The Traveling Salesman Problem

- We are given n cities 1, 2, ..., n and integer distance d_{ij} between any two cities i and j.
- Assume $d_{ij} = d_{ji}$ for convenience.
- The **traveling salesman problem** (TSP) asks for the total distance of the shortest tour of the cities.^a
- The decision version TSP (D) asks if there is a tour with a total distance at most B, where B is an input.^b

^aEach city is visited exactly once.

^bBoth problems are extremely important. They are equally hard (p. 399 and p. 501).

^aCan be made into a series of $\log_2 n$ binary choices for each x_i so that the next-state count (2) is a constant, independent of input size. Contributed by Mr. Chih-Duo Hong (R95922079) on September 27, 2006.

Analysis

- Suppose the input graph contains at least one tour of the cities with a total distance at most *B*.
 - Then there is a computation path for that tour.^a

- And it leads to "yes."

• Suppose the input graph contains no tour of the cities with a total distance at most *B*.

- Then every computation path leads to "no."

^aIt does not mean the algorithm will follow that path. It just means such a computation path (i.e., a sequence of nondeterministic choices) exists.

Remarks on the $P \stackrel{?}{=} NP$ Open Problem^a

- Many practical applications depend on answers to the $P \stackrel{?}{=} NP$ question.
- Verification of password should be easy (so it is in NP).
 - A computer should not take a long time to let a user log in.
- A password system should be hard to crack (loosely speaking, cracking it should not be in P).
- It took logicians 63 years to settle the Continuum Hypothesis; how long will it take for this one?

 $^{^{\}rm a}{\rm Contributed}$ by Mr. Kuan-Lin Huang (B96902079, R00922018) on September 27, 2011.

Nondeterministic Space Complexity Classes

- Let L be a language.
- Then

$$L \in \mathrm{NSPACE}(f(n))$$

if there is an NTM with input and output that decides Land operates within space bound f(n).

- NSPACE(f(n)) is a set of languages.
- As in the linear speedup theorem,^a constant coefficients do not matter.

^aTheorem 5 (p. 92).

Graph Reachability

- Let G(V, E) be a directed graph (**digraph**).
- REACHABILITY asks, given nodes a and b, does G contain a path from a to b?
- Can be easily solved in polynomial time by breadth-first search.
- How about its nondeterministic space complexity?

The First Try: NSPACE
$$(n \log n)$$

1: Determine the number of nodes m ; {Note $m \le n$.}
2: $x_1 := a$; {Assume $a \ne b$.}
3: for $i = 2, 3, ..., m$ do
4: Guess $x_i \in \{v_1, v_2, ..., v_m\}$; {The *i*th node.}
5: end for
6: for $i = 2, 3, ..., m$ do
7: if $(x_{i-1}, x_i) \notin E$ then
8: "no";
9: end if
10: if $x_i = b$ then
11: "yes";
12: end if
13: end for
14: "no";

Space Analysis

- Variables m, i, x, and y each require $O(\log n)$ bits.
- Testing $(x, y) \in E$ is accomplished by consulting the input string with counters of $O(\log n)$ bits long.
- Hence

```
REACHABILITY \in NSPACE(\log n).
```

- REACHABILITY with more than one terminal node also has the same complexity.
- In fact, REACHABILITY for *undirected* graphs is in $SPACE(\log n)$.^a
- REACHABILITY \in P (see, e.g., p. 235).

^aReingold (2005).

Undecidability

He [Turing] invented the idea of software, essentially[.] It's software that's really the important invention. — Freeman Dyson (2015)

Universal Turing Machine^a

• A universal Turing machine U interprets the input as the *description* of a TM M concatenated with the *description* of an input to that machine, x.^b

- Both M and x are over the alphabet of U.

• U simulates M on x so that

$$U(M;x) = M(x).$$

• U is like a modern computer, which executes any valid machine code, or a Java virtual machine, which executes any valid bytecode.

^aTuring (1936).

^bSee pp. 57–58 of the textbook.

The Halting Problem

- Undecidable problems are problems that have no algorithms.
 - Equivalently, they are languages that are not recursive.
- We now define a concrete undecidable problem, the halting problem:

$$H = \{ M; x : M(x) \neq \nearrow \}.$$

- Does M halt on input x?

${\cal H}$ Is Recursively Enumerable

- Use the universal TM U to simulate M on x.
- When M is about to halt, U enters a "yes" state.
- If M(x) diverges, so does U.
- This TM accepts H.

