The Traveling Salesman Problem

- We are given n cities $1,2, \ldots, n$ and integer distance $d_{i j}$ between any two cities i and j.
- Assume $d_{i j}=d_{j i}$ for convenience.
- The traveling salesman problem (TSP) asks for the total distance of the shortest tour of the cities. ${ }^{\text {a }}$
- The decision version TSP (D) asks if there is a tour with a total distance at most B, where B is an input. ${ }^{\text {b }}$

[^0]

A Nondeterministic Algorithm for TSP (D)

1: for $i=1,2, \ldots, n$ do
2: Guess $x_{i} \in\{1,2, \ldots, n\} ;\{\text { The } i \text { th city. }\}^{a}$
3: end for
4: \{Verification:\}
5: if $x_{1}, x_{2}, \ldots, x_{n}$ are distinct and $\sum_{i=1}^{n-1} d_{x_{i}, x_{i+1}} \leq B$ then
6: "yes";
7: else
8: "no";
9: end if
${ }^{\text {a }}$ Can be made into a series of $\log _{2} n$ binary choices for each x_{i} so that the next-state count (2) is a constant, independent of input size. Contributed by Mr. Chih-Duo Hong (R95922079) on September 27, 2006.

Analysis

- Suppose the input graph contains at least one tour of the cities with a total distance at most B.
- Then there is a computation path for that tour. ${ }^{\text {a }}$
- And it leads to "yes."
- Suppose the input graph contains no tour of the cities with a total distance at most B.
- Then every computation path leads to "no."

[^1]
Remarks on the $\mathrm{P} \stackrel{?}{=}$ NP Open Problem ${ }^{\text {a }}$

- Many practical applications depend on answers to the $\mathrm{P} \stackrel{?}{=} \mathrm{NP}$ question.
- Verification of password should be easy (so it is in NP).
- A computer should not take a long time to let a user $\log \mathrm{in}$.
- A password system should be hard to crack (loosely speaking, cracking it should not be in P).
- It took logicians 63 years to settle the Continuum Hypothesis; how long will it take for this one?

[^2]
Nondeterministic Space Complexity Classes

- Let L be a language.
- Then

$$
L \in \operatorname{NSPACE}(f(n))
$$

if there is an NTM with input and output that decides L and operates within space bound $f(n)$.

- NSPACE $(f(n))$ is a set of languages.
- As in the linear speedup theorem, ${ }^{\text {a }}$ constant coefficients do not matter.

[^3]
Graph Reachability

- Let $G(V, E)$ be a directed graph (digraph).
- Reachability asks, given nodes a and b, does G contain a path from a to b ?
- Can be easily solved in polynomial time by breadth-first search.
- How about its nondeterministic space complexity?

The First Try: NSPACE $(n \log n)$

1: Determine the number of nodes m; \{Note $m \leq n$.\}
2: $x_{1}:=a ;$ Assume $a \neq b$.\}
3: for $i=2,3, \ldots, m$ do
4: Guess $x_{i} \in\left\{v_{1}, v_{2}, \ldots, v_{m}\right\} ;$ \{The i th node. $\}$
end for
6: for $i=2,3, \ldots, m$ do
7: if $\left(x_{i-1}, x_{i}\right) \notin E$ then
8: "no";
9: end if
10: \quad if $x_{i}=b$ then
11: "yes";
12: end if
13: end for
14: "no";

In Fact, REACHABILITY $\in \operatorname{NSPACE}(\log n)$

1: Determine the number of nodes m; \{Note $m \leq n$.\}
2: $x:=a$;
3: for $i=2,3, \ldots, m$ do
4: Guess $y \in\left\{v_{1}, v_{2}, \ldots, v_{m}\right\} ;\{$ The next node. $\}$
5: if $(x, y) \notin E$ then
6: "no";
7: end if
8: \quad if $y=b$ then
9: "yes";
10: end if
11: $x:=y$;
12: end for
13: "no";

Space Analysis

- Variables m, i, x, and y each require $O(\log n)$ bits.
- Testing $(x, y) \in E$ is accomplished by consulting the input string with counters of $O(\log n)$ bits long.
- Hence

$$
\text { REACHABILITY } \in \text { NSPACE }(\log n) .
$$

- REACHABILITY with more than one terminal node also has the same complexity.
- In fact, REACHABILITY for undirected graphs is in SPACE $(\log n) .{ }^{\text {a }}$
- REACHABILITY $\in \mathrm{P}$ (see, e.g., p. 235).

