Magic 3/4?

- The number $3 / 4$ bounds the probability (ratio) of a right answer away from $1 / 2$.
- Any constant strictly between $1 / 2$ and 1 can be used without affecting the class BPP.
- In fact, as with RP,

$$
\frac{1}{2}+\frac{1}{q(n)}
$$

for any polynomial $q(n)$ can replace $3 / 4$.

- The next algorithm shows why.

The Majority Vote Algorithm

Suppose L is decided by N by majority $(1 / 2)+\epsilon$.
1: for $i=1,2, \ldots, 2 k+1$ do
2: \quad Run N on input x;
3: end for
4: if "yes" is the majority answer then
5: "yes";
6: else
7: "no";
8: end if

Analysis

- By Corollary 77 (p. 604), the probability of a false answer is at most $e^{-\epsilon^{2} k}$.
- By taking $k=\left\lceil 2 / \epsilon^{2}\right\rceil$, the error probability is at most 1/4.
- Even if ϵ is any inverse polynomial, k remains a polynomial in n.
- The running time remains polynomial: $2 k+1$ times N 's running time.

Aspects of BPP

- BPP is the most comprehensive yet plausible notion of efficient computation.
- If a problem is in BPP, we take it to mean that the problem can be solved efficiently.
- In this aspect, BPP has effectively replaced P.
- $(R P \cup c o R P) \subseteq(N P \cup c o N P)$.
- $(R P \cup c o R P) \subseteq B P P$.
- Whether $\mathrm{BPP} \subseteq(\mathrm{NP} \cup \mathrm{coNP})$ is unknown.
- But it is unlikely that NP \subseteq BPP. ${ }^{\text {a }}$

[^0]
coBPP

- The definition of BPP is symmetric: acceptance by clear majority and rejection by clear majority.
- An algorithm for $L \in$ BPP becomes one for \bar{L} by reversing the answer.
- So $\bar{L} \in \mathrm{BPP}$ and $\mathrm{BPP} \subseteq$ coBPP.
- Similarly coBPP \subseteq BPP.
- Hence BPP = coBPP.
- This approach does not work for RP. ${ }^{\text {a }}$

[^1]
BPP and coBPP

"The Good, the Bad, and the Ugly"

Circuit Complexity

- Circuit complexity is based on boolean circuits instead of Turing machines.
- A boolean circuit with n inputs computes a boolean function of n variables.
- Now, identify true/1 with "yes" and false/0 with "no."
- Then a boolean circuit with n inputs accepts certain strings in $\{0,1\}^{n}$.
- To relate circuits with an arbitrary language, we need one circuit for each possible input length n.

Formal Definitions

- The size of a circuit is the number of gates in it.
- A family of circuits is an infinite sequence $\mathcal{C}=\left(C_{0}, C_{1}, \ldots\right)$ of boolean circuits, where C_{n} has n boolean inputs.
- For input $x \in\{0,1\}^{*}, C_{|x|}$ outputs 1 if and only if $x \in L$.
- In other words,

$$
C_{n} \text { accepts } L \cap\{0,1\}^{n} \text {. }
$$

Formal Definitions (concluded)

- $L \subseteq\{0,1\}^{*}$ has polynomial circuits if there is a family of circuits \mathcal{C} such that:
- The size of C_{n} is at most $p(n)$ for some fixed polynomial p.
- C_{n} accepts $L \cap\{0,1\}^{n}$.

Exponential Circuits Suffice for All Languages

- Theorem 16 (p. 208) implies that there are languages that cannot be solved by circuits of size $2^{n} /(2 n)$.
- But surprisingly, circuits of size 2^{n+2} can solve all problems, decidable or otherwise!

Exponential Circuits Suffice for All Languages (continued)

Proposition 78 All decision problems (decidable or otherwise) can be solved by a circuit of size 2^{n+2}.

