The Quantified Halting Problem

- Let $f(n) \geq n$ be proper.
- Define

$$
\begin{aligned}
H_{f} & \triangleq\{M ; x: M \text { accepts input } x \\
& \text { after at most } f(|x|) \text { steps }\},
\end{aligned}
$$

where M is deterministic.

- Assume the input is binary.

$$
H_{f} \in \operatorname{TIME}\left(f(n)^{3}\right)
$$

- For each input $M ; x$, we simulate M on x with an alarm clock of length $f(|x|)$.
- Use the single-string simulator (p. 82), the universal TM (p. 133), and the linear speedup theorem (p. 92).
- Our simulator accepts M; x if and only if M accepts x before the alarm clock runs out.
- From p. 89, the total running time is $O\left(\ell_{M} k_{M}^{2} f(n)^{2}\right)$, where ℓ_{M} is the length to encode each symbol or state of M and k_{M} is M 's number of strings.
- As $\ell_{M} k_{M}^{2}=O(n)$, the running time is $O\left(f(n)^{3}\right)$, where the constant is independent of M.

$H_{f} \notin \operatorname{TIME}(f(\lfloor n / 2\rfloor))$

- Suppose TM $M_{H_{f}}$ decides H_{f} in time $f(\lfloor n / 2\rfloor)$.
- Consider machine:

$$
\begin{array}{ll}
D_{f}(M)\{ & \\
& \text { if } M_{H_{f}}(M ; M)=\text { "yes" } \\
& \text { then "no"; } \\
& \\
\text { else "yes"; }
\end{array}
$$

- D_{f} on input M runs in the same time as $M_{H_{f}}$ on input $M ; M$, i.e., in time $f\left(\left\lfloor\frac{2 n+1}{2}\right\rfloor\right)=f(n)$, where $n=|M|{ }^{\text {a }}$

[^0]
The Proof (concluded)

- First,

$$
\begin{aligned}
& D_{f}\left(D_{f}\right)=" \text { "yes" } \\
\Rightarrow & D_{f} ; D_{f} \notin H_{f} \\
\Rightarrow & D_{f} \text { does not accept } D_{f} \text { within time } f\left(\left|D_{f}\right|\right) \\
\Rightarrow & D_{f}\left(D_{f}\right) \neq " \text { yes" as } D_{f}\left(D_{f}\right) \text { runs in time } f\left(\left|D_{f}\right|\right),
\end{aligned}
$$

a contradiction

- Similarly, $D_{f}\left(D_{f}\right)=$ "no" $\Rightarrow D_{f}\left(D_{f}\right)=$ "yes."

The Time Hierarchy Theorem

Theorem 18 If $f(n) \geq n$ is proper, then

$$
\operatorname{TIME}(f(n)) \subsetneq \operatorname{TiME}\left(f(2 n+1)^{3}\right) .
$$

- The quantified halting problem makes it so.

Corollary $19 \mathrm{P} \subsetneq \mathrm{E}$.

- $\mathrm{P} \subseteq \operatorname{TIME}\left(2^{n}\right)$ because poly $(n) \leq 2^{n}$ for n large enough.
- But by Theorem 18,

$$
\operatorname{TIME}\left(2^{n}\right) \subsetneq \operatorname{TIME}\left(\left(2^{2 n+1}\right)^{3}\right) \subseteq \mathrm{E} .
$$

- So P \subsetneq E.

The Space Hierarchy Theorem
Theorem 20 (Hennie \& Stearns, 1966) If $f(n)$ is proper, then

$$
\operatorname{SPACE}(f(n)) \subsetneq \operatorname{SPACE}(f(n) \log f(n)) .
$$

Corollary $21 \mathrm{~L} \subsetneq$ PSPACE.

Nondeterministic Time Hierarchy Theorems
Theorem 22 (Cook, 1973) $\operatorname{NTIME}\left(n^{r}\right) \subsetneq \operatorname{NTIME}\left(n^{s}\right)$ whenever $1 \leq r<s$.