[^4]
Undecidability

He [Turing] invented the idea of software, essentially[.]

It's software that's really
the important invention.

- Freeman Dyson (2015)

Universal Turing Machine ${ }^{\text {a }}$

- A universal Turing machine U interprets the input as the description of a TM M concatenated with the description of an input to that machine, $x .{ }^{\text {b }}$
- Both M and x are over the alphabet of U.
- U simulates M on x so that

$$
U(M ; x)=M(x) .
$$

- U is like a modern computer, which executes any valid machine code, or a Java virtual machine, which executes any valid bytecode.

[^5]
The Halting Problem

- Undecidable problems are problems that have no algorithms.
- Equivalently, they are languages that are not recursive.
- We now define a concrete undecidable problem, the halting problem:

$$
H=\{M ; x: M(x) \neq \nearrow\} .
$$

- Does M halt on input x ?

H Is Recursively Enumerable

- Use the universal TM U to simulate M on x.
- When M is about to halt, U enters a "yes" state.
- If $M(x)$ diverges, so does U.
- This TM accepts H.

H Is Not Recursive ${ }^{\text {a }}$

- Suppose H is recursive.
- Then there is a TM M_{H} that decides H.
- Consider the program $D(M)$ that calls M_{H} :

1: if $M_{H}(M ; M)=$ "yes" then
2: $\quad \nearrow$; \{Writing an infinite loop is easy.\}
3: else
4: "yes";
5: end if
${ }^{\text {a }}$ Turing (1936).

H Is Not Recursive (concluded)

- Consider $D(D)$:
$-D(D)=\nearrow \Rightarrow M_{H}(D ; D)=" y e s " \Rightarrow D ; D \in H \Rightarrow$ $D(D) \neq \nearrow$, a contradiction.
- $D(D)=$ "yes" $\Rightarrow M_{H}(D ; D)="$ no" $\Rightarrow D ; D \notin H \Rightarrow$ $D(D)=\nearrow$, a contradiction.

Comments

- Two levels of interpretations of $M:^{\text {a }}$
- A sequence of 0s and 1s (data).
- An encoding of instructions (programs).
- There are no paradoxes with $D(D)$.
- Concepts should be familiar to computer scientists.
- Feed a C compiler to a C compiler, a Lisp interpreter to a Lisp interpreter, a sorting program to a sorting program, etc.

[^6]It seemed unworthy of a grown man to spend his time on such trivialities, but what was I to do? [...] The whole of the rest of my life might be consumed in looking at that blank sheet of paper. - Bertrand Russell (1872-1970), Autobiography, Vol. I (1967)

Self-Loop Paradoxes ${ }^{\text {a }}$

Russell's Paradox (1901): Consider $R=\{A: A \notin A\}$.

- If $R \in R$, then $R \notin R$ by definition.
- If $R \notin R$, then $R \in R$ also by definition.
- In either case, we have a "contradiction." ${ }^{\text {b }}$

Eubulides: The Cretan says, "All Cretans are liars."
Liar's Paradox: "This sentence is false."

[^7]
Self-Loop Paradoxes (continued)

Hypochondriac: a patient with imaginary symptoms and ailments. ${ }^{\text {a }}$

Sharon Stone in The Specialist (1994): "I'm not a woman you can trust."

Numbers 12:3, Old Testament: "Moses was the most humble person in all the world [...]" (attributed to Moses).
${ }^{\text {a }}$ Like Gödel and Glenn Gould (1932-1982).

Self-Loop Paradoxes (continued)

The Egyptian Book of the Dead: "ye live in me and I would live in you."

John 14:10, New Testament: "Don't you believe that I am in the Father, and that the Father is in me?"

John 17:21, New Testament:"just as you are in me and I am in you."

Self-Loop Paradoxes (concluded)

Jerome K. Jerome, Three Men in a Boat (1887):
"How could I wake you, when you didn't wake me?"
Winston Churchill (January 23, 1948): "For my part, I consider that it will be found much better by all parties to leave the past to history, especially as I propose to write that history myself."

Nicola Lacey, A Life of H. L. A. Hart (2004): "Top Secret [MI5] Documents: Burn before Reading!"

Bertrand Russell ${ }^{\text {a }}$ (1872-1970)

Karl Popper (1974), "perhaps the greatest philosopher since Kant."