- We will show that for any language $L \subseteq\{0,1\}^{*}$, $L \cap\{0,1\}^{n}$ can be decided by a circuit of size 2^{n+2}.
- Define boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, where

$$
f\left(x_{1} x_{2} \cdots x_{n}\right)= \begin{cases}1 & x_{1} x_{2} \cdots x_{n} \in L \\ 0 & x_{1} x_{2} \cdots x_{n} \notin L\end{cases}
$$

The Proof (concluded)

- Clearly, any circuit that implements f decides $L \cap\{0,1\}^{n}$.
- Now,

$$
f\left(x_{1} x_{2} \cdots x_{n}\right)=\left(x_{1} \wedge f\left(1 x_{2} \cdots x_{n}\right)\right) \vee\left(\neg x_{1} \wedge f\left(0 x_{2} \cdots x_{n}\right)\right) .
$$

- The circuit size $s(n)$ for $f\left(x_{1} x_{2} \cdots x_{n}\right)$ hence satisfies

$$
s(n)=4+2 s(n-1)
$$

with $s(1)=1$.

- Solve it to obtain $s(n)=5 \times 2^{n-1}-4 \leq 2^{n+2}$.

The Circuit Complexity of P

Proposition 79 All languages in P have polynomial circuits.

- Let $L \in \mathrm{P}$ be decided by a TM in time $p(n)$.
- By Corollary 34 (p. 312), there is a circuit with $O\left(p(n)^{2}\right)$ gates that accepts $L \cap\{0,1\}^{n}$.
- The size of that circuit depends only on L and the length of the input.
- The size of that circuit is polynomial in n.

Polynomial Circuits vs. P

- Is the converse of Proposition 79 true?
- Do polynomial circuits accept only languages in P?
- No.
- Polynomial circuits can accept undecidable languages!

BPP's Circuit Complexity: Adleman's Theorem

 Theorem 80 (Adleman, 1978) All languages in BPP have polynomial circuits.- Our proof will be nonconstructive in that only the existence of the desired circuits is shown.
- Recall our proof of Theorem 16 (p. 208).
- Something exists if its probability of existence is nonzero.
- It is not known how to efficiently generate circuit C_{n}.
- If the construction of C_{n} can be made efficient, then $\mathrm{P}=\mathrm{BPP}$, an unlikely result.

The Proof

- Let $L \in$ BPP be decided by a precise polynomial-time NTM N by clear majority.
- We shall prove that L has polynomial circuits C_{0}, C_{1}, \ldots. - These deterministic circuits do not err.
- Suppose N runs in time $p(n)$, where $p(n)$ is a polynomial.
- Let $A_{n}=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$, where $a_{i} \in\{0,1\}^{p(n)}$.
- Each $a_{i} \in A_{n}$ represents a sequence of nondeterministic choices (i.e., a computation path) for N.
- Pick $m=12(n+1)$.

The Proof (continued)

- Let x be an input with $|x|=n$.
- Circuit C_{n} simulates N on x with all sequences of choices in A_{n} and then takes the majority of the m outcomes. ${ }^{\text {a }}$
- Note that each A_{n} yields a circuit.
- As N with a_{i} is a polynomial-time deterministic TM, it can be simulated by polynomial circuits of size $O\left(p(n)^{2}\right)$.
- See the proof of Proposition 79 (p. 619).
> ${ }^{a}$ As m is even, there may be no clear majority. Still, the probability of that happening is very small and does not materially affect our general conclusion. Thanks to a lively class discussion on December 14, 2010.

The Proof (continued)

- The size of C_{n} is therefore $O\left(m p(n)^{2}\right)=O\left(n p(n)^{2}\right)$.
- This is a polynomial.
- We now confirm the existence of an A_{n} making C_{n} correct on all n-bit inputs.
- Call a_{i} bad if it leads N to an error (a false positive or a false negative) for x.
- Select A_{n} uniformly randomly.

The Proof (continued)

- For each $x \in\{0,1\}^{n}, 1 / 4$ of the computations of N are erroneous.
- Because the sequences in A_{n} are chosen randomly and independently, the expected number of bad a_{i} 's is $m / 4$. ${ }^{\text {a }}$
- Also note after fixing the input x, the circuit is a function of the random bits.