Theorem 23 (Seiferas, Fischer, \& Meyer, 1978) If $T_{1}(n), T_{2}(n)$ are proper, then
$\operatorname{NTIME}\left(T_{1}(n)\right) \subsetneq \operatorname{NTIME}\left(T_{2}(n)\right)$
whenever $T_{1}(n+1)=o\left(T_{2}(n)\right)$.

The Reachability Method

- The computation of a time-bounded TM can be represented by a directed graph.
- The TM's configurations constitute the nodes.
- There is a directed edge from node x to node y if x yields y in one step.
- The start node representing the initial configuration has zero in-degree.

The Reachability Method (concluded)

- When the TM is nondeterministic, a node may have an out-degree greater than one.
- The graph is the same as the computation tree earlier.
- But identical configurations are merged into one node.
- So M accepts the input if and only if there is a path from the start node to a node with a "yes" state.
- It is the reachability problem.

Illustration of the Reachability Method

Relations between Complexity Classes

Theorem 24 Suppose $f(n)$ is proper. Then

1. $\operatorname{SPACE}(f(n)) \subseteq \operatorname{NSPACE}(f(n))$, $\operatorname{TIME}(f(n)) \subseteq \operatorname{NTIME}(f(n))$.
2. $\operatorname{NTIME}(f(n)) \subseteq \operatorname{SPACE}(f(n))$.
3. $\operatorname{NSPACE}(f(n)) \subseteq \operatorname{TIME}\left(k^{\log n+f(n)}\right)$.

- Proof of 2 :
- Explore the computation tree of the NTM for "yes."
- Specifically, generate an $f(n)$-bit sequence denoting the nondeterministic choices over $f(n)$ steps.

Proof of Theorem 24(2)

- (continued)
- Simulate the NTM based on the choices.
- Recycle the space and repeat the above steps.
- Halt with "yes" when a "yes" is encountered or "no" if the tree is exhausted.
- Each path simulation consumes at most $O(f(n))$ space because it takes $O(f(n))$ time.
- The total space is $O(f(n))$ because space is recycled.

Proof of Theorem 24(3)

- Let k-string NTM

$$
M=(K, \Sigma, \Delta, s)
$$

with input and output decide $L \in \operatorname{NSPACE}(f(n))$.

- Use the reachability method on the configuration graph of M on input x of length n.
- A configuration is a $(2 k+1)$-tuple

$$
\left(q, w_{1}, u_{1}, w_{2}, u_{2}, \ldots, w_{k}, u_{k}\right)
$$

Proof of Theorem 24(3) (continued)

- We only care about

$$
\left(q, i, w_{2}, u_{2}, \ldots, w_{k-1}, u_{k-1}\right)
$$

where i is an integer between 0 and n for the position of the first cursor.

- The number of configurations is therefore at most

$$
\begin{equation*}
|K| \times(n+1) \times|\Sigma|^{2(k-2) f(n)}=O\left(c_{1}^{\log n+f(n)}\right) \tag{2}
\end{equation*}
$$

for some $c_{1}>1$, which depends on M.

- Add edges to the configuration graph based on M's transition function.

Proof of Theorem 24(3) (concluded)

- $x \in L \Leftrightarrow$ there is a path in the configuration graph from the initial configuration to a configuration of the form ("yes", i, \ldots). ${ }^{\text {a }}$
- This is REACHABILITY on a graph with $O\left(c_{1}^{\log n+f(n)}\right)$ nodes.
- It is in $\operatorname{TIME}\left(c^{\log n+f(n)}\right)$ for some $c>1$ because REAChABILITY $\in \operatorname{TIME}\left(n^{j}\right)$ for some j and

$$
\left[c_{1}^{\log n+f(n)}\right]^{j}=\left(c_{1}^{j}\right)^{\log n+f(n)}
$$

${ }^{\text {a }}$ There may be many of them.

