Nondeterministic Space Complexity Classes

- Let L be a language.
- Then

$$
L \in \operatorname{NSPACE}(f(n))
$$

if there is an NTM with input and output that decides L and operates within space bound $f(n)$.

- NSPACE $(f(n))$ is a set of languages.
- As in the linear speedup theorem, ${ }^{\text {a }}$, constant coefficients do not matter.
${ }^{\text {a }}$ Theorem 5 (p. 90).

Graph Reachability

- Let $G(V, E)$ be a directed graph (digraph).
- Reachability asks, given nodes a and b, does G contain a path from a to b ?
- Can be easily solved in polynomial time by breadth-first search.
- How about its nondeterministic space complexity?

The First Try: NSPACE $(n \log n)$

1: Determine the number of nodes m; \{Note $m \leq n$.\}
2: $x_{1}:=a ;$ Assume $a \neq b$.\}
3: for $i=2,3, \ldots, m$ do
4: Guess $x_{i} \in\left\{v_{1}, v_{2}, \ldots, v_{m}\right\} ;$ \{The i th node. $\}$
end for
6: for $i=2,3, \ldots, m$ do
7: if $\left(x_{i-1}, x_{i}\right) \notin E$ then
8: "no";
9: end if
10: \quad if $x_{i}=b$ then
11: "yes";
12: end if
13: end for
14: "no";

In Fact, REACHABILITY $\in \operatorname{NSPACE}(\log n)$

1: Determine the number of nodes m; \{Note $m \leq n$.\}
2: $x:=a$;
3: for $i=2,3, \ldots, m$ do
4: Guess $y \in\left\{v_{1}, v_{2}, \ldots, v_{m}\right\} ;\{$ The next node. $\}$
5: if $(x, y) \notin E$ then
6: "no";
7: end if
8: \quad if $y=b$ then
9: "yes";
10: end if
11: $x:=y$;
12: end for
13: "no";

Space Analysis

- Variables m, i, x, and y each require $O(\log n)$ bits.
- Testing $(x, y) \in E$ is accomplished by consulting the input string with counters of $O(\log n)$ bits long.
- Hence

$$
\text { REACHABILITY } \in \text { NSPACE }(\log n) .
$$

- REACHABILITY with more than one terminal node also has the same complexity.
- REACHABILITY $\in \mathrm{P}$ (see, e.g., p. 223).

Undecidability

He [Turing] invented the idea of software, essentially[.]

It's software that's really
the important invention.

- Freeman Dyson (2015)

Universal Turing Machine ${ }^{\text {a }}$

- A universal Turing machine U interprets the input as the description of a TM M concatenated with the description of an input to that machine, x.
- Both M and x are over the alphabet of U.
- U simulates M on x so that

$$
U(M ; x)=M(x) .
$$

- U is like a modern computer, which executes any valid machine code, or a Java virtual machine, which executes any valid bytecode.
${ }^{\text {a }}$ Turing (1936).

The Halting Problem

- Undecidable problems are problems that have no algorithms.
- Equivalently, they are languages that are not recursive.
- We now define a concrete undecidable problem, the halting problem:

$$
H=\{M ; x: M(x) \neq \nearrow\} .
$$

- Does M halt on input x ?

H Is Recursively Enumerable

- Use the universal TM U to simulate M on x.
- When M is about to halt, U enters a "yes" state.
- If $M(x)$ diverges, so does U.
- This TM accepts H.

H Is Not Recursive ${ }^{\text {a }}$

- Suppose H is recursive.
- Then there is a TM M_{H} that decides H.
- Consider the program $D(M)$ that calls M_{H} :

1: if $M_{H}(M ; M)=$ "yes" then
2: $\quad \nearrow$; \{Writing an infinite loop is easy.\}
3: else
4: "yes";
5: end if
${ }^{\text {a }}$ Turing (1936).

H Is Not Recursive (concluded)

- Consider $D(D)$:
$-D(D)=\nearrow \Rightarrow M_{H}(D ; D)=" y e s " \Rightarrow D ; D \in H \Rightarrow$ $D(D) \neq \nearrow$, a contradiction.
- $D(D)=$ "yes" $\Rightarrow M_{H}(D ; D)="$ no" $\Rightarrow D ; D \notin H \Rightarrow$ $D(D)=\nearrow$, a contradiction.

Comments

- Two levels of interpretations of $M:^{\text {a }}$
- A sequence of 0s and 1s (data).
- An encoding of instructions (programs).
- There are no paradoxes with $D(D)$.
- Concepts should be familiar to computer scientists.
- Feed a C compiler to a C compiler, a Lisp interpreter to a Lisp interpreter, a sorting program to a sorting program, etc.