H Is Not Recursive $^{\rm a}$

- Suppose H is recursive.
- Then there is a TM M_H that decides H.
- Consider the program D(M) that calls M_H:
 1: if M_H(M; M) = "yes" then
 - 2: \nearrow ; {Writing an infinite loop is easy.}
 - 3: **else**
 - 4: "yes";
 - 5: end if

^aTuring (1936).

H Is Not Recursive (concluded)

• Consider D(D):

$$-D(D) = \nearrow M_H(D; D) = "yes" \Rightarrow D; D \in H \Rightarrow$$
$$D(D) \neq \nearrow, \text{ a contradiction.}$$
$$-D(D) = "yes" \Rightarrow M_H(D; D) = "no" \Rightarrow D; D \notin H \Rightarrow$$
$$D(D) = \nearrow, \text{ a contradiction.}$$

Comments

- Two levels of interpretations of M:^a
 - A sequence of 0s and 1s (data).
 - An encoding of instructions (programs).
- There are no paradoxes with D(D).
 - Concepts should be familiar to computer scientists.
 - Feed a C compiler to a C compiler, a Lisp interpreter to a Lisp interpreter, a sorting program to a sorting program, etc.

^aEckert & Mauchly (1943); von Neumann (1945); Turing (1946).

It seemed unworthy of a grown man to spend his time on such trivialities, but what was I to do? [···] The whole of the rest of my life might be consumed in looking at that blank sheet of paper. — Bertrand Russell (1872–1970), Autobiography, Vol. I (1967)

Self-Loop Paradoxes^a

Russell's Paradox (1901): Consider $R = \{A : A \notin A\}$.

- If $R \in R$, then $R \notin R$ by definition.
- If $R \notin R$, then $R \in R$ also by definition.
- In either case, we have a "contradiction."^b

Eubulides: The Cretan says, "All Cretans are liars."

Liar's Paradox: "This sentence is false."

^aE.g., Quine (1966), The Ways of Paradox and Other Essays and Hofstadter (1979), Gödel, Escher, Bach: An Eternal Golden Braid.

^bGottlob Frege (1848–1925) to Bertrand Russell in 1902, "Your discovery of the contradiction [...] has shaken the basis on which I intended to build arithmetic."

Self-Loop Paradoxes (continued)

- **Hypochondriac:** a patient with imaginary symptoms and ailments.^a
- Sharon Stone in *The Specialist* (1994): "I'm not a woman you can trust."
- Numbers 12:3, Old Testament: "Moses was the most humble person in all the world $[\cdots]$ " (attributed to Moses).

^aLike Gödel and Glenn Gould (1932–1982).

Self-Loop Paradoxes (continued)

- The Egyptian Book of the Dead: "ye live in me and I would live in you."
- John 14:10, New Testament: "Don't you believe that I am in the Father, and that the Father is in me?"
- John 17:21, New Testament: "just as you are in me and I am in you."

Self-Loop Paradoxes (concluded)

Jerome K. Jerome, *Three Men in a Boat* (1887): "How could I wake you, when you didn't wake me?"

Winston Churchill (January 23, 1948): "For my part, I consider that it will be found much better by all parties to leave the past to history, especially as I propose to write that history myself."

Nicola Lacey, A Life of H. L. A. Hart (2004): "Top Secret [MI5] Documents: Burn before Reading!"

Bertrand Russell^a (1872–1970)

Karl Popper (1974), "perhaps the greatest philosopher since Kant."

^aNobel Prize in Literature (1950).

©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University

Reductions in Proving Undecidability

- Suppose we are asked to prove that L is undecidable.
- Suppose L' (such as H) is known to be undecidable.
- Find a computable transformation R (called **reduction**^a) from L' to L such that^b

 $\forall x \{ x \in L' \text{ if and only if } R(x) \in L \}.$

- Now we can answer " $x \in L'$?" for any x by answering " $R(x) \in L$?" because it has the same answer.
- L' is said to be **reduced** to L.

^aPost (1944).

^bContributed by Mr. Tai-Dai Chou (J93922005) on May 19, 2005.

Reductions in Proving Undecidability (concluded)

- If L were decidable, " $R(x) \in L$?" becomes computable and we have an algorithm to decide L', a contradiction!
- So L must be undecidable.

Theorem 8 Suppose language L_1 can be reduced to language L_2 . If L_1 is undecidable, then L_2 is undecidable.

