
Nondeterministic Space Complexity Classes

• Let L be a language.

• Then

L ∈ NSPACE(f(n))

if there is an NTM with input and output that decides L

and operates within space bound f(n).

• NSPACE(f(n)) is a set of languages.

• As in the linear speedup theorem,a, constant coefficients

do not matter.

aTheorem 5 (p. 90).
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Graph Reachability

• Let G(V,E) be a directed graph (digraph).

• reachability asks, given nodes a and b, does G

contain a path from a to b?

• Can be easily solved in polynomial time by breadth-first

search.

• How about its nondeterministic space complexity?
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The First Try: NSPACE(n log n)
1: Determine the number of nodes m; {Note m ≤ n.}
2: x1 := a; {Assume a �= b.}
3: for i = 2, 3, . . . ,m do

4: Guess xi ∈ { v1, v2, . . . , vm }; {The ith node.}
5: end for

6: for i = 2, 3, . . . ,m do

7: if (xi−1, xi) �∈ E then

8: “no”;

9: end if

10: if xi = b then

11: “yes”;

12: end if

13: end for

14: “no”;
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In Fact, reachability ∈ NSPACE(log n)
1: Determine the number of nodes m; {Note m ≤ n.}
2: x := a;

3: for i = 2, 3, . . . ,m do

4: Guess y ∈ { v1, v2, . . . , vm }; {The next node.}
5: if (x, y) �∈ E then

6: “no”;

7: end if

8: if y = b then

9: “yes”;

10: end if

11: x := y;

12: end for

13: “no”;
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Space Analysis

• Variables m, i, x, and y each require O(log n) bits.

• Testing (x, y) ∈ E is accomplished by consulting the

input string with counters of O(log n) bits long.

• Hence

reachability ∈ NSPACE(log n).

– reachability with more than one terminal node

also has the same complexity.

• reachability ∈ P (see, e.g., p. 223).
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Undecidability
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He [Turing] invented

the idea of software, essentially[.]

It’s software that’s really

the important invention.

— Freeman Dyson (2015)
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Universal Turing Machinea

• A universal Turing machine U interprets the input

as the description of a TM M concatenated with the

description of an input to that machine, x.

– Both M and x are over the alphabet of U .

• U simulates M on x so that

U(M ;x) = M(x).

• U is like a modern computer, which executes any valid

machine code, or a Java virtual machine, which executes

any valid bytecode.

aTuring (1936).
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The Halting Problem

• Undecidable problems are problems that have no

algorithms.

– Equivalently, they are languages that are not

recursive.

• We now define a concrete undecidable problem, the

halting problem:

H = {M ;x : M(x) �=↗}.
– Does M halt on input x?
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H Is Recursively Enumerable

• Use the universal TM U to simulate M on x.

• When M is about to halt, U enters a “yes” state.

• If M(x) diverges, so does U .

• This TM accepts H.
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H Is Not Recursivea

• Suppose H is recursive.

• Then there is a TM MH that decides H.

• Consider the program D(M) that calls MH :

1: if MH(M ;M) = “yes” then

2: ↗; {Writing an infinite loop is easy.}
3: else

4: “yes”;

5: end if

aTuring (1936).
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H Is Not Recursive (concluded)

• Consider D(D):

– D(D) =↗⇒ MH(D;D) = “yes” ⇒ D;D ∈ H ⇒
D(D) �=↗, a contradiction.

– D(D) = “yes” ⇒ MH(D;D) = “no” ⇒ D;D �∈ H ⇒
D(D) =↗, a contradiction.
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Comments

• Two levels of interpretations of M :a

– A sequence of 0s and 1s (data).

– An encoding of instructions (programs).

• There are no paradoxes with D(D).

– Concepts should be familiar to computer scientists.

– Feed a C compiler to a C compiler, a Lisp interpreter

to a Lisp interpreter, a sorting program to a sorting

program, etc.

aEckert and Mauchly (1943); von Neumann (1945); Turing (1946).
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It seemed unworthy of a grown man

to spend his time on such trivialities,

but what was I to do? [· · · ]
The whole of the rest of my life might be

consumed in looking at

that blank sheet of paper.

— Bertrand Russell (1872–1970),

Autobiography, Vol. I (1967)
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Self-Loop Paradoxesa

Russell’s Paradox (1901): Consider R = {A : A �∈ A}.
• If R ∈ R, then R �∈ R by definition.

• If R �∈ R, then R ∈ R also by definition.

• In either case, we have a “contradiction.”b

Eubulides: The Cretan says, “All Cretans are liars.”