[^0]It seemed unworthy of a grown man to spend his time on such trivialities, but what was I to do? [...] The whole of the rest of my life might be consumed in looking at that blank sheet of paper. - Bertrand Russell (1872-1970), Autobiography, Vol. I (1967)

Self-Loop Paradoxes ${ }^{\text {a }}$

Russell's Paradox (1901): Consider $R=\{A: A \notin A\}$.

- If $R \in R$, then $R \notin R$ by definition.
- If $R \notin R$, then $R \in R$ also by definition.
- In either case, we have a "contradiction." b

Eubulides: The Cretan says, "All Cretans are liars."
Liar's Paradox: "This sentence is false."

[^1]
Self-Loop Paradoxes (continued)

Hypochondriac: a patient (like Gödel) with imaginary symptoms and ailments.

Sharon Stone in The Specialist (1994): "I'm not a woman you can trust."

Numbers 12:3, Old Testament: "Moses was the most humble person in all the world [\cdots]" (attributed to Moses).

Soren Kierkegaard in Fear and Trembling (1843): "to strive against the whole world is a comfort, to strive with oneself is dreadful."

Self-Loop Paradoxes (concluded)

The Egyptian Book of the Dead: "ye live in me and I would live in you."

John 14:10, New Testament: "Don't you believe that I am in the Father, and that the Father is in me?"

John 17:21, New Testament:"just as you are in me and I am in you."

Pagan ${ }^{6}$ Christian Creeds (1920): "I was moved to Odin, myself to myself."

Bertrand Russell ${ }^{\text {a }}$ (1872-1970)

Karl Popper (1974), "perhaps the greatest philosopher since Kant."

${ }^{\text {a }}$ Nobel Prize in Literature (1950).

Reductions in Proving Undecidability

- Suppose we are asked to prove that L is undecidable.
- Suppose L^{\prime} (such as H) is known to be undecidable.
- Find a computable transformation R (called reduction ${ }^{\text {a }}$) from L^{\prime} to L such that ${ }^{\text {b }}$

$$
\forall x\left\{x \in L^{\prime} \text { if and only if } R(x) \in L\right\} .
$$

- Now we can answer " $x \in L^{\prime}$?" for any x by answering " $R(x) \in L$?" because it has the same answer.
- L^{\prime} is said to be reduced to L.

```
a Post (1944).
b}\mathrm{ Contributed by Mr. Tai-Dai Chou (J93922005) on May 19, }2005
```


Reductions in Proving Undecidability (concluded)

- If L were decidable, " $R(x) \in L$?" becomes computable and we have an algorithm to decide L^{\prime}, a contradiction!
- So L must be undecidable.

Theorem 8 Suppose language L_{1} can be reduced to language L_{2}. If L_{1} is undecidable, then L_{2} is undecidable.

Special Cases and Reduction

- Suppose L_{1} can be reduced to L_{2}.
- As the reduction R maps members of L_{1} to a subset of $L_{2},{ }^{\text {a }}$ we may say L_{1} is a "special case" of $L_{2} \cdot{ }^{\text {b }}$
- That is one way to understand the use of the term "reduction."
${ }^{\text {a }}$ Because R may not be onto.
${ }^{\mathrm{b}}$ Contributed by Ms. Mei-Chih Chang (D03922022) and Mr. Kai-Yuan Hou (B99201038, R03922014) on October 13, 2015.

Subsets and Decidability

- Suppose L_{1} is undecidable and $L_{1} \subseteq L_{2}$.
- Is L_{2} undecidable? ${ }^{\text {a }}$
- It depends.
- When $L_{2}=\Sigma^{*}, L_{2}$ is decidable: Just answer "yes."
- If $L_{2}-L_{1}$ is decidable, then L_{2} is undecidable.
- Clearly,

$$
x \in L_{1} \text { if and only if } x \in L_{2} \text { and } x \notin L_{2}-L_{1} .
$$

- Therefore, if L_{2} were decidable, then L_{1} would be.

[^2]
The Universal Halting Problem

- The universal halting problem:

$$
H^{*}=\{M: M \text { halts on all inputs }\} .
$$

- It is also called the totality problem.

H^{*} Is Not Recursive ${ }^{\text {a }}$

- We will reduce H to H^{*}.
- Given the question " $M ; x \in H$?", construct the following machine (this is the reduction): ${ }^{\text {b }}$

$$
M_{x}(y)\{M(x) ;\}
$$

- M halts on x if and only if M_{x} halts on all inputs.
- In other words, $M ; x \in H$ if and only if $M_{x} \in H^{*}$.
- So if H^{*} were recursive (recall the box for L on p . 142), H would be recursive, a contradiction.