Space-Bounded Computation and Proper Functions

- In the definition of space-bounded computations earlier (p. 108), the TMs are not required to halt at all.
- When the space is bounded by a proper function f, computations can be assumed to halt:
- Run the TM associated with f to produce a quasi-blank output of length $f(n)$ first.
- The space-bounded computation must repeat a configuration if it runs for more than $c^{\log n+f(n)}$ steps for some $c>1 .{ }^{\text {a }}$

[^1]
Space-Bounded Computation and Proper Functions (concluded)

- (continued)
- So an infinite loop occurs during simulation for a computation path longer than $c^{\log n+f(n)}$ steps.
- Hence we only simulate up to $c^{\log n+f(n)}$ time steps per computation path.

A Grand Chain of Inclusions ${ }^{\text {a }}$

- It is an easy application of Theorem 24 (p. 235) that

$$
\mathrm{L} \subseteq \mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE} \subseteq \mathrm{EXP} .
$$

- By Corollary 21 (p. 230), we know L \subsetneq PSPACE.
- So the chain must break somewhere between L and EXP.
- It is suspected that all four inclusions are proper.
- But there are no proofs yet.
${ }^{a}$ With input from Mr. Chin-Luei Chang (R93922004, D95922007) on October 22, 2004.

What Is Wrong with the Proof? ${ }^{\text {a }}$

- By Theorem 24(2) (p. 235),

$$
\operatorname{NL} \subseteq \operatorname{TIME}\left(k^{O(\log n)}\right) \subseteq \operatorname{TIME}\left(n^{c_{1}}\right)
$$

for some $c_{1}>0$.

- By Theorem 18 (p. 229),

$$
\operatorname{TIME}\left(n^{c_{1}}\right) \subsetneq \operatorname{TIME}\left(n^{c_{2}}\right) \subseteq \mathrm{P}
$$

for some $c_{2}>c_{1}$.

- So

$$
N L \neq P .
$$

${ }^{\text {a }}$ Contributed by Mr. Yuan-Fu Shao (R02922083) on November 11, 2014.

What Is Wrong with the Proof? (concluded)

- Recall from p. 220 that $\operatorname{TIME}\left(k^{O(\log n)}\right)$ is a shorthand for

$$
\bigcup_{j>0} \operatorname{TIME}\left(j^{O(\log n)}\right) .
$$

- So the correct proof runs more like

$$
\mathrm{NL} \subseteq \bigcup_{j>0} \operatorname{TIME}\left(j^{O(\log n)}\right) \subseteq \bigcup_{c>0} \operatorname{TIME}\left(n^{c}\right)=\mathrm{P}
$$

- And

$$
\mathrm{NL} \neq \mathrm{P}
$$

no longer follows.

Nondeterministic and Deterministic Space

- By Theorem 6 (p. 114),

$$
\operatorname{NTIME}(f(n)) \subseteq \operatorname{TIME}\left(c^{f(n)}\right)
$$

an exponential gap.

- There is no proof yet that the exponential gap is inherent.
- How about NSPACE vs. SPACE?
- Surprisingly, the relation is only quadratic-a polynomial-by Savitch's theorem.

Savitch's Theorem

Theorem 25 (Savitch, 1970)

$$
\text { REACHABILITY } \in \operatorname{SPACE}\left(\log ^{2} n\right)
$$

- Let $G(V, E)$ be a graph with n nodes.
- For $i \geq 0$, let

$$
\operatorname{PATH}(x, y, i)
$$

mean there is a path from node x to node y of length at most 2^{i}.

- There is a path from x to y if and only if

$$
\operatorname{PATH}(x, y,\lceil\log n\rceil)
$$

holds.

The Proof (continued)

- For $i>0, \operatorname{PATH}(x, y, i)$ if and only if there exists a z such that $\operatorname{PATH}(x, z, i-1)$ and $\operatorname{PATH}(z, y, i-1)$.
- For $\operatorname{PATH}(x, y, 0)$, check the input graph or if $x=y$.
- Compute $\operatorname{PATH}(x, y,\lceil\log n\rceil)$ with a depth-first search on a graph with nodes (x, y, z, i) s (see next page). ${ }^{\text {a }}$
- Like stacks in recursive calls, we keep only the current path of $(x, y, i) \mathrm{s}$.
- The space requirement is proportional to the depth of the tree $(\lceil\log n\rceil)$ times the size of the items stored at each node.