[^2]
The Proof (continued)

- By the Chernoff bound (p. 599), the probability that the number of bad a_{i} 's is $m / 2$ or more is at most

$$
e^{-m / 12}<2^{-(n+1)}
$$

- The error probability of using the majority rule is thus

$$
<2^{-(n+1)}
$$

for each $x \in\{0,1\}^{n}$.

The Proof (continued)

- The probability that there is an x such that A_{n} results in an incorrect answer is

$$
<2^{n} 2^{-(n+1)}=2^{-1} .
$$

- Recall the union bound (Boole's inequality): $\operatorname{prob}[A \cup B \cup \cdots] \leq \operatorname{prob}[A]+\operatorname{prob}[B]+\cdots$.
- We just showed that at least half of them are correct.
- So with probability ≥ 0.5, a random A_{n} produces a correct C_{n} for all inputs of length n.
- Of course, verifying this fact may take a long time.

The Proof (concluded)

- Because this probability exceeds 0 , an A_{n} that makes majority vote work for all inputs of length n exists.
- Hence a correct C_{n} exists. $^{\text {a }}$
- We have used the probabilistic method popularized by Erdős. ${ }^{\text {b }}$
- This result answers the question on p. 530 with a "yes."
${ }^{\text {a }}$ Quine (1948), "To be is to be the value of a bound variable."
${ }^{\mathrm{b}}$ A counting argument in the probabilistic language.

Leonard Adleman ${ }^{\text {a }}$ (1945-)

${ }^{\text {a }}$ Turing Award (2002).

Paul Erdős (1913-1996)

Cryptography

Whoever wishes to keep a secret must hide the fact that he possesses one. - Johann Wolfgang von Goethe (1749-1832)

Cryptography

- Alice (A) wants to send a message to Bob (B) over a channel monitored by Eve (eavesdropper).
- The protocol should be such that the message is known only to Alice and Bob.
- The art and science of keeping messages secure is cryptography.

$$
\text { Alice } \xrightarrow{\text { Eve }} \text { Bob }
$$

Encryption and Decryption

- Alice and Bob agree on two algorithms E and D-the encryption and the decryption algorithms.
- Both E and D are known to the public in the analysis.
- Alice runs E and wants to send a message x to Bob.
- Bob operates D.

Encryption and Decryption (concluded)

- Privacy is assured in terms of two numbers e, d, the encryption and decryption keys.
- Alice sends $y=E(e, x)$ to Bob, who then performs $D(d, y)=x$ to recover x.
- x is called plaintext, and y is called ciphertext. ${ }^{\text {a }}$

[^3]
Some Requirements

- D should be an inverse of E given e and d.
- D and E must both run in (probabilistic) polynomial time.
- Eve should not be able to recover x from y without knowing d.
- As D is public, d must be kept secret.
- e may or may not be a secret.

Degree of Security

- Perfect secrecy: After a ciphertext is intercepted by the enemy, the a posteriori probabilities of the plaintext that this ciphertext represents are identical to the a priori probabilities of the same plaintext before the interception.
- The probability that plaintext \mathcal{P} occurs is independent of the ciphertext \mathcal{C} being observed.
- So knowing \mathcal{C} yields no advantage in recovering \mathcal{P}.

Degree of Security (concluded)

- Such systems are said to be informationally secure.
- A system is computationally secure if breaking it is theoretically possible but computationally infeasible.

Conditions for Perfect Secrecy ${ }^{\text {a }}$

- Consider a cryptosystem where:
- The space of ciphertext is as large as that of keys.
- Every plaintext has a nonzero probability of being used.
- It is perfectly secure if and only if the following hold.
- A key is chosen with uniform distribution.
- For each plaintext x and ciphertext y, there exists a unique key e such that $E(e, x)=y$.