Liar’s Paradox: “This sentence is false.”

aE.g., Quine (1966), The Ways of Paradox and Other Essays and

Hofstadter (1979), Gödel, Escher, Bach: An Eternal Golden Braid.
bGottlob Frege (1848–1925) to Bertrand Russell in 1902, “Your dis-

covery of the contradiction [. . .] has shaken the basis on which I intended

to build arithmetic.”
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Self-Loop Paradoxes (continued)

Hypochondriac: a patient (like Gödel) with imaginary

symptoms and ailments.

Sharon Stone in The Specialist (1994): “I’m not a

woman you can trust.”

Numbers 12:3, Old Testament: “Moses was the most

humble person in all the world [· · · ]” (attributed to

Moses).

Soren Kierkegaard in Fear and Trembling (1843):

“to strive against the whole world is a comfort, to strive

with oneself is dreadful.”
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Self-Loop Paradoxes (concluded)

The Egyptian Book of the Dead: “ye live in me and I

would live in you.”

John 14:10, New Testament: “Don’t you believe that I

am in the Father, and that the Father is in me?”

John 17:21, New Testament: “just as you are in me and

I am in you.”

Pagan & Christian Creeds (1920): “I was moved to

Odin, myself to myself.”
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Bertrand Russella (1872–1970)

Karl Popper (1974), “per-

haps the greatest philoso-

pher since Kant.”

aNobel Prize in Literature (1950).
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Reductions in Proving Undecidability

• Suppose we are asked to prove that L is undecidable.

• Suppose L′ (such as H) is known to be undecidable.

• Find a computable transformation R (called

reductiona) from L′ to L such thatb

∀x {x ∈ L′ if and only if R(x) ∈ L }.

• Now we can answer “x ∈ L′?” for any x by answering

“R(x) ∈ L?” because it has the same answer.

• L′ is said to be reduced to L.

aPost (1944).
bContributed by Mr. Tai-Dai Chou (J93922005) on May 19, 2005.
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x yes/noR(x)
R algorithm 

for L

algorithm for L
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Reductions in Proving Undecidability (concluded)

• If L were decidable, “R(x) ∈ L?” becomes computable

and we have an algorithm to decide L′, a contradiction!

• So L must be undecidable.

Theorem 8 Suppose language L1 can be reduced to

language L2. If L1 is undecidable, then L2 is undecidable.
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Special Cases and Reduction

• Suppose L1 can be reduced to L2.

• As the reduction R maps members of L1 to a subset of

L2,
a we may say L1 is a “special case” of L2.

b

• That is one way to understand the use of the term

“reduction.”

aBecause R may not be onto.
bContributed by Ms. Mei-Chih Chang (D03922022) and Mr. Kai-Yuan

Hou (B99201038, R03922014) on October 13, 2015.
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Subsets and Decidability

• Suppose L1 is undecidable and L1 ⊆ L2.

• Is L2 undecidable?a

• It depends.

• When L2 = Σ∗, L2 is decidable: Just answer “yes.”

• If L2 − L1 is decidable, then L2 is undecidable.

– Clearly,

x ∈ L1 if and only if x ∈ L2 and x �∈ L2 − L1.

– Therefore, if L2 were decidable, then L1 would be.

aContributed by Ms. Mei-Chih Chang (D03922022) on October 13,

2015.
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The Universal Halting Problem

• The universal halting problem:

H∗ = {M : M halts on all inputs }.

• It is also called the totality problem.
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H∗ Is Not Recursivea

• We will reduce H to H∗.

• Given the question “M ;x ∈ H?”, construct the following

machine (this is the reduction):b

Mx(y) {M(x); }

• M halts on x if and only if Mx halts on all inputs.

• In other words, M ;x ∈ H if and only if Mx ∈ H∗.

• So if H∗ were recursive (recall the box for L on p. 142),

H would be recursive, a contradiction.

aKleene (1936).
bSimplified by Mr. Chih-Hung Hsieh (D95922003) on October 5, 2006.

Mx ignores its input y; x is part of Mx’s code but not Mx’s input.
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More Undecidability

• {M ;x : there is a y such that M(x) = y }.
• {M ;x :

the computation M on input x uses all states of M }.

• L = {M ;x; y : M(x) = y }.
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Complements of Recursive Languages

The complement of L, denoted by L̄, is the language

Σ∗ − L.

Lemma 9 If L is recursive, then so is L̄.

• Let L be decided by M , which is deterministic.

• Swap the “yes” state and the “no” state of M .

• The new machine decides L̄.a

aRecall p. 106.
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Recursive and Recursively Enumerable Languages

Lemma 10 (Kleene’s theorem; Post (1944)) L is

recursive if and only if both L and L̄ are recursively

enumerable.