[^2]The Proof (continued): Algorithm for $\operatorname{PATH}(x, y, i)$
1: if $i=0$ then
2: \quad if $x=y$ or $(x, y) \in E$ then
3: return true;
4: else
5: return false;
6: end if
7: else
8: \quad for $z=1,2, \ldots, n$ do
9: if $\operatorname{PATH}(x, z, i-1)$ and $\operatorname{PATH}(z, y, i-1)$ then
10: return true;
11: end if
12: end for
13: return false;
14: end if

The Proof (continued)

The Proof (concluded)

- Depth is $\lceil\log n\rceil$, and each node (x, y, z, i) needs space $O(\log n)$.
- The total space is $O\left(\log ^{2} n\right)$.

The Relation between Nondeterministic and Deterministic Space Is Only Quadratic

Corollary 26 Let $f(n) \geq \log n$ be proper. Then

$$
\operatorname{NSPACE}(f(n)) \subseteq \operatorname{SPACE}\left(f^{2}(n)\right) .
$$

- Apply Savitch's proof to the configuration graph of the NTM on its input.
- From p. 238, the configuration graph has $O\left(c^{f(n)}\right)$ nodes; hence each node takes space $O(f(n))$.
- But if we construct explicitly the whole graph before applying Savitch's theorem, we get $O\left(c^{f(n)}\right)$ space!

The Proof (continued)

- The way out is not to generate the graph at all.
- Instead, keep the graph implicit.
- We checked node connectedness only when $i=0$ on p. 248 , by examining the input graph G.
- Suppose we are given configurations x and y.
- Then we go over the Turing machine's program to determine if there is an instruction that can turn x into y in one step. ${ }^{\text {a }}$
- So connectivity is checked locally and on demand.

[^3]
The Proof (continued)

- The z variable in the algorithm on p. 248 simply runs through all possible valid configurations.
- Let $z=0,1, \ldots, O\left(c^{f(n)}\right)$.
- Make sure z is a valid configuration before proceeding with it. ${ }^{\text {a }}$
* Adopt a fixed width for each symbol and state of the NTM and for the cursor position on the input string. ${ }^{\text {b }}$
- If it is not, advance to the next z.

[^4]
The Proof (concluded)

- Each z has length $O(f(n))$.
- So each node needs space $O(f(n))$.
- The depth of the recursive call on p. 248 is $O\left(\log c^{f(n)}\right)$, which is $O(f(n))$.
- The total space is therefore $O\left(f^{2}(n)\right)$.

Implications of Savitch's Theorem

Corollary 27 PSPACE $=$ NPSPACE .

- Nondeterminism is less powerful with respect to space.
- Nondeterminism may be very powerful with respect to time as it is not known if $\mathrm{P}=\mathrm{NP}$.

Nondeterministic Space Is Closed under Complement

- Closure under complement is trivially true for deterministic complexity classes (p. 223).
- It is known that ${ }^{\text {a }}$

$$
\begin{equation*}
\operatorname{coNSPACE}(f(n))=\operatorname{NSPACE}(f(n)) \tag{3}
\end{equation*}
$$

- So

$$
\operatorname{coNL}=\mathrm{NL} .
$$

- But it is not known whether coNP = NP.
aszelepscényi (1987); Immerman (1988).

Reductions and Completeness

It is unworthy of excellent men to lose hours like slaves in the labor of computation. — Gottfried Wilhelm von Leibniz (1646-1716)

I thought perhaps you might be members of that lowly section of the university known as the Sheffield Scientific School. F. Scott Fitzgerald (1920), "May Day"

Degrees of Difficulty

- When is a problem more difficult than another?
- B reduces to A if:
- There is a transformation R which for every problem instance x of B yields a problem instance $R(x)$ of A . ${ }^{\text {a }}$
- The answer to " $R(x) \in \mathrm{A}$?" is the same as the answer to " $x \in \mathrm{~B}$?"
$-R$ is easy to compute.
- We say problem A is at least as hard as ${ }^{b}$ problem B if B reduces to A.

