Generalized 2SAT: MAX2SAT

- Consider a 2SAT formula.
- Let $K \in \mathbb{N}$.
- MAX2SAT asks whether there is a truth assignment that satisfies at least K of the clauses.
 - MAX2SAT becomes 2SAT when K equals the number of clauses.

Generalized 2SAT: MAX2SAT (concluded)

- MAX2SAT is an optimization problem.
 - With binary search, one can nail the maximum number of satisfiable clauses of 2SAT formulas.
- MAX2SAT \in NP: Guess a truth assignment and verify the count.
- We now reduce 3SAT to MAX2SAT.

$\rm MAX2SAT$ Is NP-Complete^a

• Consider the following 10 clauses:

 $(x) \land (y) \land (z) \land (w)$ $(\neg x \lor \neg y) \land (\neg y \lor \neg z) \land (\neg z \lor \neg x)$ $(x \lor \neg w) \land (y \lor \neg w) \land (z \lor \neg w)$

- Let the 2SAT formula r(x, y, z, w) represent the conjunction of these clauses.
- The clauses are symmetric with respect to x, y, and z.
- How many clauses can we satisfy?

^aGarey, Johnson, & Stockmeyer (1976).

All of x, y, z are true: By setting w to true, we satisfy 4+0+3=7 clauses, whereas by setting w to false, we satisfy only 3+0+3=6 clauses.

Two of x, y, z **are true:** By setting w to true, we satisfy 3+2+2=7 clauses, whereas by setting w to false, we satisfy 2+2+3=7 clauses.

One of x, y, z **is true:** By setting w to false, we satisfy 1+3+3=7 clauses, whereas by setting w to true, we satisfy only 2+3+1=6 clauses.

None of x, y, z is true: By setting w to false, we satisfy 0+3+3=6 clauses, whereas by setting w to true, we satisfy only 1+3+0=4 clauses.

- A truth assignment that satisfies x ∨ y ∨ z can be extended to satisfy 7 of the 10 clauses of r(x, y, z, w), and no more.
- A truth assignment that does *not* satisfy $x \lor y \lor z$ can be extended to satisfy only 6 of them, *and no more*.
- The reduction from 3SAT ϕ to MAX2SAT $R(\phi)$:
 - For each clause $C_i = (\alpha \lor \beta \lor \gamma)$ of ϕ , add **group** $r(\alpha, \beta, \gamma, w_i)$ to $R(\phi)$.
- If ϕ has m clauses, then $R(\phi)$ has 10m clauses.

- Finally, set K = 7m.
- We now show that K clauses of $R(\phi)$ can be satisfied if and only if ϕ is satisfiable.

- Suppose K = 7m clauses of $R(\phi)$ can be satisfied.
 - 7 clauses of each group $r(\alpha, \beta, \gamma, w_i)$ must be satisfied because each group can have at most 7 clauses satisfied.^a
 - Hence each clause $C_i = (\alpha \lor \beta \lor \gamma)$ of ϕ is satisfied by the same truth assignment.
 - So ϕ is satisfied.

 $^{^{\}rm a}$ If 70% of the world population are male and if at most 70% of each country's population are male, then each country must have exactly 70% male population.

The Proof (concluded)

- Suppose ϕ is satisfiable.
 - Let T satisfy all clauses of ϕ .
 - Each group $r(\alpha, \beta, \gamma, w_i)$ can set its w_i appropriately to have 7 clauses satisfied.
 - So K = 7m clauses are satisfied.

NAESAT

- The NAESAT (for "not-all-equal" SAT) is like 3SAT.
- But there must be a satisfying truth assignment under which no clauses have all three literals equal in truth value.
- Equivalently, there is a truth assignment such that each clause has a literal assigned true and a literal assigned false.
- Equivalently, there is a *satisfying* truth assignment under which each clause has a literal assigned false.

NAESAT (concluded)

• Take

$$\phi = (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3)$$
$$\land \quad (x_1 \lor x_2 \lor x_3)$$

as an example.

Then { x₁ = true, x₂ = false, x₃ = false }
 NAE-satisfies φ because

 $(\texttt{false} \lor \texttt{true} \lor \texttt{true}) \land (\texttt{false} \lor \texttt{false} \lor \texttt{true})$

 $\land \quad (\texttt{true} \lor \texttt{false} \lor \texttt{false}).$

${\tt NAESAT}$ is NP-Complete^a

- Recall the reduction of CIRCUIT SAT to SAT on p. 279ff.
- It produced a CNF ϕ in which each clause has 1, 2, or 3 literals.
- Add the same variable z to all clauses with fewer than 3 literals to make it a 3SAT formula.
- Goal: The new formula $\phi(z)$ is NAE-satisfiable if and only if the original circuit is satisfiable.