[^4]
The One-Time Pad ${ }^{\text {a }}$

1: Alice generates a random string r as long as x;
2: Alice sends r to Bob over a secret channel;
3: Alice sends $x \oplus r$ to Bob over a public channel;
4: Bob receives y;
5: Bob recovers $x:=y \oplus r$;

[^5]
Analysis

- The one-time pad uses $e=d=r$.
- This is said to be a private-key cryptosystem.
- Knowing x and knowing r are equivalent.
- Because r is random and private, the one-time pad achieves perfect secrecy. ${ }^{a}$
- The random bit string must be new for each round of communication.
- But the assumption of a private channel is problematic.
${ }^{\text {a }}$ See p. 640.

Public-Key Cryptography ${ }^{\text {a }}$

- Suppose only d is private to Bob, whereas e is public knowledge.
- Bob generates the (e, d) pair and publishes e.
- Anybody like Alice can send $E(e, x)$ to Bob.
- Knowing d, Bob can recover x via

$$
D(d, E(e, x))=x .
$$

[^6]
Public-Key Cryptography (concluded)

- The assumptions are complexity-theoretic.
- It is computationally difficult to compute d from e.
- It is computationally difficult to compute x from y without knowing d.

Whitfield Diffie ${ }^{\text {a }}$ (1944-)

${ }^{\text {a }}$ Turing Award (2016).

Martin Hellman ${ }^{\text {a }}$ (1945-)

${ }^{\text {a }}$ Turing Award (2016).

Complexity Issues

- Given y and x, it is easy to verify whether $E(e, x)=y$.
- Hence one can always guess an x and verify.
- Cracking a public-key cryptosystem is thus in NP.
- A necessary condition for the existence of secure public-key cryptosystems is $\mathrm{P} \neq \mathrm{NP}$.
- But more is needed than $\mathrm{P} \neq \mathrm{NP}$.
- For instance, it is not sufficient that D is hard to compute in the worst case.
- It should be hard in "most" or "average" cases.

One-Way Functions

A function f is a one-way function if the following hold. ${ }^{\text {a }}$

1. f is one-to-one.
2. For all $x \in \Sigma^{*},|x|^{1 / k} \leq|f(x)| \leq|x|^{k}$ for some $k>0$.

- f is said to be honest.

3. f can be computed in polynomial time.
4. f^{-1} cannot be computed in polynomial time.

- Exhaustive search works, but it must be slow.
${ }^{\text {a Diffie }}$ \& Hellman (1976); Boppana \& Lagarias (1986); Grollmann \& Selman (1988); Ko (1985); Ko, Long, \& Du (1986); Watanabe (1985); Young (1983).

Existence of One-Way Functions (OWFs)

- Even if $\mathrm{P} \neq \mathrm{NP}$, there is no guarantee that one-way functions exist.
- No functions have been proved to be one-way.
- Is breaking glass a one-way function?

Candidates of One-Way Functions

- Modular exponentiation $f(x)=g^{x} \bmod p$, where g is a primitive root of p.
- Discrete logarithm is hard. ${ }^{\text {a }}$
- The RSA ${ }^{\mathrm{b}}$ function $f(x)=x^{e} \bmod p q$ for an odd e relatively prime to $\phi(p q)$.
- Breaking the RSA function is hard.

[^7]
Candidates of One-Way Functions (concluded)

- Modular squaring $f(x)=x^{2} \bmod p q$.
- Determining if a number with a Jacobi symbol 1 is a quadratic residue is hard- the quadratic residuacity assumption (QRA). ${ }^{\text {a }}$
- Breaking it is as hard as factorization when $p \equiv q \equiv 3 \bmod 4 .{ }^{\mathrm{b}}$

[^8]
The Secret-Key Agreement Problem

- Exchanging messages securely using a private-key cryptosystem requires Alice and Bob have the same key. ${ }^{\text {a }}$
- An example is the r in the one-time pad. ${ }^{\text {b }}$
- How can they agree on the same secret key when the channel is insecure?
- This is called the secret-key agreement problem.
- It was solved by Diffie and Hellman (1976) using one-way functions.