• Suppose both L and L̄ are recursively enumerable,

accepted by M and M̄ , respectively.

• Simulate M and M̄ in an interleaved fashion.

• If M accepts, then halt on state “yes” because x ∈ L.

• If M̄ accepts, then halt on state “no” because x �∈ L.

• Note that either M or M̄ (but not both) must accept

the input and halt.
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A Very Useful Corollary and Its Consequences

Corollary 11 L is recursively enumerable but not recursive,

then L̄ is not recursively enumerable.

• Suppose L̄ is recursively enumerable.

• Then both L and L̄ are recursively enumerable.

• By Lemma 10 (p. 150), L is recursive, a contradiction.

Corollary 12 H̄ is not recursively enumerable.a

aRecall that H̄ = {M ;x : M(x) =↗}.
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R, RE, and coRE

RE: The set of all recursively enumerable languages.

coRE: The set of all languages whose complements are

recursively enumerable.

R: The set of all recursive languages.

• Note that coRE is not RE.

– coRE = {L : L ∈ RE } = {L : L ∈ RE }.
– RE = {L : L �∈ RE }.
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R, RE, and coRE (concluded)

• R = RE ∩ coRE (p. 150).

• There exist languages in RE but not in R and not in

coRE.

– Such as H (p. 132, p. 133, and p. 151).

• There are languages in coRE but not in RE.

– Such as H̄ (p. 151).

• There are languages in neither RE nor coRE.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 153



R
coRERE
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H Is Complete for REa

• Let L be any recursively enumerable language.

• Assume M accepts L.

• Clearly, one can decide whether x ∈ L by asking if

M : x ∈ H.

• Hence all recursively enumerable languages are reducible

to H!

• H is said to be RE-complete.

aPost (1944).
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Undecidability in Logic and Mathematics

• First-order logic is undecidable (answer to Hilbert’s

(1928) Entscheidungsproblem).a

• Natural numbers with addition and multiplication is

undecidable.b

• Rational numbers with addition and multiplication is

undecidable.c

aChurch (1936).
bRosser (1937).
cRobinson (1948).
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Undecidability in Logic and Mathematics (concluded)

• Natural numbers with addition and equality is decidable

and complete.a

• Elementary theory of groups is undecidable.b

aPresburger’s Master’s thesis (1928), his only work in logic. The

direction was suggested by Tarski. Mojz̄esz Presburger (1904–1943) died

in a concentration camp during World War II.
bTarski (1949).
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Julia Hall Bowman Robinson (1919–1985)
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Alfred Tarski (1901–1983)
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Boolean Logic
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Both of us had said the very same thing.

Did we both speak the truth

—or one of us did

—or neither?

— Joseph Conrad (1857–1924),

Lord Jim (1900)
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Boolean Logica

Boolean variables: x1, x2, . . ..

Literals: xi, ¬xi.

Boolean connectives: ∨,∧,¬.
Boolean expressions: Boolean variables, ¬φ (negation),

φ1 ∨ φ2 (disjunction), φ1 ∧ φ2 (conjunction).

• ∨n
i=1 φi stands for φ1 ∨ φ2 ∨ · · · ∨ φn.

• ∧n
i=1 φi stands for φ1 ∧ φ2 ∧ · · · ∧ φn.

Implications: φ1 ⇒ φ2 is a shorthand for ¬φ1 ∨ φ2.

Biconditionals: φ1 ⇔ φ2 is a shorthand for

(φ1 ⇒ φ2) ∧ (φ2 ⇒ φ1).

aGeorge Boole (1815–1864) in 1847.
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Truth Assignments

• A truth assignment T is a mapping from boolean

variables to truth values true and false.

• A truth assignment is appropriate to boolean

expression φ if it defines the truth value for every

variable in φ.

– {x1 = true, x2 = false } is appropriate to x1 ∨ x2.

– {x2 = true, x3 = false } is not appropriate to

x1 ∨ x2.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 163



Satisfaction

• T |= φ means boolean expression φ is true under T ; in

other words, T satisfies φ.

• φ1 and φ2 are equivalent, written

φ1 ≡ φ2,

if for any truth assignment T appropriate to both of

them, T |= φ1 if and only if T |= φ2.
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Truth Tables

• Suppose φ has n boolean variables.

• A truth table contains 2n rows.

• Each row corresponds to one truth assignment of the n

variables and records the truth value of φ under it.

• A truth table can be used to prove if two boolean

expressions are equivalent.

