Theory of Computation

Final Exam, 2015 Fall Semester, 1/12/2016
Note: Unless stated otherwise, you may use any results proved in class.
Problem 1 (25 points) Reduce 3sat to integer programming.
Ans: Let the variables in the 3 SAT formula be $x_{1}, x_{2}, \ldots, x_{n}$. We will have corresponding variables $z_{1}, z_{2}, \ldots, z_{n}$ in our integer program. First, we restrict each variable z_{i} such that

$$
0 \leq z_{i} \leq 1, \quad \text { for all } i .
$$

Assigning $z_{i}=1$ in the integer program represents setting $x_{i}=$ true in the 3SAT formula, and assigning $z_{i}=0$ represents setting $x_{i}=$ false. For each clause such as ($x_{1} \vee \overline{x_{2}} \vee x_{3}$), we can rewrite it as the integer program:

$$
z_{1}+\left(1-z_{2}\right)+z_{3}>0 .
$$

To satisfy this inequality, we must either set $z_{1}=1$ or $z_{2}=0$ or $z_{3}=1$, which means we either set $x_{1}=$ true or $x_{2}=$ false or $x_{3}=$ true in the corresponding truth assignment. Assigning true/false to every x_{i} in all clauses, we then will have a set of input of InTEGER programming that is equivalent to the given set of input to 3sat.

Problem 2 (25 points) For the Diffie-Hellman Secret-Key Agreement Protocol, Alice and Bob agree on a large prime p and a primivite root g of p (where p and g are public). Alice chooses a random a and Bob also chooses a random b.

1. (10 points) What are the values of α, β and the common key?
2. (15 points) For $p=11, g=2, a=4$ and $b=5$, what are the values of α, β and the common key?

Ans:

1. The values of α and β are

$$
\begin{aligned}
& \alpha \equiv g^{a}(\bmod p), \\
& \beta \equiv g^{b}(\bmod p),
\end{aligned}
$$

and the common key is

$$
\alpha^{b} \equiv g^{a b} \equiv g^{b a} \equiv \beta^{a}(\bmod p) .
$$

2. For $p=11, g=2, a=4$ and $b=5$, the values of α and β are

$$
\begin{aligned}
\alpha & \equiv 2^{4} \equiv 5(\bmod 11) \\
\beta & \equiv 2^{5} \equiv 10(\bmod 11),
\end{aligned}
$$

and the common key is

$$
\alpha^{b} \equiv 2^{4 \times 5} \equiv \beta^{a} \equiv 1(\bmod 11) .
$$

Problem 3 (25 points) Prove that NP $\subseteq \mathrm{ZPP}$, then NP \subseteq BPP.
Ans: Assume NP \subseteq ZPP. Pick any NP-complete language L. We only need to show that $L \in$ BPP. There exists an algorithm A that decides L in expected polynomial time, say $p(n)$. By Markov's inequality, the probability that the running time of A exceeds $3 p(n)$ is at most $1 / 3$. Run A for $3 p(n)$ steps to determine with probability at least $1-1 / 3=2 / 3$ whether the input belongs in L. We therefore obtain a polynomial-time algorithm for L which errs with probability at most $1 / 3$ on each input. Hence L is in BPP.

Problem 4 (25 points) Let $G=(V, E)$ be an undirected graph in which every node has a degree of at most k. Let I be a nonempty set. I is said to be independent if there is no edge between any two nodes in $I . k$-DEGREE INDEPENDENT SET asks if there is an independent set of size k. Consider the following algorithm for k-DEGREE INDEPENDENT SET:

```
\(I:=\emptyset ;\)
while \(\exists v \in G\) do
    Add \(v\) to \(I\);
    Delete \(v\) and all of its adjacent nodes from \(G\);
end while;
```

```
6: return I;
```

Show that this algorithm for k-DEGREE INDEPENDENT SET is a $\frac{k}{k+1}$-approximation algorithm. Recall that an ϵ-approximation algorithm returns a solution that is at least $(1-\epsilon)$ times the optimum for maximization problems.

Ans: Since each stage of the algorithm adds a node to I and deletes at most $k+1$ nodes from G, I has at least $\frac{|V|}{k+1}$ nodes, which is at least $\frac{1}{k+1}$ times the size of the optimum independent set because the size of the optimum independent set is trivially at most $|V|$. Thus this algorithm returns solutions that are never smaller than $1-\frac{1}{k+1}=\frac{k}{k+1}$ times the optimum.

Problem 5 (25 points) A cut in an undirected graph $G=(V, E)$ is a partition of the nodes into two nonempty sets S and $V-S$. MAX BISECTION asks if there is a cut of size at least K such that $|S|=|V-S|$. It is known that MAX BISECTION is NP-complete. BISECTION WIDTH asks if there is a bisection of size at most K such that $|S|=|V-S|$. Show that BISECTION WIDTH is NP-complete. You do not need to show it is in NP.

Ans: See pp. 392-393 in the slides.

Problem $6\left(25\right.$ points) Is $x^{4} \equiv 25 \bmod 1013$ solvable and why?

Ans:

Let's first notice that 1013 is a prime. Since 25 has square roots ± 5, we need to check if any of the Legendre symbols $\left(\frac{5}{1013}\right)$ or $\left(\frac{-5}{1013}\right)$ is 1 . We have

$$
\left(\frac{5}{1013}\right)=\left(\frac{1013}{5}\right)=\left(\frac{3}{5}\right)=-1
$$

and

$$
\left(\frac{-5}{1013}\right)=\left(\frac{-1}{1013}\right)\left(\frac{5}{1013}\right)=(-1)^{\frac{1013-1}{2}}\left(\frac{5}{1013}\right)=\left(\frac{5}{1013}\right)=-1
$$

so 25 is not a quadratic residue modulo 1013 and cannot be a solution to $x^{4} \equiv 25 \bmod$ 1013.

Problem 7 (25 points) Let $n \in \mathbb{Z}^{+}$with $n \geq 2$. Let $\phi(n)$ stand for Euler's totient function, which counts the number of positive integers smaller than n and are relative prime to n.

1. (5 points) Determine $\phi\left(2^{n}\right)$.
2. (10 points) Determine $\phi\left(\phi\left(2^{n}\right)\right)$.
3. (10 points) Determine $\phi\left((2 p)^{n}\right)$ where p is an odd prime.

Ans:

1. $\phi\left(2^{n}\right)=2^{n}-2^{n-1}=2^{n-1}(2-1)=2^{n-1}$.
2. $\phi\left(\phi\left(2^{n}\right)\right)=\phi\left(2^{n-1}\right)=2^{n-1}-2^{n-2}=2^{n-2}(2-1)=2^{n-2}$.
3. $\phi\left((2 p)^{n}\right)=\phi\left(2^{n} p^{n}\right)=\phi\left(2^{n}\right) \phi\left(p^{n}\right)=2^{n-1}\left(p^{n}-p^{n-1}\right)=2^{n-1} p^{n-1}(p-1)$.