[^5]
Reduction

Solving problem B by calling the algorithm for problem A once and without further processing its answer. ${ }^{\text {a }}$

[^6]
Degrees of Difficulty (concluded)

- This makes intuitive sense: If A is able to solve your problem B after only a little bit of work of R, then A must be at least as hard.
- If A is easy to solve, it combined with R (which is also easy) would make B easy to solve, too. ${ }^{\text {a }}$
- So if B is hard to solve, A must be hard (if not harder), too!

[^7]
Comments ${ }^{\text {a }}$

- Suppose B reduces to A via a transformation R. ${ }^{\text {b }}$
- The input x is an instance of B .
- The output $R(x)$ is an instance of A .
- $R(x)$ may not span all possible instances of $\mathrm{A} .{ }^{\mathrm{c}}$
- Some instances of A may never appear in R 's range.
- But x must be a general instance for B.

[^8]
Is "Reduction" a Confusing Choice of Word?a

- If B reduces to A, doesn't that intuitively make A smaller and simpler?
- But our definition means just the opposite.
- Our definition says in this case B is a special case of A. ${ }^{\text {b }}$
- Hence A is harder.

[^9]
Reduction between Languages

- Language L_{1} is reducible to L_{2} if there is a function R computable by a deterministic TM in space $O(\log n)$.
- Furthermore, for all inputs $x, x \in L_{1}$ if and only if $R(x) \in L_{2}$.
- R is said to be a (Karp) reduction from L_{1} to L_{2}.

Reduction between Languages (concluded)

- Note that by Theorem 24 (p. 235), R runs in polynomial time.
- In most cases, a polynomial-time R suffices for proofs. ${ }^{\text {a }}$
- Suppose R is a reduction from L_{1} to L_{2}.
- Then solving " $R(x) \in L_{2}$?" is an algorithm for solving $" x \in L_{1} ? "$ b

[^10]
A Paradox?

- Degree of difficulty is not defined in terms of absolute complexity.
- So a language $\mathrm{B} \in \operatorname{TIME}\left(n^{99}\right)$ may be "easier" than a language $\mathrm{A} \in \operatorname{TIME}\left(n^{3}\right)$ if B reduces to A .
- But isn't this a contradiction if the best algorithm for B requires n^{99} steps?
- That is, how can a problem requiring n^{99} steps be reducible to a problem solvable in n^{3} steps?

Paradox Resolved

- The so-called contradiction is the result of flawed logic.
- Suppose we solve the problem " $x \in \mathrm{~B}$?" via " $R(x) \in \mathrm{A}$?"
- We must consider the time spent by $R(x)$ and its length | $R(x) \mid$:
- Because $R(x)$ (not $x)$ is solved by A.

HAMILTONIAN PATH

- A Hamiltonian path of a graph is a path that visits every node of the graph exactly once.
- Suppose graph G has n nodes: $1,2, \ldots, n$.
- A Hamiltonian path can be expressed as a permutation π of $\{1,2, \ldots, n\}$ such that
$-\pi(i)=j$ means the i th position is occupied by node j. $-(\pi(i), \pi(i+1)) \in G$ for $i=1,2, \ldots, n-1$.

HAMILTONIAN PATH (concluded)

- So

$$
\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
\pi(1) & \pi(2) & \cdots & \pi(n)
\end{array}\right)
$$

- HAMILTONIAN PATH asks if a graph has a Hamiltonian path.

Reduction of hamiltonian path to Sat

- Given a graph G, we shall construct a $\mathrm{CNF}^{\mathrm{a}} R(G)$ such that $R(G)$ is satisfiable if and only if G has a Hamiltonian path.
- $R(G)$ has n^{2} boolean variables $x_{i j}, 1 \leq i, j \leq n$.
- $x_{i j}$ means
the i th position in the Hamiltonian path is occupied by node j.
- Our reduction will produce clauses.

