Theory of Computation

Homework 5
Due: 2016/01/05
Problem 1. Calculate (2015|999) and (2016|999). (Answers without procedure will get 0 points).

Solution.

We have that

$$
\begin{aligned}
& (2015 \mid 999)=(17 \mid 999)=(13 \mid 17)=(4 \mid 13)=1, \\
& (2016 \mid 999)=(18 \mid 999)=0
\end{aligned}
$$

Problem 2. Let the two primes $p=41$ and $q=17$ be given as set-up parameters for RSA. Which of the parameters $e_{1}=32, e_{2}=49$ is a valid RSA exponent? What is the value of the private key d ?

Solution.

For a valid parameter e, we must have that $\operatorname{gcd}(e, \phi(p q))=1$. Notice that $\phi(p q)=40 \times 16=640$ and

$$
\begin{aligned}
& \operatorname{gcd}\left(e_{1}, \phi(p q)\right)=\operatorname{gcd}(32,640)=32, \\
& \operatorname{gcd}\left(e_{2}, \phi(p q)\right)=\operatorname{gcd}(49,640)=1,
\end{aligned}
$$

hence $e_{2}=49$ can be used as a valid RSA exponent. Also

$$
d \equiv 49^{-1}(\bmod 640) \equiv 209(\bmod 640) .
$$

