Theory of Computation

Final Exam, 2015 Fall Semester,
1/12/2016

Note: Unless stated otherwise, you may use any results proved in class.
Problem 1 (25 points) Reduce 3SAT to INTEGER PROGRAMMING.

Ans: Let the variables in the 3sAT formula be x1, xs, ..., z,,. We will have corresponding

variables 21, 29, ..., 2, in our integer program. First, we restrict each variable z; such that
0<z <1, forallq.

Assigning z; = 1 in the integer program represents setting x; = true in the 3SAT formula,
and assigning z; = 0 represents setting x; = false. For each clause such as (x1 VT3 V x3),

we can rewrite it as the integer program:
Zl+(1—22)+23 > 0.

To satisfy this inequality, we must either set 2y = 1 or 250 = 0 or 23 = 1, which means
we either set xy = true or xy = false or x3 = true in the corresponding truth assignment.
Assigning true/false to every z; in all clauses, we then will have a set of input of INTEGER
PROGRAMMING that is equivalent to the given set of input to 3SAT. [ |

Problem 2 (25 points) For the Diffie-Hellman Secret-Key Agreement Protocol, Alice
and Bob agree on a large prime p and a primivite root g of p (where p and g are public).

Alice chooses a random a and Bob also chooses a random b.
1. (10 points) What are the values of a, 8 and the common key?

2. (15 points) For p =11, g = 2, a = 4 and b = 5, what are the values of «, 8 and the

common key?
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註解
3 problem sets were created out of the 7 here


Ans:

1. The values of a and  are

and the common key is

2. Forp=11, g =2, a =4 and b = 5, the values of o and 3 are

a=2*=5(mod 11),
B =2°=10(mod 11),

and the common key is

ab =275 = 3% = 1 (mod 11).

Problem 3 (25 points) Prove that NP C ZPP, then NP C BPP.

Ans: Assume NP C ZPP. Pick any NP-complete language L. We only need to show that
L € BPP. There exists an algorithm A that decides L in expected polynomial time, say
p(n). By Markov’s inequality, the probability that the running time of A exceeds 3p(n) is
at most 1/3. Run A for 3p(n) steps to determine with probability at least 1 —1/3 =2/3
whether the input belongs in L. We therefore obtain a polynomial-time algorithm for L
which errs with probability at most 1/3 on each input. Hence L is in BPP. |

Problem 4 (25 points) Let G = (V, FE) be an undirected graph in which every node
has a degree of at most k. Let [ be a nonempty set. [ is said to be independent if
there is no edge between any two nodes in I. k-DEGREE INDEPENDENT SET asks if
there is an independent set of size k. Consider the following algorithm for k--DEGREE
INDEPENDENT SET:

1. 1= @;
2: while Jv € G do
3: Add v to I
4 Delete v and all of its adjacent nodes from G;
5: end while;



6: return [;

Show that this algorithm for &-DEGREE INDEPENDENT SET is a £;-approximation

algorithm. Recall that an e-approximation algorithm returns a solution that is at least

(1 — €) times the optimum for maximization problems.

Ans: Since each stage of the algorithm adds a node to I and deletes at most k + 1 nodes

v . . . . .
k‘_—&-ll nodes, which is at least k+r1 times the size of the optimum

independent set because the size of the optimum independent set is trivially at most |V/].

1 ks
P = i vimes

the optimum. [

from G, I has at least

Thus this algorithm returns solutions that are never smaller than 1 —

Problem 5 (25 points) A cut in an undirected graph G' = (V, E) is a partition of the
nodes into two nonempty sets S and V —S5. MAX BISECTION asks if there is a cut of size
at least K such that |[S| = |V — S|. It is known that MAX BISECTION is NP-complete.
BISECTION WIDTH asks if there is a bisection of size at most K such that |S| = |V —S)|.
Show that BISECTION WIDTH is NP-complete. You do not need to show it is in NP.

Ans: See pp. 392-393 in the slides. |

Problem 6 (25 points) Is z* = 25 mod 1013 solvable and why?

Ans:
Let’s first notice that 1013 is a prime. Since 25 has square roots 45, we need to check if

or (_—5) is 1. We have

1)
1013 1013

() (2)-() -
(18?3) - (16113) (10513) = (-1 (%) _ (%) .,

so 25 is not a quadratic residue modulo 1013 and cannot be a solution to z* = 25 mod
1013. [ |

any of the Legendre symbols (

and

Problem 7 (25 points) Let n € Z* with n > 2. Let ¢(n) stand for Euler’s totient
function, which counts the number of positive integers smaller than n and are relative

prime to n.

1. (5 points) Determine ¢(2").



2. (10 points) Determine ¢(¢p(2")).

3. (10 points) Determine ¢ ((2p)™) where p is an odd prime.
Ans:

1o p(20) =27 — ol =2n1(2 — 1) = 2L,

2. ¢(o(2") =g (2n ) =20 =2 =202 - 1) = 2072

3. 0((20)") =0 (2p") =0 (2") P (p") = 2" (p" —p" ) =27 p " (p - 1).



