Generalized 2SAT: MAX2SAT

- Consider a 2 sat formula.
- Let $K \in \mathbb{N}$.
- mAX2SAT asks whether there is a truth assignment that satisfies at least K of the clauses.
- mAX2SAT becomes 2SAT when K equals the number of clauses.

Generalized 2SAT: MAX2SAT (concluded)

- MAX2SAT is an optimization problem.
- With binary search, one can nail the maximum number of satisfiable clauses of 2SAT formulas.
- max2sat \in NP: Guess a truth assignment and verify the count.
- We now reduce 3 sat to max2sat.

MAX2sat Is NP-Complete ${ }^{\text {a }}$

- Consider the following 10 clauses:

$$
\left.\begin{array}{rl}
(x) & \wedge(y) \\
(\neg x \vee \neg y) & \wedge(\neg y \vee \neg z) \\
\wedge(\neg z \vee \neg x) \\
(x \vee \neg w) & \wedge(y \vee \neg w)
\end{array}\right)(z \vee \neg w) \quad \text { (} x \vee(z)
$$

- Let the 2SAT formula $r(x, y, z, w)$ represent the conjunction of these clauses.
- The clauses are symmetric with respect to x, y, and z.
- How many clauses can we satisfy?

[^0]
The Proof (continued)

All of x, y, z are true: By setting w to true, we satisfy $4+0+3=7$ clauses, whereas by setting w to false, we satisfy only $3+0+3=6$ clauses.

Two of x, y, z are true: By setting w to true, we satisfy $3+2+2=7$ clauses, whereas by setting w to false, we satisfy $2+2+3=7$ clauses.

The Proof (continued)

One of x, y, z is true: By setting w to false, we satisfy $1+3+3=7$ clauses, whereas by setting w to true, we satisfy only $2+3+1=6$ clauses.

None of x, y, z is true: By setting w to false, we satisfy $0+3+3=6$ clauses, whereas by setting w to true, we satisfy only $1+3+0=4$ clauses.

The Proof (continued)

- A truth assignment that satisfies $x \vee y \vee z$ can be extended to satisfy 7 of the 10 clauses of $r(x, y, z, w)$, and no more.
- A truth assignment that does not satisfy $x \vee y \vee z$ can be extended to satisfy only 6 of them, and no more.
- The reduction from 3 SAT ϕ to max 2 sat $R(\phi)$:
- For each clause $C_{i}=(\alpha \vee \beta \vee \gamma)$ of ϕ, add group $r\left(\alpha, \beta, \gamma, w_{i}\right)$ to $R(\phi)$.
- If ϕ has m clauses, then $R(\phi)$ has $10 m$ clauses.

The Proof (continued)

- Finally, set $K=7 m$.
- We now show that K clauses of $R(\phi)$ can be satisfied if and only if ϕ is satisfiable.

The Proof (continued)

- Suppose $K=7 \mathrm{~m}$ clauses of $R(\phi)$ can be satisfied.
- 7 clauses of each group $r\left(\alpha, \beta, \gamma, w_{i}\right)$ must be satisfied because each group can have at most 7 clauses satisfied. ${ }^{\text {a }}$
- Hence each clause $C_{i}=(\alpha \vee \beta \vee \gamma)$ of ϕ is satisfied by the same truth assignment.
- So ϕ is satisfied.

[^1]
The Proof (concluded)

- Suppose ϕ is satisfiable.
- Let T satisfy all clauses of ϕ.
- Each group $r\left(\alpha, \beta, \gamma, w_{i}\right)$ can set its w_{i} appropriately to have 7 clauses satisfied.
- So $K=7 m$ clauses are satisfied.

NAESAT

- The naEsAT (for "not-all-equal" sAT) is like 3sAT.
- But there must be a satisfying truth assignment under which no clauses have all three literals equal in truth value.
- Equivalently, there is a truth assignment such that each clause has a literal assigned true and a literal assigned false.
- Equivalently, there is a satisfying truth assignment under which each clause has a literal assigned false.

NAESAT (concluded)

- Take

$$
\begin{aligned}
\phi & =\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(x_{1} \vee x_{2} \vee x_{3}\right)
\end{aligned}
$$

as an example.