[^9]
The Diffie-Hellman Secret-Key Agreement Protocol

1: Alice and Bob agree on a large prime p and a primitive root g of $p ;\{p$ and g are public. $\}$
2: Alice chooses a large number a at random;
3: Alice computes $\alpha=g^{a} \bmod p$;
4: Bob chooses a large number b at random;
5: Bob computes $\beta=g^{b} \bmod p$;
6: Alice sends α to Bob, and Bob sends β to Alice;
7: Alice computes her key $\beta^{a} \bmod p$;
8: Bob computes his key $\alpha^{b} \bmod p$;

Analysis

- The keys computed by Alice and Bob are identical as

$$
\beta^{a}=g^{b a}=g^{a b}=\alpha^{b} \bmod p
$$

- To compute the common key from p, g, α, β is known as the Diffie-Hellman problem.
- It is conjectured to be hard. ${ }^{\text {a }}$
- If discrete logarithm is easy, then one can solve the Diffie-Hellman problem.
- Because a and b can then be obtained by Eve.
- But the other direction is still open.
${ }^{\text {a }}$ This is the computational Diffie-Hellman assumption (CDH).

The RSA Function

- Let p, q be two distinct primes.
- The RSA function is $x^{e} \bmod p q$ for an odd e relatively prime to $\phi(p q)$.
- By Lemma 58 (p. 480),

$$
\begin{equation*}
\phi(p q)=p q\left(1-\frac{1}{p}\right)\left(1-\frac{1}{q}\right)=p q-p-q+1 \tag{15}
\end{equation*}
$$

- As $\operatorname{gcd}(e, \phi(p q))=1$, there is a d such that

$$
e d \equiv 1 \bmod \phi(p q)
$$

which can be found by the Euclidean algorithm. ${ }^{\text {a }}$
${ }^{\text {a }}$ One can think of d as e^{-1}.

A Public-Key Cryptosystem Based on RSA

- Bob generates p and q.
- Bob publishes $p q$ and the encryption key e, a number relatively prime to $\phi(p q)$.
- The encryption function is

$$
y=x^{e} \bmod p q
$$

- Bob calculates $\phi(p q)$ by Eq. (15) (p. 655).
- Bob then calculates d such that $e d=1+k \phi(p q)$ for some $k \in \mathbb{Z}$.

A Public-Key Cryptosystem Based on RSA (continued)

- The decryption function is

$$
y^{d} \bmod p q .
$$

- It works because

$$
y^{d}=x^{e d}=x^{1+k \phi(p q)}=x \bmod p q
$$

by the Fermat-Euler theorem when $\operatorname{gcd}(x, p q)=1$
(p. 489).

A Public-Key Cryptosystem Based on RSA (continued)

- What if x is not relatively prime to $p q$? ${ }^{\text {a }}$
- As $\phi(p q)=(p-1)(q-1)$,

$$
e d=1+k(p-1)(q-1) .
$$

- Say $x \equiv 0 \bmod p$.
- Then

$$
y^{d} \equiv x^{e d} \equiv 0 \equiv x \bmod p .
$$

[^10]
A Public-Key Cryptosystem Based on RSA (continued)

- On the other hand, either $x \not \equiv 0 \bmod q$ or $x \equiv 0 \bmod q$.
- If $x \not \equiv 0 \bmod q$, then

$$
\begin{aligned}
y^{d} & \equiv x^{e d} \equiv x^{e d-1} x \equiv x^{k(p-1)(q-1)} x \equiv\left(x^{q-1}\right)^{k(p-1)} x \\
& \equiv x \bmod q
\end{aligned}
$$

by Fermat's "little" theorem (p. 487).

- If $x \equiv 0 \bmod q$, then

$$
y^{d} \equiv x^{e d} \equiv 0 \equiv x \bmod q
$$

A Public-Key Cryptosystem Based on RSA (concluded)

- By the Chinese remainder theorem (p. 486),

$$
y^{d} \equiv x^{e d} \equiv 0 \equiv x \bmod p q,
$$

even when x is not relatively prime to p.