[^3]
More Undecidability

- $\{M ; x$: there is a y such that $M(x)=y\}$.
- $\{M ; x$:
the computation M on input x uses all states of M \}.
- $L=\{M ; x ; y: M(x)=y\}$.

Complements of Recursive Languages

The complement of L, denoted by \bar{L}, is the language $\Sigma^{*}-L$.

Lemma 9 If L is recursive, then so is \bar{L}.

- Let L be decided by M, which is deterministic.
- Swap the "yes" state and the "no" state of M.
- The new machine decides \bar{L}. ${ }^{\text {a }}$
${ }^{\text {a }}$ Recall p. 106.

Recursive and Recursively Enumerable Languages

 Lemma 10 (Kleene's theorem; Post (1944)) L is recursive if and only if both L and \bar{L} are recursively enumerable.- Suppose both L and \bar{L} are recursively enumerable, accepted by M and \bar{M}, respectively.
- Simulate M and \bar{M} in an interleaved fashion.
- If M accepts, then halt on state "yes" because $x \in L$.
- If \bar{M} accepts, then halt on state "no" because $x \notin L$.
- Note that either M or \bar{M} (but not both) must accept the input and halt.

A Very Useful Corollary and Its Consequences

Corollary $11 L$ is recursively enumerable but not recursive, then \bar{L} is not recursively enumerable.

- Suppose \bar{L} is recursively enumerable.
- Then both L and \bar{L} are recursively enumerable.
- By Lemma 10 (p. 150), L is recursive, a contradiction.

Corollary $12 \bar{H}$ is not recursively enumerable. ${ }^{\text {a }}$
${ }^{\text {a Recall that }} \bar{H}=\{M ; x: M(x)=\nearrow\}$.

R, RE, and coRE

RE: The set of all recursively enumerable languages.
coRE: The set of all languages whose complements are recursively enumerable.
\mathbf{R} : The set of all recursive languages.

- Note that coRE is not $\overline{\mathrm{RE}}$.
$-\operatorname{coRE}=\{L: \bar{L} \in \operatorname{RE}\}=\{\bar{L}: L \in \operatorname{RE}\}$.
$-\overline{\mathrm{RE}}=\{L: L \notin \mathrm{RE}\}$.

R, RE, and coRE (concluded)

- $\mathrm{R}=\mathrm{RE} \cap \operatorname{coRE}$ (p. 150).
- There exist languages in RE but not in R and not in coRE.
- Such as H (p. 132, p. 133, and p. 151).
- There are languages in coRE but not in RE.
- Such as \bar{H} (p. 151).
- There are languages in neither RE nor coRE.

H Is Complete for RE^{a}

- Let L be any recursively enumerable language.
- Assume M accepts L.
- Clearly, one can decide whether $x \in L$ by asking if $M: x \in H$.
- Hence all recursively enumerable languages are reducible to H !
- H is said to be $\mathbf{R E}$-complete.
${ }^{\text {a Post (1944). }}$

Undecidability in Logic and Mathematics

- First-order logic is undecidable (answer to Hilbert's (1928) Entscheidungsproblem). ${ }^{\text {a }}$
- Natural numbers with addition and multiplication is undecidable. ${ }^{\text {b }}$
- Rational numbers with addition and multiplication is undecidable. ${ }^{\text {c }}$
${ }^{\mathrm{a}}$ Church (1936).
${ }^{\text {b }}$ Rosser (1937).
${ }^{c}$ Robinson (1948).

Undecidability in Logic and Mathematics (concluded)

- Natural numbers with addition and equality is decidable and complete. ${ }^{\text {a }}$
- Elementary theory of groups is undecidable. ${ }^{\text {b }}$

[^4]
Julia Hall Bowman Robinson (1919-1985)

Alfred Tarski (1901-1983)

Boolean Logic

Both of us had said the very same thing. Did we both speak the truth -or one of us did -or neither? - Joseph Conrad (1857-1924), Lord Jim (1900)

Boolean Logic ${ }^{\text {a }}$

Boolean variables: x_{1}, x_{2}, \ldots.
Literals: $x_{i}, \neg x_{i}$.
Boolean connectives: \vee, \wedge, \neg.
Boolean expressions: Boolean variables, $\neg \phi$ (negation), $\phi_{1} \vee \phi_{2}$ (disjunction), $\phi_{1} \wedge \phi_{2}$ (conjunction).

