
Theory of Computation

Final Exam, 2015 Fall Semester,

1/12/2016
Note: Unless stated otherwise, you may use any results proved in class.

Problem 1 (25 points) Reduce 3sat to integer programming.

Ans: Let the variables in the 3sat formula be x1, x2, ..., xn. We will have corresponding

variables z1, z2, . . . , zn in our integer program. First, we restrict each variable zi such that

0 ≤ zi ≤ 1, for all i.

Assigning zi = 1 in the integer program represents setting xi = true in the 3sat formula,

and assigning zi = 0 represents setting xi = false. For each clause such as (x1 ∨ x2 ∨ x3),

we can rewrite it as the integer program:

z1 + (1− z2) + z3 > 0.

To satisfy this inequality, we must either set z1 = 1 or z2 = 0 or z3 = 1, which means

we either set x1 = true or x2 = false or x3 = true in the corresponding truth assignment.

Assigning true/false to every xi in all clauses, we then will have a set of input of integer

programming that is equivalent to the given set of input to 3sat.

Problem 2 (25 points) For the Diffie-Hellman Secret-Key Agreement Protocol, Alice

and Bob agree on a large prime p and a primivite root g of p (where p and g are public).

Alice chooses a random a and Bob also chooses a random b.

1. (10 points) What are the values of α, β and the common key?

2. (15 points) For p = 11, g = 2, a = 4 and b = 5, what are the values of α, β and the

common key?
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註解
3 problem sets were created out of the 7 here



Ans:

1. The values of α and β are

α ≡ ga (mod p),

β ≡ gb (mod p),

and the common key is

αb ≡ gab ≡ gba ≡ βa (mod p).

2. For p = 11, g = 2, a = 4 and b = 5, the values of α and β are

α ≡ 24 ≡ 5 (mod 11),

β ≡ 25 ≡ 10 (mod 11),

and the common key is

αb ≡ 24×5 ≡ βa ≡ 1 (mod 11).

Problem 3 (25 points) Prove that NP ⊆ ZPP, then NP ⊆ BPP.

Ans: Assume NP ⊆ ZPP. Pick any NP-complete language L. We only need to show that

L ∈ BPP. There exists an algorithm A that decides L in expected polynomial time, say

p(n). By Markov’s inequality, the probability that the running time of A exceeds 3p(n) is

at most 1/3. Run A for 3p(n) steps to determine with probability at least 1− 1/3 = 2/3

whether the input belongs in L. We therefore obtain a polynomial-time algorithm for L

which errs with probability at most 1/3 on each input. Hence L is in BPP.

Problem 4 (25 points) Let G = (V,E) be an undirected graph in which every node

has a degree of at most k. Let I be a nonempty set. I is said to be independent if

there is no edge between any two nodes in I. k-DEGREE INDEPENDENT SET asks if

there is an independent set of size k. Consider the following algorithm for k-DEGREE

INDEPENDENT SET:

1: I := ∅;
2: while ∃v ∈ G do

3: Add v to I;

4: Delete v and all of its adjacent nodes from G;

5: end while;



6: return I;

Show that this algorithm for k-DEGREE INDEPENDENT SET is a k
k+1

-approximation

algorithm. Recall that an ϵ-approximation algorithm returns a solution that is at least

(1− ϵ) times the optimum for maximization problems.

Ans: Since each stage of the algorithm adds a node to I and deletes at most k+1 nodes

from G, I has at least |V |
k+1

nodes, which is at least 1
k+1

times the size of the optimum

independent set because the size of the optimum independent set is trivially at most |V |.
Thus this algorithm returns solutions that are never smaller than 1 − 1

k+1
= k

k+1
times

the optimum.

Problem 5 (25 points) A cut in an undirected graph G = (V,E) is a partition of the

nodes into two nonempty sets S and V −S. MAX BISECTION asks if there is a cut of size

at least K such that |S| = |V − S|. It is known that MAX BISECTION is NP-complete.

BISECTION WIDTH asks if there is a bisection of size at most K such that |S| = |V −S|.
Show that BISECTION WIDTH is NP-complete. You do not need to show it is in NP.

Ans: See pp. 392–393 in the slides.

Problem 6 (25 points) Is x4 ≡ 25 mod 1013 solvable and why?

Ans:

Let’s first notice that 1013 is a prime. Since 25 has square roots ±5, we need to check if

any of the Legendre symbols
(

5
1013

)
or

( −5
1013

)
is 1. We have(

5

1013

)
=

(
1013

5

)
=

(
3

5

)
= −1

and (
−5

1013

)
=

(
−1

1013

)(
5

1013

)
= (−1)

1013−1
2

(
5

1013

)
=

(
5

1013

)
= −1

so 25 is not a quadratic residue modulo 1013 and cannot be a solution to x4 ≡ 25 mod

1013.

Problem 7 (25 points) Let n ∈ Z+ with n ≥ 2. Let ϕ(n) stand for Euler’s totient

function, which counts the number of positive integers smaller than n and are relative

prime to n.

1. (5 points) Determine ϕ(2n).



2. (10 points) Determine ϕ(ϕ(2n)).

3. (10 points) Determine ϕ ((2p)n) where p is an odd prime.

Ans:

1. ϕ (2n) = 2n − 2n−1 = 2n−1(2− 1) = 2n−1.

2. ϕ (ϕ(2n)) = ϕ (2n−1) = 2n−1 − 2n−2 = 2n−2(2− 1) = 2n−2.

3. ϕ ((2p)n) = ϕ (2npn) = ϕ (2n)ϕ (pn) = 2n−1(pn − pn−1) = 2n−1pn−1(p− 1).