Special Cases and Reduction

- Suppose L_1 can be reduced to L_2 .
- As the reduction R maps members of L_1 to a *subset* of L_2 ,^a we may say L_1 is a "special case" of L_2 .^b
- That is one way to understand the use of the term "reduction."

^aBecause R may not be onto.

^bContributed by Ms. Mei-Chih Chang (D03922022) and Mr. Kai-Yuan Hou (B99201038, R03922014) on October 13, 2015.

Subsets and Decidability

- Suppose L_1 is undecidable and $L_1 \subseteq L_2$.
- Is L_2 undecidable?^a
- It depends.
- When $L_2 = \Sigma^*$, L_2 is decidable: Just answer "yes."
- If $L_2 L_1$ is decidable, then L_2 is undecidable. - Clearly,

 $x \in L_1$ if and only if $x \in L_2$ and $x \notin L_2 - L_1$.

- Therefore, if L_2 were decidable, then L_1 would be.

a
Contributed by Ms. Mei-Chih Chang ($\tt D03922022)$ on October 13, 2015.

The Universal Halting Problem

• The universal halting problem:

 $H^* = \{ M : M \text{ halts on all inputs} \}.$

• It is also called **the totality problem**.

H^* Is Not Recursive $^{\rm a}$

- We will reduce H to H^* .
- Given the question " $M; x \in H$?", construct the following machine (this is the reduction):^b

 $M_x(y) \{M(x);\}$

- M halts on x if and only if M_x halts on all inputs.
- In other words, $M; x \in H$ if and only if $M_x \in H^*$.
- So if H* were recursive (recall the box for L on p. 146), H would be recursive, a contradiction.

^aKleene (1936).

^bSimplified by Mr. Chih-Hung Hsieh (D95922003) on October 5, 2006. M_x ignores its input y; x is part of M_x 's code but not M_x 's input.

More Undecidability

- $\{M; x : \text{there is a } y \text{ such that } M(x) = y \}.$
- $\{M; x:$

the computation M on input x uses all states of M }.

•
$$L = \{ M; x; y : M(x) = y \}.$$

Complements of Recursive Languages The complement of L, denoted by \overline{L} , is the language $\Sigma^* - L$.

Lemma 9 If L is recursive, then so is \overline{L} .

- Let L be decided by M, which is deterministic.
- Swap the "yes" state and the "no" state of M.
- The new machine decides \overline{L} .^a

^aRecall p. 109.

Recursive and Recursively Enumerable Languages Lemma 10 (Kleene's theorem; Post, 1944) *L* is

recursive if and only if both L and \overline{L} are recursively enumerable.

- Suppose both L and \overline{L} are recursively enumerable, accepted by M and \overline{M} , respectively.
- Simulate M and \overline{M} in an *interleaved* fashion.
- If M accepts, then halt on state "yes" because $x \in L$.
- If \overline{M} accepts, then halt on state "no" because $x \notin L$.^a
- The other direction is trivial.

^aEither M or \overline{M} (but not both) must accept the input and halt.

A Very Useful Corollary and Its Consequences

Corollary 11 L is recursively enumerable but not recursive, then \overline{L} is not recursively enumerable.

- Suppose \overline{L} is recursively enumerable.
- Then both L and \overline{L} are recursively enumerable.
- By Lemma 10 (p. 154), L is recursive, a contradiction.

Corollary 12 \overline{H} is not recursively enumerable.^a

^aRecall that $\overline{H} = \{ M; x : M(x) = \nearrow \}.$

R, RE, and coRE

RE: The set of all recursively enumerable languages.

- **coRE:** The set of all languages whose complements are recursively enumerable.
- **R:** The set of all recursive languages.
 - Note that coRE is not $\overline{\text{RE}}$.
 - $-\operatorname{coRE} = \{ L : \overline{L} \in \operatorname{RE} \} = \{ \overline{L} : L \in \operatorname{RE} \}.$
 - $\overline{\mathrm{RE}} = \{ L : L \notin \mathrm{RE} \}.$

R, RE, and coRE (concluded)

- $R = RE \cap coRE (p. 154).$
- There exist languages in RE but not in R and not in coRE.
 - Such as H (p. 135, p. 136, and p. 155).
- There are languages in coRE but not in RE.
 Such as \$\bar{H}\$ (p. 155).
- There are languages in neither RE nor coRE.