[^11]\[

$$
\begin{aligned}
& \text { Aamiltonian Path } \\
& x_{12}=x_{21}=x_{34}=x_{45}=x_{53}=x_{69}=x_{76}=x_{88}=x_{97}=1 \text {; } \\
& \pi(1)=2, \pi(2)=1, \pi(3)=4, \pi(4)=5, \pi(5)=3, \pi(6)= \\
& 9, \pi(7)=6, \pi(8)=8, \pi(9)=7
\end{aligned}
$$
\]

The Clauses of $R(G)$ and Their Intended Meanings

1. Each node j must appear in the path.

- $x_{1 j} \vee x_{2 j} \vee \cdots \vee x_{n j}$ for each j.

2. No node j appears twice in the path.

- $\neg x_{i j} \vee \neg x_{k j}\left(\equiv \neg\left(x_{i j} \wedge x_{k j}\right)\right)$ for all i, j, k with $i \neq k$.

3. Every position i on the path must be occupied.

- $x_{i 1} \vee x_{i 2} \vee \cdots \vee x_{i n}$ for each i.

4. No two nodes j and k occupy the same position in the path.

- $\neg x_{i j} \vee \neg x_{i k}\left(\equiv \neg\left(x_{i j} \wedge x_{i k}\right)\right)$ for all i, j, k with $j \neq k$.

5. Nonadjacent nodes i and j cannot be adjacent in the path.

- $\neg x_{k i} \vee \neg x_{k+1, j}\left(\equiv \neg\left(x_{k, i} \wedge x_{k+1, j}\right)\right)$ for all $(i, j) \notin E$ and $k=1,2, \ldots, n-1$.

The Proof

- $R(G)$ contains $O\left(n^{3}\right)$ clauses.
- $R(G)$ can be computed efficiently (simple exercise).
- Suppose $T \models R(G)$.
- From the 1st and 2 nd types of clauses, for each node j there is a unique position i such that $T \models x_{i j}$.
- From the 3 rd and 4 th types of clauses, for each position i there is a unique node j such that $T \models x_{i j}$.
- So there is a permutation π of the nodes such that $\pi(i)=j$ if and only if $T \models x_{i j}$.

The Proof (concluded)

- The 5th type of clauses furthermore guarantee that $(\pi(1), \pi(2), \ldots, \pi(n))$ is a Hamiltonian path.
- Conversely, suppose G has a Hamiltonian path

$$
(\pi(1), \pi(2), \ldots, \pi(n)),
$$

where π is a permutation.

- Clearly, the truth assignment

$$
T\left(x_{i j}\right)=\text { true if and only if } \pi(i)=j
$$

satisfies all clauses of $R(G)$.

A Comment ${ }^{\text {a }}$

- An answer to "Is $R(G)$ satisfiable?" answers the question"Is G Hamiltonian?"
- But a "yes" does not give a Hamiltonian path for G.
- Providing a witness is not a requirement of reduction.
- A "yes" to "Is $R(G)$ satisfiable?" plus a satisfying truth assignment does provide us with a Hamiltonian path for G.

[^12]
Reduction of REAChability to CIRCUIT VALUE

- Note that both problems are in P.
- Given a graph $G=(V, E)$, we shall construct a variable-free circuit $R(G)$.
- The output of $R(G)$ is true if and only if there is a path from node 1 to node n in G.
- Idea: the Floyd-Warshall algorithm. ${ }^{\text {a }}$

[^13]
The Gates

- The gates are
- $g_{i j k}$ with $1 \leq i, j \leq n$ and $0 \leq k \leq n$.
- $h_{i j k}$ with $1 \leq i, j, k \leq n$.
- $g_{i j k}$: There is a path from node i to node j without passing through a node bigger than k.
- $h_{i j k}$: There is a path from node i to node j passing through k but not any node bigger than k.
- Input gate $g_{i j 0}=$ true if and only if $i=j$ or $(i, j) \in E$.

The Construction

- $h_{i j k}$ is an AND gate with predecessors $g_{i, k, k-1}$ and $g_{k, j, k-1}$, where $k=1,2, \ldots, n$.
- $g_{i j k}$ is an OR gate with predecessors $g_{i, j, k-1}$ and $h_{i, j, k}$, where $k=1,2, \ldots, n$.
- $g_{1 n n}$ is the output gate.
- Interestingly, $R(G)$ uses no \neg gates.
- It is a monotone circuit.