- Then $\left\{x_{1}=\right.$ true, $x_{2}=$ false, $x_{3}=$ false $\}$

NAE-satisfies ϕ because

$$
\begin{aligned}
& (\text { false } \vee \text { true } \vee \text { true }) \wedge(\text { false } \vee \text { false } \vee \text { true }) \\
\wedge \quad & (\text { true } \vee \text { false } \vee \text { false }) .
\end{aligned}
$$

NAESAT Is NP-Complete ${ }^{\text {a }}$

- Recall the reduction of CIRCUIT SAT to SAT on p. 279 ff .
- It produced a CNF ϕ in which each clause has 1,2 , or 3 literals.
- Add the same variable z to all clauses with fewer than 3 literals to make it a 3SAT formula.
- Goal: The new formula $\phi(z)$ is NAE-satisfiable if and only if the original circuit is satisfiable.

[^2]
The Proof (continued)

- The following simple observation will be useful.
- Suppose T naE-satisfies a boolean formula ϕ.
- Let \bar{T} take the opposite truth value of T on every variable.
- Then \bar{T} also NAE-satisfies $\phi .{ }^{\text {a }}$
${ }^{\text {a }}$ Hesse's Siddhartha (1922), "The opposite of every truth is just as true!"

The Proof (continued)

- Suppose T NAE-satisfies $\phi(z)$.
- \bar{T} also NAE-satisfies $\phi(z)$.
- Under T or \bar{T}, variable z takes the value false.
- This truth assignment \mathcal{T} must satisfy all the clauses of ϕ.
* Because z is not the reason that makes $\phi(z)$ true under \mathcal{T} anyway.
- So $\mathcal{T} \models \phi$.
- And the original circuit is satisfiable.

The Proof (concluded)

- Suppose there is a truth assignment that satisfies the circuit.
- Then there is a truth assignment T that satisfies every clause of ϕ.
- Extend T by adding $T(z)=$ false to obtain T^{\prime}.
- T^{\prime} satisfies $\phi(z)$.
- So in no clauses are all three literals false under T^{\prime}.
- In no clauses are all three literals true under T^{\prime}.
* Need to go over the detailed construction on pp. 280-282.

Undirected Graphs

- An undirected graph $G=(V, E)$ has a finite set of nodes, V, and a set of undirected edges, E.
- It is like a directed graph except that the edges have no directions and there are no self-loops.
- Use $[i, j]$ to mean there is an undirected edge between node i and node j.

Independent Sets

- Let $G=(V, E)$ be an undirected graph.
- $I \subseteq V$.
- I is independent if there is no edge between any two nodes $i, j \in I$.
- independent set: Given an undirected graph and a goal K, is there an independent set of size K ?
- Many applications.

(C)2017 Prof. Yuh-Dauh Lyuu, National Taiwan University

independent set Is NP-Complete

- This problem is in NP: Guess a set of nodes and verify that it is independent and meets the count.
- We will reduce 3sat to independent set.
- If a graph contains a triangle, any independent set can contain at most one node of the triangle.
- The results of the reduction will be graphs whose nodes can be partitioned into disjoint triangles, one for each clause. ${ }^{\text {a }}$

[^3]
The Proof (continued)

- Let ϕ be a 3sat formula with m clauses.
- We will construct graph G with $K=m$.
- Furthermore, ϕ is satisfiable if and only if G has an independent set of size K.
- Here is the reduction:
- There is a triangle for each clause with the literals as the nodes.
- Add edges between x and $\neg x$ for every variable x.

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)
$$

Same literal labels that appear in the same clause or different clauses yield distinct nodes.

The Proof (continued)

- Suppose G has an independent set I of size $K=m$.
- An independent set can contain at most m nodes, one from each triangle.
- So I contains exactly one node from each triangle.
- Truth assignment T assigns true to those literals in I.
- T is consistent because contradictory literals are connected by an edge; hence both cannot be in I.
- T satisfies ϕ because it has a node from every triangle, thus satisfying every clause. ${ }^{\text {a }}$

[^4]
The Proof (concluded)

- Suppose ϕ is satisfiable.
- Let truth assignment T satisfy ϕ.
- Collect one node from each triangle whose literal is true under T.
- The choice is arbitrary if there is more than one true literal.
- This set of m nodes must be independent by construction.
* Because both literals x and $\neg x$ cannot be assigned true.

Other Independent set-Related NP-Complete Problems

Corollary 42 Independent set is $N P$-complete for 4-degree graphs.