- When x is not relatively prime to q, the same conclusion holds.

The "Security" of the RSA Function

- Factoring $p q$ or calculating d from $(e, p q)$ seems hard. ${ }^{\text {a }}$
- Breaking the last bit of RSA is as hard as breaking the RSA. ${ }^{\text {b }}$
- Recommended RSA key sizes: ${ }^{\text {c }}$
- 1024 bits up to 2010 .
- 2048 bits up to 2030 .
- 3072 bits up to 2031 and beyond.

```
    a}\mathrm{ aee also p. }485
    'b}Alexi, Chor, Goldreich, & Schnorr (1988).
    c}\mathrm{ cRA (2003). RSA was acquired by EMC in 2006 for 2.1 billion US
dollars.
```


The "Security" of the RSA Function (continued)

- Recall that problem A is "harder than" problem B if solving A results in solving B.
- Factorization is "harder than" breaking the RSA.
- It is not hard to show that calculating Euler's phi function ${ }^{\text {a }}$ is "harder than" breaking the RSA.
- Factorization is "harder than" calculating Euler's phi function (see Lemma 58 on p. 480).
- So factorization is harder than calculating Euler's phi function, which is harder than breaking the RSA.

[^11]
The "Security" of the RSA Function (concluded)

- Factorization cannot be NP-hard unless NP = coNP. ${ }^{\text {a }}$
- So breaking the RSA is unlikely to imply $\mathrm{P}=\mathrm{NP}$.
- But numbers can be factorized efficiently by quantum computers. ${ }^{\text {b }}$
- RSA was alleged to have received 10 million US dollars from the government to promote unsecure p and q. ${ }^{\text {c }}$

[^12]
Adi Shamir, Ron Rivest, and Leonard Adleman

Ron Rivest ${ }^{\text {a }}$ (1947-)

${ }^{\text {a }}$ Turing Award (2002).

Adi Shamir ${ }^{\text {a }}$ (1952-)

${ }^{\text {a }}$ Turing Award (2002).

A Parallel History

- Diffie and Hellman's solution to the secret-key agreement problem led to public-key cryptography.
- In 1973, the RSA public-key cryptosystem was invented in Britain before the Diffie-Hellman secret-key agreement scheme. ${ }^{\text {a }}$

[^13]Is a forged signature the same sort of thing as a genuine signature, or is it a different sort of thing?

- Gilbert Ryle (1900-1976), The Concept of Mind (1949)
"Katherine, I gave him the code. He verified the code."
"But did you verify him?"
- The Numbers Station (2013)

Digital Signatures ${ }^{\text {a }}$

- Alice wants to send Bob a signed document x.
- The signature must unmistakably identifies the sender.
- Both Alice and Bob have public and private keys

$$
e_{\text {Alice }}, e_{\text {Bob }}, d_{\text {Alice }}, d_{\text {Bob }}
$$

- Every cryptosystem guarantees $D(d, E(e, x))=x$.
- Assume the cryptosystem also satisfies the commutative property

$$
\begin{equation*}
E(e, D(d, x))=D(d, E(e, x)) \tag{16}
\end{equation*}
$$

- E.g., the RSA system satisfies it as $\left(x^{d}\right)^{e}=\left(x^{e}\right)^{d}$.

[^14]
Digital Signatures Based on Public-Key Systems

- Alice signs x as

$$
\left(x, D\left(d_{\text {Alice }}, x\right)\right) .
$$

- Bob receives (x, y) and verifies the signature by checking

$$
E\left(e_{\text {Alice }}, y\right)=E\left(e_{\text {Alice }}, D\left(d_{\text {Alice }}, x\right)\right)=x
$$

based on Eq. (16).

- The claim of authenticity is founded on the difficulty of inverting $E_{\text {Alice }}$ without knowing the key $d_{\text {Alice }}$.