^aSchaefer (1978).

- The following simple observation will be useful.
- Suppose T NAE-satisfies a boolean formula ϕ .
- Let \overline{T} take the opposite truth value of T on every variable.
- Then \overline{T} also NAE-satisfies ϕ .^a

^aHesse's *Siddhartha* (1922), "The opposite of every truth is just as true!"

- Suppose T NAE-satisfies $\phi(z)$.
 - \bar{T} also NAE-satisfies $\phi(z)$.
 - Under T or \overline{T} , variable z takes the value false.
 - This truth assignment \mathcal{T} must satisfy all the clauses of ϕ .
 - * Because z is not the reason that makes $\phi(z)$ true under \mathcal{T} anyway.
 - So $\mathcal{T} \models \phi$.
 - And the original circuit is satisfiable.

The Proof (concluded)

- Suppose there is a truth assignment that satisfies the circuit.
 - Then there is a truth assignment T that satisfies every clause of ϕ .
 - Extend T by adding T(z) = false to obtain T'.
 - -T' satisfies $\phi(z)$.
 - So in no clauses are all three literals false under T'.
 - In no clauses are all three literals true under T'.
 - * Need to go over the detailed construction on pp. 280–282.

Undirected Graphs

- An undirected graph G = (V, E) has a finite set of nodes, V, and a set of *undirected* edges, E.
- It is like a directed graph except that the edges have no directions and there are no self-loops.
- Use [*i*, *j*] to mean there is an undirected edge between node *i* and node *j*.

Independent Sets

- Let G = (V, E) be an undirected graph.
- $I \subseteq V$.
- *I* is **independent** if there is no edge between any two nodes *i*, *j* ∈ *I*.
- INDEPENDENT SET: Given an undirected graph and a goal K, is there an independent set of size K?
- Many applications.

INDEPENDENT SET Is NP-Complete

- This problem is in NP: Guess a set of nodes and verify that it is independent and meets the count.
- We will reduce 3SAT to INDEPENDENT SET.
- If a graph contains a triangle, any independent set can contain at most one node of the triangle.
- The results of the reduction will be graphs whose nodes can be partitioned into disjoint triangles, one for each clause.^a

^aRecall that a reduction does not have to be an onto function.

- Let ϕ be a 3SAT formula with m clauses.
- We will construct graph G with K = m.
- Furthermore, ϕ is satisfiable if and only if G has an independent set of size K.
- Here is the reduction:
 - There is a triangle for each clause with the literals as the nodes.
 - Add edges between x and $\neg x$ for every variable x.

- Suppose G has an independent set I of size K = m.
 - An independent set can contain at most m nodes, one from each triangle.
 - So I contains exactly one node from each triangle.
 - Truth assignment T assigns true to those literals in I.
 - -T is consistent because contradictory literals are connected by an edge; hence both cannot be in I.
 - T satisfies ϕ because it has a node from every triangle, thus satisfying every clause.^a

^aThe variables without a truth value can be assigned arbitrarily. Contributed by Mr. Chun-Yuan Chen (R99922119) on November 2, 2010.

The Proof (concluded)

- Suppose ϕ is satisfiable.
 - Let truth assignment T satisfy ϕ .
 - Collect one node from each triangle whose literal is true under T.
 - The choice is arbitrary if there is more than one true literal.
 - This set of m nodes must be independent by construction.
 - * Because both literals x and $\neg x$ cannot be assigned true.

Other INDEPENDENT SET-Related NP-Complete Problems

Corollary 42 INDEPENDENT SET is NP-complete for 4-degree graphs.

Theorem 43 INDEPENDENT SET is NP-complete for planar graphs.

Theorem 44 (Garey & Johnson, 1977)) INDEPENDENT SET is NP-complete for 3-degree planar graphs.

Is INDEPENDENT EDGE SET Also NP-Complete?

- INDEPENDENT EDGE SET: Given an undirected graph and a goal K, is there an independent *edge* set of size K?
- This problem is equivalent to maximum matching!
- Maximum matching can be solved in polynomial time.^a

^aEdmonds (1965); Micali & V. Vazirani (1980).

