opt }}$ with $\left(v_{1}, v_{k}\right)$, where $v_{1}, v_{k} \in V^{\prime}$ but $v_{2}, \ldots, v_{k-1} \notin V^{\prime}$.
- So C^{\prime} is simply the restriction of C_{opt} to V^{\prime}.

Analysis (continued)

- By the triangular inequality,

$$
c\left(C^{\prime}\right) \leq c\left(C_{\mathrm{opt}}\right)
$$

- C^{\prime} is now a Hamiltonian cycle on V^{\prime}.
- C^{\prime} consists of two perfect matchings on G^{\prime}. ${ }^{\text {a }}$
- The first, third, ... edges constitute one.
- The second, fourth, ... edges constitute the other.

[^7]
Analysis (continued)

- By Eq. (22) on p. 771, the cheaper perfect matching has a cost of

$$
\frac{c\left(C^{\prime}\right)}{2} \leq \frac{c\left(C_{\mathrm{opt}}\right)}{2} .
$$

- As a result, the minimum-cost one M must satisfy

$$
c(M) \leq \frac{c\left(C^{\prime}\right)}{2} \leq \frac{c\left(C_{\mathrm{opt}}\right)}{2}
$$

- Minimum-cost perfect matching can be solved in polynomial time. ${ }^{\text {a }}$
${ }^{\text {a }}$ Edmonds (1965); Micali \& V. Vazirani (1980).

Analysis (concluded)

- By combining the two earlier inequalities, any Euler cycle C has a cost of

$$
\begin{aligned}
c(C) & \leq c(T)+c(M) \quad \text { by Line } 5 \text { of the algorithm } \\
& \leq c\left(C_{\mathrm{opt}}\right)+\frac{c\left(C_{\mathrm{opt}}\right)}{2} \\
& =\frac{3}{2} c\left(C_{\mathrm{opt}}\right),
\end{aligned}
$$

as desired.

A 100-Node Example

Cities

The cost is 7.72877 .

A 100-Node Example (continued)

Odd-degree nodes V^{\prime} on MST

A 100-Node Example (continued)

A minimum-cost perfect matching M.

A 100-Node Example (continued)

An Euler cycle C of $G^{\prime \prime}=T \cup M$.

A 100-Node Example (continued)

"Shortcutting" the repeated nodes on the Euler cycle C.

A 100-Node Example (continued)

The cost is $8.74583 \leq(3 / 2) \times 7.72877=11.5932 .{ }^{\text {a }}$
${ }^{a}$ In comparison, the earlier 0.5 -approximation algorithm gave a cost of 10.5718 on p. 768 .

A 100-Node Example (concluded)

Previous approximate TSP

Another approximate TSP

TSP

If a different Euler cycle were generated on p. 778, the cost could be different, such as 8.54902 (above), 8.85674, 8.53410, 9.20841, and 8.87152. ${ }^{\text {a }}$
${ }^{\text {a }}$ Contributed by Mr. Yu-Chuan Liu (B00507010, R04922040) on July 15, 2017.

knapsack Has an Approximation Threshold of Zero ${ }^{a}$

Theorem 84 For any ϵ, there is a polynomial-time
ϵ-approximation algorithm for KNAPSACK.

- We have n weights $w_{1}, w_{2}, \ldots, w_{n} \in \mathbb{Z}^{+}$, a weight limit W, and n values $v_{1}, v_{2}, \ldots, v_{n} \in \mathbb{Z}^{+}$. ${ }^{\text {b }}$
- We must find an $I \subseteq\{1,2, \ldots, n\}$ such that $\sum_{i \in I} w_{i} \leq W$ and $\sum_{i \in I} v_{i}$ is the largest possible.
${ }^{\text {a }}$ Ibarra \& Kim (1975).
${ }^{\mathrm{b}}$ If the values are fractional, the result is slightly messier, but the main conclusion remains correct. Contributed by Mr. Jr-Ben Tian (B89902011, R93922045) on December 29, 2004.

The Proof (continued)

- Let

$$
V=\max \left\{v_{1}, v_{2}, \ldots, v_{n}\right\}
$$

- Clearly, $\sum_{i \in I} v_{i} \leq n V$.
- Let $0 \leq i \leq n$ and $0 \leq v \leq n V$.
- $W(i, v)$ is the minimum weight attainable by selecting only from the first i items and with a total value of v.
- It is an $(n+1) \times(n V+1)$ table.

The Proof (continued)

- Set $W(0, v)=\infty$ for $v \in\{1,2, \ldots, n V\}$ and $W(i, 0)=0$ for $i=0,1, \ldots, n$. ${ }^{\text {a }}$
- Then, for $0 \leq i<n$ and $1 \leq v \leq n V$, ${ }^{\text {b }}$

$$
\begin{aligned}
& W(i+1, v) \\
&= \begin{cases}\min \left\{W(i, v), W\left(i, v-v_{i+1}\right)+w_{i+1}\right\}, & \text { if } v \geq v_{i+1}, \\
W(i, v), & \text { otherwise } .\end{cases}
\end{aligned}
$$

- Finally, pick the largest v such that $W(n, v) \leq W$. ${ }^{\text {c }}$

[^8]

The Proof (continued)

With 6 items, values ($4,3,3,3,2,3$), weights ($3,3,1,3,2,1$), and $W=12$, the maximum total value 16 is achieved with $I=\{1,2,3,4,6\} ; I$'s weight is 11.