Reduction of CIRCUIT SAT to SAT

- Given a circuit C, we will construct a boolean expression $R(C)$ such that $R(C)$ is satisfiable if and only if C is.
$-R(C)$ will turn out to be a CNF.
$-R(C)$ is basically a depth- 2 circuit; furthermore, each gate has out-degree 1.
- The variables of $R(C)$ are those of C plus g for each gate g of C.
- The g 's propagate the truth values for the CNF.
- Each gate of C will be turned into equivalent clauses.
- Recall that clauses are \wedge ed together by definition.

The Clauses of $R(C)$

g is a variable gate x : Add clauses $(\neg g \vee x)$ and $(g \vee \neg x)$.

- Meaning: $g \Leftrightarrow x$.
g is a true gate: Add clause (g).
- Meaning: g must be true to make $R(C)$ true.
g is a false gate: Add clause $(\neg g)$.
- Meaning: g must be false to make $R(C)$ true.
g is a \neg gate with predecessor gate h : Add clauses $(\neg g \vee \neg h)$ and $(g \vee h)$.
- Meaning: $g \Leftrightarrow \neg h$.

The Clauses of $R(C)$ (continued)

g is a \vee gate with predecessor gates h and h^{\prime} : Add clauses $\left(\neg g \vee h \vee h^{\prime}\right),(g \vee \neg h)$, and $\left(g \vee \neg h^{\prime}\right)$.

- The conjunction of the above clauses is equivalent to

$$
\begin{aligned}
& {\left[g \Rightarrow\left(h \vee h^{\prime}\right)\right] \wedge\left[\left(h \vee h^{\prime}\right) \Rightarrow g\right] } \\
\equiv & g \Leftrightarrow\left(h \vee h^{\prime}\right)
\end{aligned}
$$

g is a \wedge gate with predecessor gates h and h^{\prime} : Add clauses $(\neg g \vee h),\left(\neg g \vee h^{\prime}\right)$, and $\left(g \vee \neg h \vee \neg h^{\prime}\right)$.

- It is equivalent to

$$
g \Leftrightarrow\left(h \wedge h^{\prime}\right)
$$

The Clauses of $R(C)$ (concluded)

g is the output gate: Add clause (g).

- Meaning: g must be true to make $R(C)$ true.
- Note: If gate g feeds gates h_{1}, h_{2}, \ldots, then variable g appears in the clauses for h_{1}, h_{2}, \ldots in $R(C)$.

An Example

$$
\left(h_{1} \Leftrightarrow x_{1}\right) \wedge\left(h_{2} \Leftrightarrow x_{2}\right) \wedge\left(h_{3} \Leftrightarrow x_{3}\right) \wedge\left(h_{4} \Leftrightarrow x_{4}\right)
$$

$$
\wedge\left[g_{1} \Leftrightarrow\left(h_{1} \wedge h_{2}\right)\right] \wedge\left[g_{2} \Leftrightarrow\left(h_{3} \vee h_{4}\right)\right]
$$

$$
\wedge\left[g_{3} \Leftrightarrow\left(g_{1} \wedge g_{2}\right)\right] \wedge\left(g_{4} \Leftrightarrow \neg g_{2}\right)
$$

$$
\wedge\left[g_{5} \Leftrightarrow\left(g_{3} \vee g_{4}\right)\right] \wedge g_{5} .
$$

An Example (concluded)

- The result is a CNF.
- The CNF has size proportional to the circuit's number of gates.
- The CNF adds new variables to the circuit's original input variables.
- Had we used the idea on p. 205 for the reduction, the resulting formula may have an exponential length because of the copying. ${ }^{\text {a }}$

[^14]
Composition of Reductions

Proposition 28 If R_{12} is a reduction from L_{1} to L_{2} and R_{23} is a reduction from L_{2} to L_{3}, then the composition $R_{12} \circ R_{23}$ is a reduction from L_{1} to L_{3}.

- So reducibility is transitive.