Theorem 43 Independent set is NP-complete for planar graphs.

Theorem 44 (Garey \& Johnson, 1977)) independent SET is NP-complete for 3-degree planar graphs.

Is Independent edge set Also NP-Complete?

- independent edge set: Given an undirected graph and a goal K, is there an independent edge set of size K ?
- This problem is equivalent to maximum matching!
- Maximum matching can be solved in polynomial time. ${ }^{\text {a }}$
${ }^{\text {a }}$ Edmonds (1965); Micali \& V. Vazirani (1980).

NODE COVER

- We are given an undirected graph G and a goal K.
- node cover: Is there a set C with K or fewer nodes such that each edge of G has at least one of its endpoints (i.e., incident nodes) in C ?
- Many applications.

NODE COVER Is NP-Complete

Corollary 45 (Karp, 1972) node cover is NP-complete.

- I is an independent set of $G=(V, E)$ if and only if $V-I$ is a node cover of G.

Richard Karpa ${ }^{\text {a }}$ (1935-)

[^5]
Remarks ${ }^{\text {a }}$

- Are independent set and node cover in P if K is a constant?
- Yes, because one can do an exhaustive search on all the possible node covers or independent sets (both $\binom{n}{K}$ of them, a polynomial). ${ }^{\text {b }}$
- Are independent set and node cover NP-complete if K is a linear function of n ?
- independent set with $K=n / 3$ and node cover with $K=2 n / 3$ remain NP-complete by our reductions.

[^6]
CLIQUE

- We are given an undirected graph G and a goal K.
- CLIque asks if there is a set C with K nodes such that there is an edge between any two nodes $i, j \in C$.
- Many applications.

CLIQUE Is NP-Complete ${ }^{\text {a }}$

Corollary 46 CLIQUE is NP-complete.

- Let \bar{G} be the complement of G, where $[x, y] \in \bar{G}$ if and only if $[x, y] \notin G$.
- I is a clique in $G \Leftrightarrow I$ is an independent set in \bar{G}.

${ }^{\mathrm{a}}$ Karp (1972).

MIN CUT and MAX CUT

- A cut in an undirected graph $G=(V, E)$ is a partition of the nodes into two nonempty sets S and $V-S$.
- The size of a cut $(S, V-S)$ is the number of edges between S and $V-S$.
- min CUT asks for the minimum cut size.
- min cut $\in \mathrm{P}$ by the maxflow algorithm. ${ }^{\text {a }}$
- mAX CUT asks if there is a cut of size at least K.
$-K$ is part of the input.

[^7]

MIN CUT and MAX CUT (concluded)

- maX CUT has applications in circuit layout.
- The minimum area of a VLSI layout of a graph is not less than the square of its maximum cut size. ${ }^{\text {a }}$
${ }^{\text {a }}$ Raspaud, Sýkora, \& Vrťo (1995); Mak \& Wong (2000).

max cut Is NP-Complete ${ }^{\text {a }}$

- We will reduce naesat to max cut.
- Given a 3sat formula ϕ with m clauses, we shall construct a graph $G=(V, E)$ and a goal K.
- Furthermore, there is a cut of size at least K if and only if ϕ is NAE-satisfiable.
- Our graph will have multiple edges between two nodes.
- Each such edge contributes one to the cut if its nodes are separated.

[^8]
The Proof

- Suppose ϕ 's m clauses are $C_{1}, C_{2}, \ldots, C_{m}$.
- The boolean variables are $x_{1}, x_{2}, \ldots, x_{n}$.
- G has $2 n$ nodes: $x_{1}, x_{2}, \ldots, x_{n}, \neg x_{1}, \neg x_{2}, \ldots, \neg x_{n}$.
- Each clause with 3 distinct literals makes a triangle in G.
- For each clause with two identical literals, there are two parallel edges between the two distinct literals.

The Proof (continued)

- No need to consider clauses with one literal (why?).
- No need to consider clauses containing two opposite literals x_{i} and $\neg x_{i}$ (why?).
- For each variable x_{i}, add n_{i} copies of edge $\left[x_{i}, \neg x_{i}\right]$, where n_{i} is the number of occurrences of x_{i} and $\neg x_{i}$ in ϕ.
- Note that

$$
\sum_{i=1}^{n} n_{i}=3 m
$$

- The summation is simply the total number of literals.