0	∞																	
0	∞	∞	∞	3	∞													
0	∞	∞	3	3	∞	∞	6	∞										
0	∞	∞	1	3	∞	4	4	∞	∞	7	∞							
0	∞	∞	1	3	∞	4	4	∞	7	7	∞	∞	10	∞	∞	∞	∞	∞
0	∞	2	1	3	3	4	4	6	6	7	9	9	10	∞	12	∞	∞	∞
0	∞	2	1	3	3	2	4	4	5	5	7	7	8	10	10	11	∞	13

The Proof (continued)

- The running time $O\left(n^{2} V\right)$ is not polynomial.
- Call the problem instance

$$
x=\left(w_{1}, \ldots, w_{n}, W, v_{1}, \ldots, v_{n}\right)
$$

- Additional idea: Limit the number of precision bits.
- Define

$$
v_{i}^{\prime}=\left\lfloor\frac{v_{i}}{2^{b}}\right\rfloor .
$$

- Note that

$$
v_{i} \geq 2^{b} v_{i}^{\prime}>v_{i}-2^{b}
$$

The Proof (continued)

- Call the approximate instance

$$
x^{\prime}=\left(w_{1}, \ldots, w_{n}, W, v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right)
$$

- Solving x^{\prime} takes time $O\left(n^{2} V / 2^{b}\right)$.
- Use $v_{i}^{\prime}=\left\lfloor v_{i} / 2^{b}\right\rfloor$ and $V^{\prime}=\max \left(v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right)$ in the dynamic programming.
- It is now an $(n+1) \times(n V+1) / 2^{b}$ table.
- The selection I^{\prime} is optimal for x^{\prime}.
- But I^{\prime} may not be optimal for x, although it still satisfies the weight budget W.

The Proof (continued)

With the same parameters as p. 786 and $b=1$: Values are $(2,1,1,1,1,1)$ and the optimal selection $I^{\prime}=\{1,2,3,5,6\}$ for x^{\prime} has a smaller maximum value $4+3+3+2+3=15$ for x than I 's 16 ; its weight is $10<W=12$. ${ }^{\text {a }}$

0	∞						
0	∞	3	∞	∞	∞	∞	∞
0	3	3	6	∞	∞	∞	∞
0	1	3	4	7	∞	∞	∞
0	1	3	4	7	10	∞	∞
0	1	3	4	6	9	12	∞
0	1	2	4	5	7	10	13

${ }^{\text {a }}$ The original optimal $I=\{1,2,3,4,6\}$ on p .786 has the same value 6 and but higher weight 11 for x^{\prime}.

The Proof (continued)

- The value of I^{\prime} for x is close to that of the optimal I :

$$
\begin{aligned}
\sum_{i \in I^{\prime}} v_{i} & \geq \sum_{i \in I^{\prime}} 2^{b} v_{i}^{\prime}=2^{b} \sum_{i \in I^{\prime}} v_{i}^{\prime} \\
& \geq 2^{b} \sum_{i \in I} v_{i}^{\prime}=\sum_{i \in I} 2^{b} v_{i}^{\prime} \\
& \geq \sum_{i \in I}\left(v_{i}-2^{b}\right) \\
& \geq\left(\sum_{i \in I} v_{i}\right)-n 2^{b} .
\end{aligned}
$$

The Proof (continued)

- In summary,

$$
\sum_{i \in I^{\prime}} v_{i} \geq\left(\sum_{i \in I} v_{i}\right)-n 2^{b}
$$

- Without loss of generality, assume $w_{i} \leq W$ for all i.
- Otherwise, item i is redundant and can be removed early on.
- V is a lower bound on OPT.
- Picking one single item with value V is a legitimate choice.

The Proof (concluded)

- The relative error from the optimum is:

$$
\frac{\sum_{i \in I} v_{i}-\sum_{i \in I^{\prime}} v_{i}}{\sum_{i \in I} v_{i}} \leq \frac{\sum_{i \in I} v_{i}-\sum_{i \in I^{\prime}} v_{i}}{V} \leq \frac{n 2^{b}}{V}
$$

- Suppose we pick $b=\left\lfloor\log _{2} \frac{\epsilon V}{n}\right\rfloor$.
- The algorithm becomes ϵ-approximate. ${ }^{\text {a }}$
- The running time is then $O\left(n^{2} V / 2^{b}\right)=O\left(n^{3} / \epsilon\right)$, a polynomial in n and $1 / \epsilon$. ${ }^{\text {b }}$

[^9]${ }^{\mathrm{b}}$ It hence depends on the value of $1 / \epsilon$. Thanks to a lively class discussion on December 20, 2006. If we fix ϵ and let the problem size increase, then the complexity is cubic. Contributed by Mr. Ren-Shan

Comments

- INDEPENDENT SET and NODE COVER are reducible to each other (Corollary 45, p. 375).
- NODE COVER has an approximation threshold at most 0.5 (p. 740).
- But independent set is unapproximable (see the textbook).
- INDEPENDENT SET limited to graphs with degree $\leq k$ is called k-DEGREE INDEPENDENT SET.
- k-DEGREE INDEPENDENT SET is approximable (see the textbook).