H Is Complete for RE^{a}

- Let L be any recursively enumerable language.
- Assume M accepts L.
- Clearly, one can decide whether $x \in L$ by asking if $M: x \in H$.
- Hence *all* recursively enumerable languages are reducible to *H*!
- *H* is said to be **RE-complete**.

```
<sup>a</sup>Post (1944).
```

Notations

- Suppose M is a TM accepting L.
- Write L(M) = L.
 - In particular, if $M(x) = \nearrow$ for all x, then $L(M) = \emptyset$.
- If M(x) is never "yes" nor \nearrow (as required by the definition of acceptance), we also let $L(M) = \emptyset$.

Nontrivial Properties of Sets in RE

- A property of the recursively enumerable languages can be defined by the set C of all the recursively enumerable languages that satisfy it.
 - The property of *finite* recursively enumerable languages is

 $\{L: L = L(M) \text{ for a TM } M, L \text{ is finite} \}.$

- A property is **trivial** if C = RE or $C = \emptyset$.
 - Answer to a trivial property is always "yes" or always "no."

Nontrivial Properties of Sets in RE (concluded)

- Here is a trivial property (always yes): Does the TM accept a recursively enumerable language?^a
- A property is **nontrivial** if $C \neq RE$ and $C \neq \emptyset$.
 - In other words, answer to a nontrivial property is "yes" for some TMs and "no" for others.
- Here is a nontrivial property: Does the TM accept an empty language?^b
- Up to now, all nontrivial properties (of recursively enumerable languages) are undecidable (pp. 151–152).
- In fact, Rice's theorem confirms that.

^aOr, $L(M) \in \text{RE}$? ^bOr, $L(M) = \emptyset$?

Rice's Theorem

Theorem 13 (Rice, 1956) Suppose $C \neq \emptyset$ is a proper subset of the set of all recursively enumerable languages. Then the question " $L(M) \in C$?" is undecidable.

- Note that the input is a TM program M.
- Assume that $\emptyset \notin C$ (otherwise, repeat the proof for the class of all recursively enumerable languages *not* in C).
- Let $L \in \mathcal{C}$ be accepted by TM M_L (recall that $\mathcal{C} \neq \emptyset$).
- Let M_H accept the undecidable language H.
 - M_H exists (p. 135).

The Proof (continued)

• Construct machine $M_x(y)$:

if $M_H(x) =$ "yes" then $M_L(y)$ else \nearrow

• On the next page, we will prove that

$$L(M_x) \in \mathcal{C}$$
 if and only if $x \in H$. (1)

- As a result, the halting problem is reduced to deciding $L(M_x) \in \mathcal{C}$.
- Hence $L(M_x) \in \mathcal{C}$ must be undecidable, and we are done.

The Proof (concluded)

- Suppose $x \in H$, i.e., $M_H(x) =$ "yes."
 - $M_x(y)$ determines this, and it either accepts y or never halts, depending on whether $y \in L$.
 - Hence $L(M_x) = L \in \mathcal{C}$.
- Suppose $M_H(x) = \nearrow$.
 - $-M_x$ never halts.
 - $L(M_x) = \emptyset \notin \mathcal{C}.$

Comments

- \mathcal{C} must be arbitrary.
- The following $M_x(y)$, though similar, will not work: if $M_L(y) =$ "yes" then $M_H(x)$ else \nearrow .
- Rice's theorem is about properties of the languages accepted by Turing machines.
- It then says any nontrivial property is undecidable.
- Rice's theorem is *not* about Turing machines themselves, such as "Does a TM contain 5 states?"

Consequences of Rice's Theorem

Corollary 14 The following properties of recursively enumerative sets are undecidable.

- Emptiness.
- Finiteness.
- *Recursiveness*.
- Σ^* .
- Regularity.
- Context-freedom.

Undecidability in Logic and Mathematics

- First-order logic is undecidable (answer to Hilbert's (1928) *Entscheidungsproblem*).^a
- Natural numbers with addition and multiplication is undecidable.^b
- Rational numbers with addition and multiplication is undecidable.^c

^aChurch (1936). ^bRosser (1937). ^cRobinson (1948).

Undecidability in Logic and Mathematics (concluded)

- Natural numbers with addition and equality is decidable and complete.^a
- Elementary theory of groups is undecidable.^b

^aPresburger's Master's thesis (1928), his only work in logic. The direction was suggested by Tarski. Mojzesz Presburger (1904–1943) died in a concentration camp during World War II.
^bTarski (1949).

Julia Hall Bowman Robinson (1919–1985)

Alfred Tarski (1901–1983)