- $\bigvee_{i=1}^{n} \phi_{i}$ stands for $\phi_{1} \vee \phi_{2} \vee \cdots \vee \phi_{n}$.
- $\bigwedge_{i=1}^{n} \phi_{i}$ stands for $\phi_{1} \wedge \phi_{2} \wedge \cdots \wedge \phi_{n}$.

Implications: $\phi_{1} \Rightarrow \phi_{2}$ is a shorthand for $\neg \phi_{1} \vee \phi_{2}$.
Biconditionals: $\phi_{1} \Leftrightarrow \phi_{2}$ is a shorthand for

$$
\left(\phi_{1} \Rightarrow \phi_{2}\right) \wedge\left(\phi_{2} \Rightarrow \phi_{1}\right)
$$

[^5]
Truth Assignments

- A truth assignment T is a mapping from boolean variables to truth values true and false.
- A truth assignment is appropriate to boolean expression ϕ if it defines the truth value for every variable in ϕ.
- $\left\{x_{1}=\right.$ true, $x_{2}=$ false $\}$ is appropriate to $x_{1} \vee x_{2}$.
$-\left\{x_{2}=\right.$ true,$x_{3}=$ false $\}$ is not appropriate to $x_{1} \vee x_{2}$.

Satisfaction

- $T \models \phi$ means boolean expression ϕ is true under T; in other words, T satisfies ϕ.
- ϕ_{1} and ϕ_{2} are equivalent, written

$$
\phi_{1} \equiv \phi_{2},
$$

if for any truth assignment T appropriate to both of them, $T \models \phi_{1}$ if and only if $T \models \phi_{2}$.

Truth Tables

- Suppose ϕ has n boolean variables.
- A truth table contains 2^{n} rows.
- Each row corresponds to one truth assignment of the n variables and records the truth value of ϕ under it.
- A truth table can be used to prove if two boolean expressions are equivalent.
- Just check if they give identical truth values under all appropriate truth assignments.

A Second Truth Table

p	q	$p \vee q$
0	0	0
0	1	1
1	0	1
1	1	1

\section*{A Third Truth Table
 | p | $\neg p$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |}

Proof of Equivalency by the Truth Table:

$$
p \Rightarrow q \equiv \neg q \Rightarrow \neg p
$$

p	q	$p \Rightarrow q$	$\neg q \Rightarrow \neg p$
0	0	1	1
0	1	1	1
1	0	0	0
1	1	1	1

De Morgan's Laws ${ }^{\text {a }}$

- De Morgan's laws say that

$$
\begin{aligned}
\neg\left(\phi_{1} \wedge \phi_{2}\right) & \equiv \neg \phi_{1} \vee \neg \phi_{2} \\
\neg\left(\phi_{1} \vee \phi_{2}\right) & \equiv \neg \phi_{1} \wedge \neg \phi_{2}
\end{aligned}
$$

- Here is a proof of the first law:

ϕ_{1}	ϕ_{2}	$\neg\left(\phi_{1} \wedge \phi_{2}\right)$	$\neg \phi_{1} \vee \neg \phi_{2}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

${ }^{\text {a }}$ Augustus DeMorgan (1806-1871) or William of Ockham (12881348).

Conjunctive Normal Forms

- A boolean expression ϕ is in conjunctive normal form (CNF) if

$$
\phi=\bigwedge_{i=1}^{n} C_{i},
$$

where each clause C_{i} is the disjunction of zero or more literals. ${ }^{\text {a }}$

- For example,

$$
\left(x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{2} \vee x_{3}\right)
$$

- Convention: An empty CNF is satisfiable, but a CNF containing an empty clause is not.

[^6]
Disjunctive Normal Forms

- A boolean expression ϕ is in disjunctive normal form (DNF) if

$$
\phi=\bigvee_{i=1}^{n} D_{i}
$$

where each implicant D_{i} is the conjunction of zero or more literals.

- For example,

$$
\left(x_{1} \wedge x_{2}\right) \vee\left(x_{1} \wedge \neg x_{2}\right) \vee\left(x_{2} \wedge x_{3}\right) .
$$

Clauses and Implicants

- The \bigvee of clauses remains a clause.
- For example,

$$
\begin{aligned}
& \left(x_{1} \vee x_{2}\right) \vee\left(x_{1} \vee \neg x_{2}\right) \vee\left(x_{2} \vee x_{3}\right) \\
= & x_{1} \vee x_{2} \vee x_{1} \vee \neg x_{2} \vee x_{2} \vee x_{3} .
\end{aligned}
$$

- The \wedge of implicants remains an implicant.
- For example,

$$
\begin{aligned}
& \left(x_{1} \wedge x_{2}\right) \wedge\left(x_{1} \wedge \neg x_{2}\right) \wedge\left(x_{2} \wedge x_{3}\right) \\
= & x_{1} \wedge x_{2} \wedge x_{1} \wedge \neg x_{2} \wedge x_{2} \wedge x_{3} .
\end{aligned}
$$