NODE COVER

- We are given an undirected graph G and a goal K.
- NODE COVER: Is there a set C with K or fewer nodes such that each edge of G has at least one of its endpoints (i.e., incident nodes) in C?
- Many applications.

NODE COVER Is NP-Complete

Corollary 45 (Karp, 1972) NODE COVER is NP-complete.

• I is an independent set of G = (V, E) if and only if V - I is a node cover of G.

$\mathsf{Remarks}^{\mathrm{a}}$

- Are INDEPENDENT SET and NODE COVER in P if K is a constant?
 - Yes, because one can do an exhaustive search on all the possible node covers or independent sets (both $\binom{n}{K}$ of them, a polynomial).^b
- Are INDEPENDENT SET and NODE COVER NP-complete if K is a linear function of n?

- INDEPENDENT SET with K = n/3 and NODE COVER with K = 2n/3 remain NP-complete by our reductions.

a
Contributed by Mr. Ching-Hua Yu (D00921025) on October 30, 2012.
 ${}^{\rm b}n=\mid V\mid.$

CLIQUE

- We are given an undirected graph G and a goal K.
- CLIQUE asks if there is a set C with K nodes such that there is an edge between any two nodes $i, j \in C$.
- Many applications.

${\rm CLIQUE}~ls~NP\text{-}Complete^{\rm a}$

Corollary 46 CLIQUE is NP-complete.

- Let \overline{G} be the **complement** of G, where $[x, y] \in \overline{G}$ if and only if $[x, y] \notin G$.
- I is a clique in $G \Leftrightarrow I$ is an independent set in \overline{G} .

MIN CUT and MAX CUT

- A **cut** in an undirected graph G = (V, E) is a partition of the nodes into two nonempty sets S and V S.
- The size of a cut (S, V S) is the number of edges between S and V S.
- MIN CUT asks for the minimum cut size.
- MIN CUT \in P by the maxflow algorithm.^a
- MAX CUT asks if there is a cut of size at least K.

-K is part of the input.

^aFord & Fulkerson (1962); Orlin (2012) improves the running time to $O(|V| \cdot |E|)$.

MIN CUT and MAX CUT (concluded)

• MAX CUT has applications in circuit layout.

 The minimum area of a VLSI layout of a graph is not less than the square of its maximum cut size.^a

^aRaspaud, Sýkora, & Vrťo (1995); Mak & Wong (2000).

$\rm MAX\ CUT$ Is NP-Complete^a

- We will reduce NAESAT to MAX CUT.
- Given a 3SAT formula ϕ with m clauses, we shall construct a graph G = (V, E) and a goal K.
- Furthermore, there is a cut of size at least K if and only if ϕ is NAE-satisfiable.
- Our graph will have multiple edges between two nodes.
 - Each such edge contributes one to the cut if its nodes are separated.

^aKarp (1972); Garey, Johnson, & Stockmeyer (1976). MAX CUT remains NP-complete even for graphs with maximum degree 3 (Makedon, Papadimitriou, & Sudborough, 1985).

The Proof

- Suppose ϕ 's m clauses are C_1, C_2, \ldots, C_m .
- The boolean variables are x_1, x_2, \ldots, x_n .
- G has 2n nodes: $x_1, x_2, \ldots, x_n, \neg x_1, \neg x_2, \ldots, \neg x_n$.
- Each clause with 3 distinct literals makes a triangle in G.
- For each clause with two identical literals, there are two parallel edges between the two distinct literals.

- No need to consider clauses with one literal (why?).
- No need to consider clauses containing two opposite literals x_i and $\neg x_i$ (why?).
- For each variable x_i , add n_i copies of edge $[x_i, \neg x_i]$, where n_i is the number of occurrences of x_i and $\neg x_i$ in ϕ .
- Note that

$$\sum_{i=1}^{n} n_i = 3m.$$

- The summation is simply the total number of literals.

- Set K = 5m.
- Suppose there is a cut (S, V S) of size 5m or more.
- A clause (a triangle or two parallel edges) contributes at most 2 to a cut no matter how you split it.
- Suppose some x_i and $\neg x_i$ are on the *same* side of the cut.
- They together contribute at most $2n_i$ edges to the cut.
 - They appear in at most n_i different clauses.
 - A clause contributes at most 2 to a cut.