– Just check if they give identical truth values under all

appropriate truth assignments.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 165



A Truth Table

p q p ∧ q

0 0 0

0 1 0

1 0 0

1 1 1
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A Second Truth Table

p q p ∨ q

0 0 0

0 1 1

1 0 1

1 1 1
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A Third Truth Table

p ¬p
0 1

1 0
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Proof of Equivalency by the Truth Table:
p ⇒ q ≡ ¬q ⇒ ¬p

p q p ⇒ q ¬q ⇒ ¬p
0 0 1 1

0 1 1 1

1 0 0 0

1 1 1 1
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De Morgan’s Lawsa

• De Morgan’s laws say that

¬(φ1 ∧ φ2) ≡ ¬φ1 ∨ ¬φ2,

¬(φ1 ∨ φ2) ≡ ¬φ1 ∧ ¬φ2.

• Here is a proof of the first law:

φ1 φ2 ¬(φ1 ∧ φ2) ¬φ1 ∨ ¬φ2

0 0 1 1

0 1 1 1

1 0 1 1

1 1 0 0

aAugustus DeMorgan (1806–1871) or William of Ockham (1288–

1348).
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Conjunctive Normal Forms

• A boolean expression φ is in conjunctive normal

form (CNF) if

φ =

n∧

i=1

Ci,

where each clause Ci is the disjunction of zero or more

literals.a

– For example,

(x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (x2 ∨ x3).

• Convention: An empty CNF is satisfiable, but a CNF

containing an empty clause is not.

aImproved by Mr. Aufbu Huang (R95922070) on October 5, 2006.
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Disjunctive Normal Forms

• A boolean expression φ is in disjunctive normal form

(DNF) if

φ =
n∨

i=1

Di,

where each implicant Di is the conjunction of zero or

more literals.

– For example,

(x1 ∧ x2) ∨ (x1 ∧ ¬x2) ∨ (x2 ∧ x3).
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Clauses and Implicants

• The
∨

of clauses remains a clause.

– For example,

(x1 ∨ x2) ∨ (x1 ∨ ¬x2) ∨ (x2 ∨ x3)

= x1 ∨ x2 ∨ x1 ∨ ¬x2 ∨ x2 ∨ x3.

• The
∧

of implicants remains an implicant.

– For example,

(x1 ∧ x2) ∧ (x1 ∧ ¬x2) ∧ (x2 ∧ x3)

= x1 ∧ x2 ∧ x1 ∧ ¬x2 ∧ x2 ∧ x3.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 173



Any Expression φ Can Be Converted into CNFs and DNFs

φ = xj:

• This is trivially true.

φ = ¬φ1 and a CNF is sought:

• Turn φ1 into a DNF.

• Apply de Morgan’s laws to make a CNF for φ.

φ = ¬φ1 and a DNF is sought:

• Turn φ1 into a CNF.

• Apply de Morgan’s laws to make a DNF for φ.
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Any Expression φ Can Be Converted into CNFs and DNFs

(continued)

φ = φ1 ∨ φ2 and a DNF is sought:

• Make φ1 and φ2 DNFs.

φ = φ1 ∨ φ2 and a CNF is sought:

• Turn φ1 and φ2 into CNFs,a

φ1 =

n1∧

i=1

Ai, φ2 =

n2∧

j=1

Bj .

• Set

φ =

n1∧

i=1

n2∧

j=1

(Ai ∨Bj).

aCorrected by Mr. Chun-Jie Yang (R99922150) on November 9, 2010.
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Any Expression φ Can Be Converted into CNFs and DNFs

(concluded)

φ = φ1 ∧ φ2 and a CNF is sought:

• Make φ1 and φ2 CNFs.

φ = φ1 ∧ φ2 and a DNF is sought:

• Turn φ1 and φ2 into DNFs,

φ1 =

n1∨

i=1

Ai, φ2 =

n2∨

j=1

Bj .

• Set

φ =

n1∨

i=1

n2∨

j=1

(Ai ∧Bj).
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An Example: Turn ¬((a ∧ y) ∨ (z ∨ w)) into a DNF

¬((a ∧ y) ∨ (z ∨ w))

¬(CNF∨CNF)
= ¬(((a) ∧ (y)) ∨ ((z ∨ w)))

¬(CNF)
= ¬((a ∨ z ∨ w) ∧ (y ∨ z ∨ w))

de Morgan
= ¬(a ∨ z ∨ w) ∨ ¬(y ∨ z ∨ w)

de Morgan
= (¬a ∧ ¬z ∧ ¬w) ∨ (¬y ∧ ¬z ∧ ¬w).
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