Any Expression ϕ Can Be Converted into CNFs and DNFs $\phi=x_{j}:$

- This is trivially true.
$\phi=\neg \phi_{1}$ and a CNF is sought:
- Turn ϕ_{1} into a DNF.
- Apply de Morgan's laws to make a CNF for ϕ.
$\phi=\neg \phi_{1}$ and a DNF is sought:
- Turn ϕ_{1} into a CNF.
- Apply de Morgan's laws to make a DNF for ϕ.

Any Expression ϕ Can Be Converted into CNFs and DNFs (continued)

$\phi=\phi_{1} \vee \phi_{2}$ and a DNF is sought:

- Make ϕ_{1} and ϕ_{2} DNFs.
$\phi=\phi_{1} \vee \phi_{2}$ and a CNF is sought:
- Turn ϕ_{1} and ϕ_{2} into CNFs, ${ }^{\text {a }}$

$$
\phi_{1}=\bigwedge_{i=1}^{n_{1}} A_{i}, \quad \phi_{2}=\bigwedge_{j=1}^{n_{2}} B_{j}
$$

- Set

$$
\phi=\bigwedge_{i=1}^{n_{1}} \bigwedge_{j=1}^{n_{2}}\left(A_{i} \vee B_{j}\right)
$$

${ }^{\text {a Corrected by Mr. Chun-Jie Yang (R99922150) on November 9, } 2010 . ~}$

Any Expression ϕ Can Be Converted into CNFs and DNFs (concluded)

$\phi=\phi_{1} \wedge \phi_{2}$ and a CNF is sought:

- Make ϕ_{1} and ϕ_{2} CNFs.
$\phi=\phi_{1} \wedge \phi_{2}$ and a DNF is sought:
- Turn ϕ_{1} and ϕ_{2} into DNFs,

$$
\phi_{1}=\bigvee_{i=1}^{n_{1}} A_{i}, \quad \phi_{2}=\bigvee_{j=1}^{n_{2}} B_{j}
$$

- Set

$$
\phi=\bigvee_{i=1}^{n_{1}} \bigvee_{j=1}^{n_{2}}\left(A_{i} \wedge B_{j}\right)
$$

An Example: Turn $\neg((a \wedge y) \vee(z \vee w))$ into a DNF

$$
\begin{array}{cl}
& \neg((a \wedge y) \vee(z \vee w)) \\
\neg(\mathrm{CNF} \stackrel{\mathrm{CNF})}{=} & \neg(((a) \wedge(y)) \vee((z \vee w))) \\
\neg(\mathrm{CNF}) & \neg((a \vee z \vee w) \wedge(y \vee z \vee w)) \\
\text { de Morgan } & \neg(a \vee z \vee w) \vee \neg(y \vee z \vee w) \\
\text { de Morgan } & (\neg a \wedge \neg z \wedge \neg w) \vee(\neg y \wedge \neg z \wedge \neg w) .
\end{array}
$$

[^0]: ${ }^{\text {a }}$ Eckert and Mauchly (1943); von Neumann (1945); Turing (1946).

[^1]: ${ }^{\text {a}}$ E.g., Quine (1966), The Ways of Paradox and Other Essays and Hofstadter (1979), Gödel, Escher, Bach: An Eternal Golden Braid.
 ${ }^{\text {b }}$ Gottlob Frege (1848-1925) to Bertrand Russell in 1902, "Your discovery of the contradiction [...] has shaken the basis on which I intended to build arithmetic."

[^2]: ${ }^{\text {a }}$ Contributed by Ms. Mei-Chih Chang (D03922022) on October 13, 2015.

[^3]: ${ }^{\text {a }}$ Kleene (1936).
 ${ }^{\mathrm{b}}$ Simplified by Mr. Chih-Hung Hsieh (D95922003) on October 5, 2006. M_{x} ignores its input $y ; x$ is part of M_{x} 's code but not M_{x} 's input.

[^4]: ${ }^{\text {a }}$ Presburger's Master's thesis (1928), his only work in logic. The direction was suggested by Tarski. Mojz̄esz Presburger (1904-1943) died in a concentration camp during World War II.
 ${ }^{\mathrm{b}}$ Tarski (1949).

[^5]: ${ }^{\text {a }}$ George Boole (1815-1864) in 1847.

[^6]: ${ }^{\text {a }}$ Improved by Mr. Aufbu Huang (R95922070) on October 5, 2006.