Blind Signatures ${ }^{\text {a }}$

- There are applications where the document author (Alice) and the signer (Bob) are different parties.
- Sender privacy: We do not want Bob to see the document.
- Anonymous electronic voting systems, digital cash schemes, anonymous payments, etc.
- Idea: The document is blinded by Alice before it is signed by Bob.
- The resulting blind signature can be publicly verified against the original, unblinded document x as before.

[^15]
Blind Signatures Based on RSA

Blinding by Alice:
1: Pick $r \in Z_{n}^{*}$ randomly;
2: Send $x^{\prime}=x r^{e} \bmod n$ to Bob; $\left\{x\right.$ is blinded by r^{e}. $\}$

- Note that $r \rightarrow r^{e} \bmod n$ is a one-to-one correspondence.
- Hence $r^{e} \bmod n$ is a random number, too.
- As a result, x^{\prime} is random and leaks no information.

Blind Signatures Based on RSA (continued)

Signing by Bob with his private decryption key d :
1: Send the blinded signature $s^{\prime}=\left(x^{\prime}\right)^{d} \bmod n$ to Alice;

Blind Signatures Based on RSA (continued)

The RSA signature of Alice:
1: Alice obtains the signature $s=s^{\prime} r^{-1} \bmod n$;

- This works because
$s \equiv s^{\prime} r^{-1} \equiv\left(x^{\prime}\right)^{d} r^{-1} \equiv\left(x r^{e}\right)^{d} r^{-1} \equiv x^{d} r^{e d-1} \equiv x^{d} \bmod n$
by the properties of the RSA function.
- Note that only Alice knows r.

Blind Signatures Based on RSA (concluded)

- Anyone can verify the document was signed by Bob by checking with Bob's encryption key e the following:

$$
s^{e} \equiv x \bmod n
$$

- But Bob does not know s is related to x^{\prime} (thus Alice).

Probabilistic Encryptiona

- A deterministic cryptosystem can be broken if the plaintext has a distribution that favors the "easy" cases.
- The ability to forge signatures on even a vanishingly small fraction of strings of some length is a security weakness if those strings were the probable ones!
- A scheme may also "leak" partial information.
- Parity of the plaintext, e.g.
- The first solution to the problems of skewed distribution and partial information was based on the QRA.

[^16]
Shafi Goldwasser ${ }^{\text {a }}$ (1958-)

[^17]Silvio Micalia (1954-)

${ }^{\text {a }}$ Turing Award (2013).

Goldwasser and Micali

A Useful Lemma

Lemma 81 Let $n=p q$ be a product of two distinct primes. Then a number $y \in Z_{n}^{*}$ is a quadratic residue modulo n if and only if $(y \mid p)=(y \mid q)=1$.

- The "only if" part:
- Let x be a solution to $x^{2}=y \bmod p q$.
- Then $x^{2}=y \bmod p$ and $x^{2}=y \bmod q$ also hold.
- Hence y is a quadratic modulo p and a quadratic residue modulo q.

The Proof (concluded)

- The "if" part:
- Let $a_{1}^{2}=y \bmod p$ and $a_{2}^{2}=y \bmod q$.
- Solve

$$
\begin{aligned}
x & =a_{1} \bmod p \\
x & =a_{2} \bmod q
\end{aligned}
$$

for x with the Chinese remainder theorem (p. 486).

- As $x^{2}=y \bmod p, x^{2}=y \bmod q$, and $\operatorname{gcd}(p, q)=1$, we must have $x^{2}=y \bmod p q$.

The Jacobi Symbol and Quadratic Residuacity Test

- The Legendre symbol can be used as a test for quadratic residuacity by Lemma 68 (p. 554).
- Lemma 81 (p. 680) says this is not the case with the Jacobi symbol in general.
- Suppose $n=p q$ is a product of two distinct primes.
- A number $y \in Z_{n}^{*}$ with Jacobi symbol $(y \mid p q)=1$ is a quadratic nonresidue modulo n when

$$
\begin{aligned}
& \qquad(y \mid p)=(y \mid q)=-1, \\
& \text { because }(y \mid p q)=(y \mid p)(y \mid q)
\end{aligned}
$$