On P vs. NP

If 50 million people believe a foolish thing, it's still a foolish thing. - George Bernard Shaw (1856-1950)

Exponential Circuit Complexity for NP-Complete Problems

- We shall prove exponential lower bounds for NP-complete problems using monotone circuits.
- Monotone circuits are circuits without \neg gates. ${ }^{\text {a }}$
- Note that this result does not settle the P vs. NP problem.

[^10]
The Power of Monotone Circuits

- Monotone circuits can only compute monotone boolean functions.
- They are powerful enough to solve a P-complete problem: MONOTONE CIRCUIT VALUE (p. 314).
- There are NP-complete problems that are not monotone; they cannot be computed by monotone circuits at all.
- There are NP-complete problems that are monotone; they can be computed by monotone circuits.
- HAMILTONIAN PATH and CLIQUE.

CLIQUE $_{n, k}$

- CLIQUE ${ }_{n, k}$ is the boolean function deciding whether a graph $G=(V, E)$ with n nodes has a clique of size k.
- The input gates are the $\binom{n}{2}$ entries of the adjacency matrix of G.
- Gate $g_{i j}$ is set to true if the associated undirected edge $\{i, j\}$ exists.
- CLIQUE $_{n, k}$ is a monotone function.
- Thus it can be computed by a monotone circuit.
- This does not rule out that nonmonotone circuits for CLIQUE $_{n, k}$ may use fewer gates.

Crude Circuits

- One possible circuit for CLIQUE $_{n, k}$ does the following.

1. For each $S \subseteq V$ with $|S|=k$, there is a circuit with $O\left(k^{2}\right) \wedge$-gates testing whether S forms a clique.
2. We then take an OR of the outcomes of all the $\binom{n}{k}$ subsets $S_{1}, S_{2}, \ldots, S_{\binom{n}{k}}$.

- This is a monotone circuit with $O\left(k^{2}\binom{n}{k}\right)$ gates, which is exponentially large unless k or $n-k$ is a constant.
- A crude circuit $\mathrm{CC}\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ tests if there is an $X_{i} \subseteq V$ that forms a clique.
- The above-mentioned circuit is $\mathrm{CC}\left(S_{1}, S_{2}, \ldots, S_{\binom{n}{k}}\right)$.

The Proof: Positive Examples

- Analysis will be applied to only the following positive examples and negative examples as input graphs.
- A positive example is a graph that has $\binom{k}{2}$ edges connecting k nodes in all possible ways.
- There are $\binom{n}{k}$ such graphs.
- They all should elicit a true output from CLIQUE $_{n, k}$.

The Proof: Negative Examples

- Color the nodes with $k-1$ different colors and join by an edge any two nodes that are colored differently.
- There are $(k-1)^{n}$ such graphs.
- They all should elicit a false output from CLiQUE $_{n, k}$.
- Each set of k nodes must have 2 identically colored nodes; hence there is no edge between them.

Positive and Negative Examples with $k=5$

A positive example

A negative example

[^0]: ${ }^{\text {a Because }} \sum_{i} a_{i} / \sum_{i} b_{i} \geq \min _{i}\left(a_{i} / b_{i}\right)$.

[^1]: ${ }^{\text {a }}$ Johnson (1974).

[^2]: ${ }^{\text {a }}$ Lieberherr \& Specker (1981).

[^3]: ${ }^{a}$ Williamson \& Shmoys (2011).
 ${ }^{\mathrm{b}}$ See the textbook.

[^4]: ${ }^{\text {a }}$ Sahni \& Gonzales (1976).

[^5]: ${ }^{\text {a }}$ So this reduction is gap introducing.

[^6]: ${ }^{a}$ Christofides (1976).

[^7]: ${ }^{\text {a }}$ Note that G^{\prime} is a complete graph with an even $\left|V^{\prime}\right|$.

[^8]: ${ }^{\text {a }}$ Contributed by Mr. Ren-Shuo Liu (D98922016) and Mr. Yen-Wei Wu (D98922013) on December 28, 2009.
 ${ }^{\mathrm{b}}$ The textbook's formula has an error here.
 ${ }^{\mathrm{c}}$ Lawler (1979).

[^9]: ${ }^{\text {a }}$ See Eq. (17) on p. 727. Luoh (D97922014) on December 23, 2008.

[^10]: ${ }^{\text {a }}$ Recall p. 313.