Completeness ${ }^{a}$

- As reducibility is transitive, problems can be ordered with respect to their difficulty.
- Is there a maximal element (the so-called hardest problem)?
- It is not obvious that there should be a maximal element.
- Many infinite structures (such as integers and real numbers) do not have maximal elements.
- Surprisingly, most of the complexity classes that we have seen so far have maximal elements!

[^15]
Completeness (concluded)

- Let \mathcal{C} be a complexity class and $L \in \mathcal{C}$.
- L is \mathcal{C}-complete if every $L^{\prime} \in \mathcal{C}$ can be reduced to L.
- Most of the complexity classes we have seen so far have complete problems!
- Complete problems capture the difficulty of a class because they are the hardest problems in the class. ${ }^{\text {a }}$

[^16]
Hardness

- Let \mathcal{C} be a complexity class.
- L is \mathcal{C}-hard if every $L^{\prime} \in \mathcal{C}$ can be reduced to L.
- It is not required that $L \in \mathcal{C}$.
- If L is \mathcal{C}-hard, then by definition, every \mathcal{C}-complete problem can be reduced to L. ${ }^{\text {a }}$

[^17]Illustration of Completeness and Hardness

Closedness under Reductions

- A class \mathcal{C} is closed under reductions if whenever L is reducible to L^{\prime} and $L^{\prime} \in \mathcal{C}$, then $L \in \mathcal{C}$.
- It is easy to show that P, NP, coNP, L, NL, PSPACE, and EXP are all closed under reductions.
- E is not closed under reductions. ${ }^{a}$

[^18]
[^0]: ${ }^{\text {a }}$ A student pointed out on October 6, 2004, that this estimation forgets to include the time to write down $M ; M$.

[^1]: ${ }^{\text {a }}$ See Eq. (2) on p. 238.

[^2]: ${ }^{\text {a}}$ Contributed by Mr. Chuan-Yao Tan on October 11, 2011.

[^3]: ${ }^{\text {a }}$ Thanks to a lively class discussion on October 15, 2003.

[^4]: ${ }^{\text {a }}$ Thanks to a lively class discussion on October 13, 2004.
 ${ }^{\mathrm{b}}$ Contributed by Mr. Jia-Ming Zheng (R04922024) on October 17, 2017.

[^5]: ${ }^{\text {a }}$ See also p. 145.
 b Or simply "harder than" for brevity.

[^6]: ${ }^{\text {a }}$ More general reductions are possible, such as the Turing (1939) reduction and the Cook (1971) reduction.

[^7]: ${ }^{\text {a }}$ Thanks to a lively class discussion on October 13, 2009.

[^8]: ${ }^{\text {a }}$ Contributed by Mr. Ming-Feng Tsai (D92922003) on October 29, 2003.
 ${ }^{\mathrm{b}}$ Sometimes, we say "B can be reduced to A."
 ${ }^{\mathrm{c}} R(x)$ may not be onto; Mr. Alexandr Simak (D98922040) on October 13, 2009.

[^9]: ${ }^{\text {a }}$ Moore \& Mertens (2011).
 ${ }^{\mathrm{b}}$ See also p. 148.

[^10]: ${ }^{\text {a }}$ In fact, unless stated otherwise, we will only require that the reduction R run in polynomial time.
 ${ }^{\mathrm{b}}$ Of course, it may not be the best.

[^11]: ${ }^{\text {a }}$ Remember that R does not have to be onto.

[^12]: ${ }^{\text {a }}$ Contributed by Ms. Amy Liu (J94922016) on May 29, 2006.

[^13]: ${ }^{\text {a }}$ Floyd (1962); Marshall (1962).

[^14]: ${ }^{\text {a }}$ Contributed by Mr. Ching-Hua Yu (D00921025) on October 16, 2012.

[^15]: ${ }^{\text {a }}$ Post (1944); Cook (1971); Levin (1973).

[^16]: ${ }^{\text {a }}$ See also p. 159.

[^17]: ${ }^{\text {a }}$ Contributed by Mr. Ming-Feng Tsai (D92922003) on October 15, 2003.

[^18]: a Balcázar, Díaz, \& Gabarró (1988).