${ }^{\text {a }}$ Nobel Prize in Literature (1950).

Reductions in Proving Undecidability

- Suppose we are asked to prove that L is undecidable.
- Suppose L^{\prime} (such as H) is known to be undecidable.
- Find a computable transformation R (called reduction ${ }^{\text {a }}$) from L^{\prime} to L such that ${ }^{\text {b }}$

$$
\forall x\left\{x \in L^{\prime} \text { if and only if } R(x) \in L\right\} .
$$

- Now we can answer " $x \in L^{\prime}$?" for any x by answering " $R(x) \in L$?" because it has the same answer.
- L^{\prime} is said to be reduced to L.

[^8]

Reductions in Proving Undecidability (concluded)

- If L were decidable, " $R(x) \in L$?" becomes computable and we have an algorithm to decide L^{\prime}, a contradiction!
- So L must be undecidable.

Theorem 8 Suppose language L_{1} can be reduced to language L_{2}. If L_{1} is undecidable, then L_{2} is undecidable.

Special Cases and Reduction

- Suppose L_{1} can be reduced to L_{2}.
- As the reduction R maps members of L_{1} to a subset of $L_{2},{ }^{\text {a }}$ we may say L_{1} is a "special case" of $L_{2} \cdot{ }^{\text {b }}$
- That is one way to understand the use of the term "reduction."
${ }^{\text {a }}$ Because R may not be onto.
${ }^{\mathrm{b}}$ Contributed by Ms. Mei-Chih Chang (D03922022) and Mr. Kai-Yuan Hou (B99201038, R03922014) on October 13, 2015.

Subsets and Decidability

- Suppose L_{1} is undecidable and $L_{1} \subseteq L_{2}$.
- Is L_{2} undecidable? ${ }^{\text {a }}$
- It depends.
- When $L_{2}=\Sigma^{*}, L_{2}$ is decidable: Just answer "yes."
- If $L_{2}-L_{1}$ is decidable, then L_{2} is undecidable.
- Clearly,

$$
x \in L_{1} \text { if and only if } x \in L_{2} \text { and } x \notin L_{2}-L_{1}
$$

- Therefore, if L_{2} were decidable, then L_{1} would be.

[^9]
The Universal Halting Problem

- The universal halting problem:

$$
H^{*}=\{M: M \text { halts on all inputs }\} .
$$

- It is also called the totality problem.

H^{*} Is Not Recursive ${ }^{\text {a }}$

- We will reduce H to H^{*}.
- Given the question " $M ; x \in H$?", construct the following machine (this is the reduction): ${ }^{\text {b }}$

$$
M_{x}(y)\{M(x) ;\}
$$

- M halts on x if and only if M_{x} halts on all inputs.
- In other words, $M ; x \in H$ if and only if $M_{x} \in H^{*}$.
- So if H^{*} were recursive (recall the box for L on p. 146), H would be recursive, a contradiction.

[^10]
More Undecidability

- $\{M ; x$: there is a y such that $M(x)=y\}$.
- $\{M ; x$:
the computation M on input x uses all states of M \}.
- $L=\{M ; x ; y: M(x)=y\}$.

Complements of Recursive Languages

The complement of L, denoted by \bar{L}, is the language $\Sigma^{*}-L$.

Lemma 9 If L is recursive, then so is \bar{L}.

- Let L be decided by M, which is deterministic.
- Swap the "yes" state and the "no" state of M.
- The new machine decides \bar{L}. ${ }^{\text {a }}$
${ }^{\text {a }}$ Recall p. 109.

Recursive and Recursively Enumerable Languages

Lemma 10 (Kleene's theorem; Post, 1944) L is
recursive if and only if both L and \bar{L} are recursively enumerable.

- Suppose both L and \bar{L} are recursively enumerable, accepted by M and \bar{M}, respectively.
- Simulate M and \bar{M} in an interleaved fashion.
- If M accepts, then halt on state "yes" because $x \in L$.
- If \bar{M} accepts, then halt on state "no" because $x \notin L$. ${ }^{\text {a }}$
- The other direction is trivial.

[^11]
A Very Useful Corollary and Its Consequences

Corollary $11 L$ is recursively enumerable but not recursive, then \bar{L} is not recursively enumerable.

- Suppose \bar{L} is recursively enumerable.
- Then both L and \bar{L} are recursively enumerable.
- By Lemma 10 (p. 154), L is recursive, a contradiction.