The Setup

- Bob publishes $n=p q$, a product of two distinct primes, and a quadratic nonresidue y with Jacobi symbol 1.
- Bob keeps secret the factorization of n.
- Alice wants to send bit string $b_{1} b_{2} \cdots b_{k}$ to Bob.
- Alice encrypts the bits by choosing a random quadratic residue modulo n if b_{i} is 1 and a random quadratic nonresidue (with Jacobi symbol 1) otherwise.
- So a sequence of residues and nonresidues are sent.
- Knowing the factorization of n, Bob can efficiently test quadratic residuacity and thus read the message.

The Protocol for Alice

1: for $i=1,2, \ldots, k$ do
2: \quad Pick $r \in Z_{n}^{*}$ randomly;
3: if $b_{i}=1$ then
4: \quad Send $r^{2} \bmod n ;\{$ Jacobi symbol is 1.$\}$
5: else
6: \quad Send $r^{2} y \bmod n ;\{$ Jacobi symbol is still 1.\}
7: end if
8: end for

The Protocol for Bob
1: for $i=1,2, \ldots, k$ do
2: Receive r;
3: \quad if $(r \mid p)=1$ and $(r \mid q)=1$ then
4: $\quad b_{i}:=1$;
5: else
6: $\quad b_{i}:=0$;
7: end if
8: end for

Semantic Security

- This encryption scheme is probabilistic.
- There are a large number of different encryptions of a given message.
- One is chosen at random by the sender to represent the message.
- Encryption is a one-to-many mapping.
- This scheme is both polynomially secure and semantically secure.

[^0]: ${ }^{\text {a }}$ See p. 621.

[^1]: ${ }^{\text {a }}$ It did not work for NP either.

[^2]: ${ }^{\text {a }}$ So the proof will not work for NP. Contributed by Mr. Ching-Hua Yu (D00921025) on December 11, 2012.

[^3]: aBoth "zero" and "cipher" come from the same Arab word.

[^4]: ${ }^{\text {a }}$ Shannon (1949).

[^5]: ${ }^{\text {a Mauborgne } \& ~ V e r n a m ~(1917) ; ~ S h a n n o n ~(1949) . ~ I t ~ w a s ~ a l l e g e d l y ~ u s e d ~}$ for the hotline between Russia and U.S.

[^6]: ${ }^{\text {a Diffie } \& ~ H e l l m a n ~(1976) . ~}$

[^7]: ${ }^{\text {a }}$ Conjectured to be $2^{n^{\epsilon}}$ for some $\epsilon>0$ in both the worst-case sense and average sense. Doable in time $n^{O(\log n)}$ for finite fields of small characteristic (Barbulescu, et al., 2013). It is in NP in some sense (Grollmann \& Selman, 1988).
 ${ }^{\mathrm{b}}$ Rivest, Shamir, \& Adleman (1978).

[^8]: ${ }^{\text {a }}$ Due to Gauss.
 ${ }^{\mathrm{b}}$ Rabin (1979).

[^9]: ${ }^{\text {a }}$ See p. 642 .
 ${ }^{\mathrm{b}}$ See p. 641 .

[^10]: ${ }^{a}$ Of course, one would be unlucky here.

[^11]: ${ }^{\text {a }}$ When the input is not factorized!

[^12]: ${ }^{\text {a }}$ Brassard (1979).
 ${ }^{\text {b }}$ Shor (1994).
 ${ }^{\mathrm{c}}$ Menn (2013).

[^13]: ${ }^{\text {a }}$ Ellis, Cocks, and Williamson of the Communications Electronics Security Group of the British Government Communications Head Quarters (GCHQ).

[^14]: ${ }^{\text {a }}$ Diffie \& Hellman (1976).

[^15]: ${ }^{a}$ Chaum (1983).

[^16]: ${ }^{\text {a }}$ Goldwasser \& Micali (1982). This paper "laid the framework for modern cryptography" (2013).

[^17]: ${ }^{\text {a }}$ Turing Award (2013).