The Proof (continued)

- Set $K=5 m$.
- Suppose there is a cut $(S, V-S)$ of size $5 m$ or more.
- A clause (a triangle or two parallel edges) contributes at most 2 to a cut no matter how you split it.
- Suppose some x_{i} and $\neg x_{i}$ are on the same side of the cut.
- They together contribute at most $2 n_{i}$ edges to the cut.
- They appear in at most n_{i} different clauses.
- A clause contributes at most 2 to a cut.

The Proof (continued)

- Either x_{i} or $\neg x_{i}$ contributes at most n_{i} to the cut by the pigeonhole principle.
- Changing the side of that literal does not decrease the size of the cut.
- Hence we assume variables are separated from their negations.
- The total number of edges in the cut that join opposite literals x_{i} and $\neg x_{i}$ is $\sum_{i=1}^{n} n_{i}$.
- But we knew $\sum_{i=1}^{n} n_{i}=3 m$.

The Proof (concluded)

- The remaining $K-3 m \geq 2 m$ edges in the cut must come from the m triangles or parallel edges that correspond to the clauses.
- Each can contribute at most 2 to the cut.
- So all are split.
- A split clause means at least one of its literals is true and at least one false.
- The other direction is left as an exercise.

This Cut Does Not Meet the Goal $K=5 \times 3=15$

- $\left(x_{1} \vee x_{2} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{3} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)$
- The cut size is $13<15$.

This Cut Meets the Goal $K=5 \times 3=15$

- $\left(x_{1} \vee x_{2} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{3} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)$.
- The cut size is now 15 .

Remarks

- We had proved that max cut is NP-complete for multigraphs.
- How about proving the same thing for simple graphs? ${ }^{\text {a }}$
- How to modify the proof to reduce 4 SAT to MAX CUT? ${ }^{\text {b }}$
- All NP-complete problems are mutually reducible by definition. ${ }^{\text {c }}$
- So they are equally hard in this sense. ${ }^{\text {d }}$

[^9]
MAX BISECTION

- max cut becomes max bisection if we require that $|S|=|V-S|$.
- It has many applications, especially in VLSI layout.

MAX BISECTION Is NP-Complete

- We shall reduce the more general max cut to max BISECTION.
- Add $|V|=n$ isolated nodes to G to yield G^{\prime}.
- G^{\prime} has $2 n$ nodes.
- $G^{\prime \prime}$ s goal K is identical to G 's
- As the new nodes have no edges, they contribute 0 to the cut.
- This completes the reduction.

The Proof (concluded)

- Every cut $(S, V-S)$ of $G=(V, E)$ can be made into a bisection by appropriately allocating the new nodes between S and $V-S$.
- Hence each cut of G can be made a cut of G^{\prime} of the same size, and vice versa.

BISECTION WIDTH

- BISECTION WIDTH is like mAX BISECTION except that it asks if there is a bisection of size at most K (sort of MIN BISECTION).
- Unlike min cut, bisection width is NP-complete.
- We reduce max bisection to Bisection width.
- Given a graph $G=(V, E)$, where $|V|$ is even, we generate the complement ${ }^{\text {a }}$ of G.
- Given a goal of K, we generate a goal of $n^{2}-K$. ${ }^{\text {b }}$

[^10]
The Proof (concluded)

- To show the reduction works, simply notice the following easily verifiable claims.
- A graph $G=(V, E)$, where $|V|=2 n$, has a bisection of size K if and only if the complement of G has a bisection of size $n^{2}-K$.
- So G has a bisection of size $\geq K$ if and only if its complement has a bisection of size $\leq n^{2}-K$.

HAMiltonian Path Is NP-Complete ${ }^{\text {a }}$

Theorem 47 Given an undirected graph, the question whether it has a Hamiltonian path is NP-complete.

[^11]
A Hamiltonian Path at IKEA, Covina, California?

TSP (D) Is NP-Complete

Corollary 48 TSP (D) is NP-complete.

- Consider a graph G with n nodes.
- Create a weighted complete graph G^{\prime} with the same nodes as G.
- Set $d_{i j}=1$ on G^{\prime} if $[i, j] \in G$ and $d_{i j}=2$ on G^{\prime} if $[i, j] \notin G$.
- Note that G^{\prime} is a complete graph.
- Set the budget $B=n+1$.
- This completes the reduction.