- Either x_i or $\neg x_i$ contributes at most n_i to the cut by the pigeonhole principle.
- Changing the side of that literal does *not decrease* the size of the cut.
- Hence we assume variables are separated from their negations.
- The total number of edges in the cut that join opposite literals x_i and $\neg x_i$ is $\sum_{i=1}^n n_i$.
- But we knew $\sum_{i=1}^{n} n_i = 3m$.

The Proof (concluded)

- The remaining $K 3m \ge 2m$ edges in the cut must come from the *m* triangles or parallel edges that correspond to the clauses.
- Each can contribute at most 2 to the cut.
- So all are split.
- A split clause means at least one of its literals is true and at least one false.
- The other direction is left as an exercise.

Remarks

- We had proved that MAX CUT is NP-complete for multigraphs.
- How about proving the same thing for simple graphs?^a
- How to modify the proof to reduce 4SAT to MAX CUT?^b
- All NP-complete problems are mutually reducible by definition.^c

– So they are equally hard in this sense.^d

^aContributed by Mr. Tai-Dai Chou (J93922005) on June 2, 2005. ^bContributed by Mr. Chien-Lin Chen (J94922015) on June 8, 2006. ^cContributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009. ^dContributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.

MAX BISECTION

- MAX CUT becomes MAX BISECTION if we require that |S| = |V S|.
- It has many applications, especially in VLSI layout.

${\rm MAX} \ {\rm BISECTION} \ Is \ NP-Complete$

- We shall reduce the more general MAX CUT to MAX BISECTION.
- Add |V| = n isolated nodes to G to yield G'.
- G' has 2n nodes.
- G''s goal K is identical to G's
 - As the new nodes have no edges, they contribute 0 to the cut.
- This completes the reduction.

The Proof (concluded)

- Every cut (S, V S) of G = (V, E) can be made into a bisection by appropriately allocating the new nodes between S and V S.
- Hence each cut of G can be made a cut of G' of the same size, and vice versa.

BISECTION WIDTH

- BISECTION WIDTH is like MAX BISECTION except that it asks if there is a bisection of size at most K (sort of MIN BISECTION).
- Unlike MIN CUT, BISECTION WIDTH is NP-complete.
- We reduce MAX BISECTION to BISECTION WIDTH.
- Given a graph G = (V, E), where |V| is even, we generate the complement^a of G.
- Given a goal of K, we generate a goal of $n^2 K$.^b

^aRecall p. 379. ^b|V| = 2n.

The Proof (concluded)

- To show the reduction works, simply notice the following easily verifiable claims.
 - A graph G = (V, E), where |V| = 2n, has a bisection of size K if and only if the complement of G has a bisection of size $n^2 - K$.
 - So G has a bisection of size $\geq K$ if and only if its complement has a bisection of size $\leq n^2 - K$.

HAMILTONIAN PATH Is NP-Complete $^{\rm a}$

Theorem 47 Given an undirected graph, the question whether it has a Hamiltonian path is NP-complete.

^aKarp (1972).

A Hamiltonian Path at IKEA, Covina, California?

TSP (D) Is NP-Complete

Corollary 48 TSP (D) is NP-complete.

- Consider a graph G with n nodes.
- Create a weighted complete graph G' with the same nodes as G.
- Set $d_{ij} = 1$ on G' if $[i, j] \in G$ and $d_{ij} = 2$ on G' if $[i, j] \notin G$.

- Note that G' is a complete graph.

- Set the budget B = n + 1.
- This completes the reduction.

TSP (D) Is NP-Complete (continued)

- Suppose G' has a tour of distance at most n + 1.^a
- Then that tour on G' must contain at most one edge with weight 2.
- If a tour on G' contains one edge with weight 2, remove that edge to arrive at a Hamiltonian path for G.
- Suppose a tour on G' contains no edge with weight 2.
- Remove any edge to arrive at a Hamiltonian path for G.

^aA tour is a cycle, not a path.

TSP (D) Is NP-Complete (concluded)

- On the other hand, suppose G has a Hamiltonian path.
- There is a tour on G' containing at most one edge with weight 2.
 - Start with a Hamiltonian path and then close the loop.
- The total cost is then at most (n-1) + 2 = n + 1 = B.
- We conclude that there is a tour of length B or less on G' if and only if G has a Hamiltonian path.