Corollary $12 \bar{H}$ is not recursively enumerable. ${ }^{\text {a }}$
${ }^{\text {a Recall that }} \bar{H}=\{M ; x: M(x)=\nearrow\}$.

R, RE, and coRE

RE: The set of all recursively enumerable languages.
coRE: The set of all languages whose complements are recursively enumerable.
\mathbf{R} : The set of all recursive languages.

- Note that coRE is not $\overline{\mathrm{RE}}$.
$-\operatorname{coRE}=\{L: \bar{L} \in \operatorname{RE}\}=\{\bar{L}: L \in \operatorname{RE}\}$.
$-\overline{\mathrm{RE}}=\{L: L \notin \mathrm{RE}\}$.

R, RE, and coRE (concluded)

- $\mathrm{R}=\mathrm{RE} \cap \operatorname{coRE}$ (p. 154).
- There exist languages in RE but not in R and not in coRE.
- Such as H (p. 135, p. 136, and p. 155).
- There are languages in coRE but not in RE.
- Such as \bar{H} (p. 155).
- There are languages in neither RE nor coRE.

H Is Complete for RE^{a}

- Let L be any recursively enumerable language.
- Assume M accepts L.
- Clearly, one can decide whether $x \in L$ by asking if $M: x \in H$.
- Hence all recursively enumerable languages are reducible to H !
- H is said to be $\mathbf{R E}$-complete.
${ }^{\text {a Post (1944). }}$

Notations

- Suppose M is a TM accepting L.
- Write $L(M)=L$.
- In particular, if $M(x)=\nearrow$ for all x, then $L(M)=\emptyset$.
- If $M(x)$ is never "yes" nor \nearrow (as required by the definition of acceptance), we also let $L(M)=\emptyset$.

Nontrivial Properties of Sets in RE

- A property of the recursively enumerable languages can be defined by the set \mathcal{C} of all the recursively enumerable languages that satisfy it.
- The property of finite recursively enumerable languages is

$$
\{L: L=L(M) \text { for a TM } M, L \text { is finite }\} .
$$

- A property is trivial if $\mathcal{C}=\mathrm{RE}$ or $\mathcal{C}=\emptyset$.
- Answer to a trivial property is always "yes" or always "no."

Nontrivial Properties of Sets in RE (concluded)

- Here is a trivial property (always yes): Does the TM accept a recursively enumerable language? ${ }^{\text {a }}$
- A property is nontrivial if $\mathcal{C} \neq \mathrm{RE}$ and $\mathcal{C} \neq \emptyset$.
- In other words, answer to a nontrivial property is "yes" for some TMs and "no" for others.
- Here is a nontrivial property: Does the TM accept an empty language? ${ }^{\text {b }}$
- Up to now, all nontrivial properties (of recursively enumerable languages) are undecidable (pp. 151-152).
- In fact, Rice's theorem confirms that.

$$
\begin{aligned}
& { }^{\mathrm{a}} \mathrm{Or}, L(M) \in \mathrm{RE} ? \\
& { }^{\mathrm{b}} \mathrm{Or}, L(M)=\emptyset ?
\end{aligned}
$$

Rice's Theorem

Theorem 13 (Rice, 1956) Suppose $\mathcal{C} \neq \emptyset$ is a proper subset of the set of all recursively enumerable languages. Then the question " $L(M) \in \mathcal{C}$?" is undecidable.

- Note that the input is a TM program M.
- Assume that $\emptyset \notin \mathcal{C}$ (otherwise, repeat the proof for the class of all recursively enumerable languages not in \mathcal{C}).
- Let $L \in \mathcal{C}$ be accepted by TM M_{L} (recall that $\left.\mathcal{C} \neq \emptyset\right)$.
- Let M_{H} accept the undecidable language H.
- M_{H} exists (p. 135).

The Proof (continued)

- Construct machine $M_{x}(y)$:

$$
\text { if } M_{H}(x)=\text { "yes" then } M_{L}(y) \text { else }
$$

- On the next page, we will prove that

$$
\begin{equation*}
L\left(M_{x}\right) \in \mathcal{C} \text { if and only if } x \in H \tag{1}
\end{equation*}
$$

- As a result, the halting problem is reduced to deciding $L\left(M_{x}\right) \in \mathcal{C}$.
- Hence $L\left(M_{x}\right) \in \mathcal{C}$ must be undecidable, and we are done.