TSP (D) Is NP-Complete (continued)

- Suppose G^{\prime} has a tour of distance at most $n+1 .{ }^{\text {a }}$
- Then that tour on G^{\prime} must contain at most one edge with weight 2.
- If a tour on G^{\prime} contains one edge with weight 2 , remove that edge to arrive at a Hamiltonian path for G.
- Suppose a tour on G^{\prime} contains no edge with weight 2 .
- Remove any edge to arrive at a Hamiltonian path for G.

[^12]

- On the other hand, suppose G has a Hamiltonian path.
- There is a tour on G^{\prime} containing at most one edge with weight 2.
- Start with a Hamiltonian path and then close the loop.
- The total cost is then at most $(n-1)+2=n+1=B$.
- We conclude that there is a tour of length B or less on G^{\prime} if and only if G has a Hamiltonian path.

Random TSP

- Suppose each distance $d_{i j}$ is picked uniformly and independently from the interval $[0,1]$.
- It is known that the total distance of the shortest tour has a mean value of $\beta \sqrt{n}$ for some positive β. ${ }^{\text {a }}$
- In fact, the total distance of the shortest tour deviates from the mean by more than t with probability at most $e^{-t^{2} /(4 n)}!\mathrm{b}$

[^13]
Graph Coloring

- k-COloring: Can the nodes of a graph be colored with $\leq k$ colors such that no two adjacent nodes have the same color? ${ }^{a}$
- 2-coloring is in P (why?).
- But 3-coloring is NP-complete (see next page).
- k-COLORING is NP-complete for $k \geq 3$ (why?).
- EXACT- k-COLORING asks if the nodes of a graph can be colored using exactly k colors.
- It remains NP-complete for $k \geq 3$ (why?).
${ }^{\mathrm{a}} k$ is not part of the input; k is part of the problem statement.

3-COLORING Is NP-Complete ${ }^{\text {a }}$

- We will reduce naesat to 3-coloring.
- We are given a set of clauses $C_{1}, C_{2}, \ldots, C_{m}$ each with 3 literals.
- The boolean variables are $x_{1}, x_{2}, \ldots, x_{n}$.
- We shall construct a graph G that can be colored with colors $\{0,1,2\}$ if and only if all the clauses can be NAE-satisfied.

[^14]
The Proof (continued)

- Every variable x_{i} is involved in a triangle $\left[a, x_{i}, \neg x_{i}\right]$ with a common node a.
- Each clause $C_{i}=\left(c_{i 1} \vee c_{i 2} \vee c_{i 3}\right)$ is also represented by a triangle

$$
\left[c_{i 1}, c_{i 2}, c_{i 3}\right]
$$

- Node $c_{i j}$ and a node in an a-triangle $\left[a, x_{k}, \neg x_{k}\right.$] with the same label represent distinct nodes.
- There is an edge between $c_{i j}$ and the node that represents the j th literal of C_{i}. ${ }^{\text {a }}$

[^15]Construction for $\cdots \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge \cdots$

The Proof (continued)

Suppose the graph is 3-colorable.

- Assume without loss of generality that node a takes the color 2.
- A triangle must use up all 3 colors.
- As a result, one of x_{i} and $\neg x_{i}$ must take the color 0 and the other 1.

The Proof (continued)

- Treat 1 as true and 0 as false. ${ }^{\text {a }}$
- We are dealing with the a-triangles here, not the clause triangles yet.
- The resulting truth assignment is clearly contradiction free.
- As each clause triangle contains one color 1 and one color 0 , the clauses are NAE-satisfied.

[^16]
The Proof (continued)

Suppose the clauses are NAE-satisfiable.

- Color node a with color 2 .
- Color the nodes representing literals by their truth values (color 0 for false and color 1 for true).
- We are dealing with the a-triangles here, not the clause triangles.

The Proof (continued)

- For each clause triangle:
- Pick any two literals with opposite truth values. ${ }^{\text {a }}$
- Color the corresponding nodes with 0 if the literal is true and 1 if it is false.
- Color the remaining node with color 2.

[^17]
The Proof (concluded)

- The coloring is legitimate.
- If literal w of a clause triangle has color 2 , then its color will never be an issue.
- If literal w of a clause triangle has color 1 , then it must be connected up to literal w with color 0 .
- If literal w of a clause triangle has color 0 , then it must be connected up to literal w with color 1 .