$\mathsf{Random}\ \mathrm{TSP}$

- Suppose each distance d_{ij} is picked uniformly and independently from the interval [0, 1].
- It is known that the total distance of the shortest tour has a mean value of $\beta \sqrt{n}$ for some positive β .^a
- In fact, the total distance of the shortest tour deviates from the mean by more than t with probability at most $e^{-t^2/(4n)!b}$

^aBeardwood, Halton, & Hammersley (1959). ^bDubhashi & Panconesi (2012).

Graph Coloring

- k-COLORING: Can the nodes of a graph be colored with ≤ k colors such that no two adjacent nodes have the same color?^a
- 2-COLORING is in P (why?).
- But 3-COLORING is NP-complete (see next page).
- k-COLORING is NP-complete for $k \ge 3$ (why?).
- EXACT-k-COLORING asks if the nodes of a graph can be colored using *exactly* k colors.
- It remains NP-complete for $k \ge 3$ (why?).

^ak is not part of the input; k is part of the problem statement.

$3\text{-}\mathrm{COLORING}$ Is NP-Complete^a

- We will reduce NAESAT to 3-COLORING.
- We are given a set of clauses C_1, C_2, \ldots, C_m each with 3 literals.
- The boolean variables are x_1, x_2, \ldots, x_n .
- We shall construct a graph G that can be colored with colors {0,1,2} if and only if all the clauses can be NAE-satisfied.

^aKarp (1972).

- Every variable x_i is involved in a triangle $[a, x_i, \neg x_i]$ with a common node a.
- Each clause $C_i = (c_{i1} \lor c_{i2} \lor c_{i3})$ is also represented by a triangle

 $[c_{i1}, c_{i2}, c_{i3}].$

- Node c_{ij} and a node in an *a*-triangle $[a, x_k, \neg x_k]$ with the same label represent *distinct* nodes.
- There is an edge between c_{ij} and the node that represents the *j*th literal of C_i .^a

^aAlternative proof: There is an edge between $\neg c_{ij}$ and the node that represents the *j*th literal of C_i . Contributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.

Suppose the graph is 3-colorable.

- Assume without loss of generality that node *a* takes the color 2.
- A triangle must use up all 3 colors.
- As a result, one of x_i and $\neg x_i$ must take the color 0 and the other 1.

- Treat 1 as true and 0 as false.^a
 - We are dealing with the *a*-triangles here, not the clause triangles yet.
- The resulting truth assignment is clearly contradiction free.
- As each clause triangle contains one color 1 and one color 0, the clauses are NAE-satisfied.

^aThe opposite also works.

Suppose the clauses are NAE-satisfiable.

- Color node *a* with color 2.
- Color the nodes representing literals by their truth values (color 0 for false and color 1 for true).
 - We are dealing with the *a*-triangles here, not the clause triangles.

- For each clause triangle:
 - Pick any two literals with opposite truth values.^a
 - Color the corresponding nodes with 0 if the literal is
 true and 1 if it is false.
 - Color the remaining node with color 2.

^aBreak ties arbitrarily.

The Proof (concluded)

- The coloring is legitimate.
 - If literal w of a clause triangle has color 2, then its color will never be an issue.
 - If literal w of a clause triangle has color 1, then it must be connected up to literal w with color 0.
 - If literal w of a clause triangle has color 0, then it must be connected up to literal w with color 1.

More on $\operatorname{3-COLORING}$ and the Chromatic Number

- 3-COLORING remains NP-complete for planar graphs.^a
- Assume G is 3-colorable.
- There is a classic algorithm that finds a 3-coloring in time $O(3^{n/3}) = 1.4422^n$.^b
- It can be improved to $O(1.3289^n)$.^c

^aGarey, Johnson, & Stockmeyer (1976); Dailey (1980). ^bLawler (1976). ^cBeigel & Eppstein (2000). More on 3-COLORING and the Chromatic Number (concluded)

- The chromatic number $\chi(G)$ is the smallest number of colors needed to color a graph G.
- There is an algorithm to find $\chi(G)$ in time $O((4/3)^{n/3}) = 2.4422^n$.^a
- It can be improved to $O((4/3 + 3^{4/3}/4)^n) = O(2.4150^n)^b$ and $2^n n^{O(1)}$.^c
- Computing $\chi(G)$ cannot be easier than 3-COLORING.^d

^aLawler (1976).
^bEppstein (2003).
^cKoivisto (2006).
^dContributed by Mr. Ching-Hua Yu (D00921025) on October 30, 2012.