The Proof (concluded)

- Suppose $x \in H$, i.e., $M_{H}(x)=$ "yes."
- $M_{x}(y)$ determines this, and it either accepts y or never halts, depending on whether $y \in L$.
- Hence $L\left(M_{x}\right)=L \in \mathcal{C}$.
- Suppose $M_{H}(x)=\nearrow$.
- M_{x} never halts.
- $L\left(M_{x}\right)=\emptyset \notin \mathcal{C}$.

Comments

- \mathcal{C} must be arbitrary.
- The following $M_{x}(y)$, though similar, will not work:

$$
\text { if } M_{L}(y)=\text { "yes" then } M_{H}(x) \text { else } \nearrow .
$$

- Rice's theorem is about properties of the languages accepted by Turing machines.
- It then says any nontrivial property is undecidable.
- Rice's theorem is not about Turing machines themselves, such as "Does a TM contain 5 states?"

Consequences of Rice's Theorem

Corollary 14 The following properties of recursively enumerative sets are undecidable.

- Emptiness.
- Finiteness.
- Recursiveness.
- Σ^{*}.
- Regularity.
- Context-freedom.

Undecidability in Logic and Mathematics

- First-order logic is undecidable (answer to Hilbert's (1928) Entscheidungsproblem). ${ }^{\text {a }}$
- Natural numbers with addition and multiplication is undecidable. ${ }^{\text {b }}$
- Rational numbers with addition and multiplication is undecidable. ${ }^{\text {c }}$
${ }^{\text {a }}$ Church (1936).
${ }^{\text {b }}$ Rosser (1937).
${ }^{c}$ Robinson (1948).

Undecidability in Logic and Mathematics (concluded)

- Natural numbers with addition and equality is decidable and complete. ${ }^{\text {a }}$
- Elementary theory of groups is undecidable. ${ }^{\text {b }}$

[^12]
Julia Hall Bowman Robinson (1919-1985)

Alfred Tarski (1901-1983)

[^0]: ${ }^{\text {a }}$ Each city is visited exactly once.
 ${ }^{\text {b }}$ Both problems are extremely important. They are equally hard (p. 399 and p. 501).

[^1]: ${ }^{\text {a }}$ It does not mean the algorithm will follow that path. It just means such a computation path (i.e., a sequence of nondeterministic choices) exists.

[^2]: ${ }^{\text {a }}$ Contributed by Mr. Kuan-Lin Huang (B96902079, R00922018) on September 27, 2011.

[^3]: ${ }^{\text {a }}$ Theorem 5 (p. 92).

[^4]: ${ }^{\text {a }}$ Reingold (2005).

[^5]: ${ }^{\text {a Turing (1936). }}$
 ${ }^{\mathrm{b}}$ See pp. 57-58 of the textbook.

[^6]: ${ }^{\text {a }}$ Eckert \& Mauchly (1943); von Neumann (1945); Turing (1946).

[^7]: ${ }^{\text {a }}$ E.g., Quine (1966), The Ways of Paradox and Other Essays and Hofstadter (1979), Gödel, Escher, Bach: An Eternal Golden Braid.
 ${ }^{\mathrm{b}}$ Gottlob Frege (1848-1925) to Bertrand Russell in 1902, "Your discovery of the contradiction [...] has shaken the basis on which I intended to build arithmetic."

[^8]: ${ }^{\text {a Post (1944). }}$
 ${ }^{\text {b }}$ Contributed by Mr. Tai-Dai Chou (J93922005) on May 19, 2005.

[^9]: ${ }^{\text {a }}$ Contributed by Ms. Mei-Chih Chang (D03922022) on October 13, 2015.

[^10]: ${ }^{\text {a }}$ Kleene (1936).
 ${ }^{\mathrm{b}}$ Simplified by Mr. Chih-Hung Hsieh (D95922003) on October 5, 2006. M_{x} ignores its input $y ; x$ is part of M_{x} 's code but not M_{x} 's input.

[^11]: ${ }^{\text {a }}$ Either M or \bar{M} (but not both) must accept the input and halt.

[^12]: ${ }^{\text {a }}$ Presburger's Master's thesis (1928), his only work in logic. The direction was suggested by Tarski. Mojz̄esz Presburger (1904-1943) died in a concentration camp during World War II.
 ${ }^{\mathrm{b}}$ Tarski (1949).