More on 3-coloring and the Chromatic Number

- 3-coloring remains NP-complete for planar graphs. ${ }^{\text {a }}$
- Assume G is 3 -colorable.
- There is a classic algorithm that finds a 3-coloring in time $O\left(3^{n / 3}\right)=1.4422^{n}$. ${ }^{\mathrm{b}}$
- It can be improved to $O\left(1.3289^{n}\right) .^{\text {c }}$

```
\({ }^{\text {a }}\) Garey, Johnson, \& Stockmeyer (1976); Dailey (1980).
\({ }^{\text {b }}\) Lawler (1976).
\({ }^{\text {c }}\) Beigel \& Eppstein (2000).
```

More on 3-coloring and the Chromatic Number (concluded)

- The chromatic number $\chi(G)$ is the smallest number of colors needed to color a graph G.
- There is an algorithm to find $\chi(G)$ in time $O\left((4 / 3)^{n / 3}\right)=2.4422^{n}$. ${ }^{\text {a }}$
- It can be improved to $O\left(\left(4 / 3+3^{4 / 3} / 4\right)^{n}\right)=O\left(2.4150^{n}\right)^{\mathrm{b}}$ and $2^{n} n^{O(1)}$. c
- Computing $\chi(G)$ cannot be easier than 3 -coloring. ${ }^{\text {d }}$

```
a}\mathrm{ Lawler (1976).
b}\mathrm{ Eppstein (2003).
'c}\mp@subsup{}{}{c}Koivisto (2006)
d}\mathrm{ Contributed by Mr. Ching-Hua Yu (D00921025) on October 30, 2012.
```


[^0]: ${ }^{\text {a }}$ Garey, Johnson, \& Stockmeyer (1976).

[^1]: ${ }^{\text {a }}$ If 70% of the world population are male and if at most 70% of each country's population are male, then each country must have exactly 70% male population.

[^2]: ${ }^{\text {a }}$ Schaefer (1978).

[^3]: ${ }^{\text {a }}$ Recall that a reduction does not have to be an onto function.

[^4]: ${ }^{\text {a }}$ The variables without a truth value can be assigned arbitrarily. Contributed by Mr. Chun-Yuan Chen (R99922119) on November 2, 2010.

[^5]: ${ }^{\text {a Turing }}$ Award (1985).

[^6]: ${ }^{\text {a }}$ Contributed by Mr. Ching-Hua Yu (D00921025) on October 30, 2012.
 ${ }^{\mathrm{b}} n=|V|$.

[^7]: ${ }^{\text {a }}$ Ford \& Fulkerson (1962); Orlin (2012) improves the running time to $O(|V| \cdot|E|)$.

[^8]: ${ }^{\text {a }}$ Karp (1972); Garey, Johnson, \& Stockmeyer (1976). MAX CUT remains NP-complete even for graphs with maximum degree 3 (Makedon, Papadimitriou, \& Sudborough, 1985).

[^9]: ${ }^{\text {a }}$ Contributed by Mr. Tai-Dai Chou (J93922005) on June 2, 2005.
 ${ }^{\mathrm{b}}$ Contributed by Mr. Chien-Lin Chen (J94922015) on June 8, 2006.
 ${ }^{\text {c }}$ Contributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.
 ${ }^{\mathrm{d}}$ Contributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.

[^10]: ${ }^{\text {a }}$ Recall p. 379.
 ${ }^{\mathrm{b}}|V|=2 n$.

[^11]: ${ }^{a}$ Karp (1972).

[^12]: ${ }^{\mathrm{a}}$ A tour is a cycle, not a path.

[^13]: ${ }^{\text {a }}$ Beardwood, Halton, \& Hammersley (1959).
 ${ }^{\text {b }}$ Dubhashi \& Panconesi (2012).

[^14]: ${ }^{a}$ Karp (1972).

[^15]: ${ }^{\text {a }}$ Alternative proof: There is an edge between $\neg c_{i j}$ and the node that represents the j th literal of C_{i}. Contributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.

[^16]: ${ }^{\text {a }}$ The opposite also works.

[^17]: ${ }^{\text {a }}$ Break ties arbitrarily.

