NODE COVER

- NODE COVER seeks the smallest $C \subseteq V$ in graph G = (V, E) such that for each edge in E, at least one of its endpoints is in C.
- A heuristic to obtain a good node cover is to iteratively move a node with the *highest degree* to the cover.
- This turns out to produce an approximation ratio of^a

$$\frac{c(M(x))}{\operatorname{OPT}(x)} = \Theta(\log n).$$

• So it is not an ϵ -approximation algorithm for any constant $\epsilon < 1$ according to Eq. (19).

^aChvátal (1979).

A 0.5-Approximation Algorithm $^{\rm a}$

1: $C := \emptyset;$

- 2: while $E \neq \emptyset$ do
- 3: Delete an arbitrary edge $\{u, v\}$ from E;
- 4: Add u and v to C; {Add 2 nodes to C each time.}
- 5: Delete edges incident with u or v from E;
- 6: end while

7: return C;

^aJohnson (1974).

Analysis

- It is easy to see that C is a node cover.
- C contains |C|/2 edges.^a
- No two edges of C share a node.^b
- Any node cover must contain at least one node from each of these edges.
 - If there is an edge in C both of whose ends are outside the cover, then that cover will not be valid.

^aThe edges deleted in Line 3.

^bIn fact, C as a set of edges is a *maximal* matching.

Analysis (concluded)

- This means that $OPT(G) \ge |C|/2$.
- The approximation ratio is hence

$$\frac{|C|}{\operatorname{OPT}(G)} \le 2.$$

- So we have a 0.5-approximation algorithm.
- And the approximation threshold is therefore ≤ 0.5 .

^aContributed by Mr. Jenq-Chung Li (R92922087) on December 20, 2003. Recall that König's theorem says the size of a maximum matching equals that of a minimum node cover in a bipartite graph.

Remarks

• The approximation threshold is at least^a

$$1 - \left(10\sqrt{5} - 21\right)^{-1} \approx 0.2651.$$

- The approximation threshold is 0.5 if one assumes the unique games conjecture.^b
- This ratio 0.5 is also the lower bound for any "greedy" algorithms.^c

^aDinur and Safra (2002). ^bKhot and Regev (2008). ^cDavis and Impagliazzo (2004).

Maximum Satisfiability

- Given a set of clauses, MAXSAT seeks the truth assignment that satisfies the most.
- MAX2SAT is already NP-complete (p. 347), so MAXSAT is NP-complete.
- Consider the more general k-MAXGSAT for constant k.
 - Let $\Phi = \{\phi_1, \phi_2, \dots, \phi_m\}$ be a set of boolean expressions in *n* variables.
 - Each ϕ_i is a *general* expression involving up to k variables.
 - k-MAXGSAT seeks the truth assignment that satisfies the most expressions.

A Probabilistic Interpretation of an Algorithm

- Let ϕ_i involve $k_i \leq k$ variables and be satisfied by s_i of the 2^{k_i} truth assignments.
- A random truth assignment $\in \{0, 1\}^n$ satisfies ϕ_i with probability $p(\phi_i) = s_i/2^{k_i}$.

 $- p(\phi_i)$ is easy to calculate as k is a constant.

• Hence a random truth assignment satisfies an average of

$$p(\Phi) = \sum_{i=1}^{m} p(\phi_i)$$

expressions ϕ_i .

The Search Procedure

• Clearly

$$p(\Phi) = \frac{1}{2} \{ p(\Phi[x_1 = \texttt{true}]) + p(\Phi[x_1 = \texttt{false}]) \}.$$

- Select the t₁ ∈ {true, false} such that p(Φ[x₁ = t₁]) is the larger one.
- Note that $p(\Phi[x_1 = t_1]) \ge p(\Phi)$.
- Repeat the procedure with expression $\Phi[x_1 = t_1]$ until all variables x_i have been given truth values t_i and all ϕ_i are either true or false.

The Search Procedure (continued)

• By our hill-climbing procedure,

 $p(\Phi) \le p(\Phi[x_1 = t_1]) \le p(\Phi[x_1 = t_1, x_2 = t_2]) \le \cdots \le p(\Phi[x_1 = t_1, x_2 = t_2, \dots, x_n = t_n]).$

• So at least $p(\Phi)$ expressions are satisfied by truth assignment (t_1, t_2, \ldots, t_n) .

The Search Procedure (concluded)

- Note that the algorithm is *deterministic*!
- It is called **the method of conditional** expectations.^a

^aErdős and Selfridge (1973); Spencer (1987).

Approximation Analysis

- The optimum is at most the number of satisfiable ϕ_i —i.e., those with $p(\phi_i) > 0$.
- Hence the ratio of algorithm's output vs. the optimum is^a

$$\geq \frac{p(\Phi)}{\sum_{p(\phi_i)>0} 1} = \frac{\sum_i p(\phi_i)}{\sum_{p(\phi_i)>0} 1} \geq \min_{p(\phi_i)>0} p(\phi_i).$$

- So this is a polynomial-time ϵ -approximation algorithm with $\epsilon = 1 - \min_{p(\phi_i) > 0} p(\phi_i)$.
- Because $p(\phi_i) \ge 2^{-k}$ for a satisfiable ϕ_i , the heuristic is a polynomial-time ϵ -approximation algorithm with $\epsilon = 1 - 2^{-k}$.

^aRecall that $\sum_i a_i / \sum_i b_i \ge \min_i (a_i / b_i)$.

Back to MAXSAT

- In MAXSAT, the ϕ_i 's are clauses (like $x \lor y \lor \neg z$).
- Hence $p(\phi_i) \ge 1/2$, which happens when ϕ_i contains a single literal.
- The heuristic becomes a polynomial-time ϵ -approximation algorithm with $\epsilon = 1/2$.^a
- Suppose we set each boolean variable to true with probability $(\sqrt{5} 1)/2$, the golden ratio.
- Then follow through the method of conditional expectations to derandomize it.

^aJohnson (1974).

Back to MAXSAT (concluded)

- We will obtain a $[(3 \sqrt{5})]/2$ -approximation algorithm.^a
 - Note $[(3 \sqrt{5})]/2 \approx 0.382.$
- If the clauses have k distinct literals,

$$p(\phi_i) = 1 - 2^{-k}.$$

• The heuristic becomes a polynomial-time ϵ -approximation algorithm with $\epsilon = 2^{-k}$.

- This is the best possible for $k \ge 3$ unless P = NP.

^aLieberherr and Specker (1981).

MAX CUT Revisited

- MAX CUT seeks to partition the nodes of graph G = (V, E) into (S, V S) so that there are as many edges as possible between S and V S.
- It is NP-complete.^a
- Local search starts from a feasible solution and performs "local" improvements until none are possible.
- Next we present a local-search algorithm for MAX CUT.

^aRecall p. 378.

A 0.5-Approximation Algorithm for ${\rm MAX}\ {\rm CUT}$

- 1: $S := \emptyset;$
- 2: while $\exists v \in V$ whose switching sides results in a larger cut **do**
- 3: Switch the side of v;
- 4: end while
- 5: return S;
- A 0.12-approximation algorithm exists.^a
- 0.059-approximation algorithms do not exist unless NP = ZPP.

^aGoemans and Williamson (1995).

Analysis (continued)

- Partition $V = V_1 \cup V_2 \cup V_3 \cup V_4$, where
 - Our algorithm returns $(V_1 \cup V_2, V_3 \cup V_4)$.
 - The optimum cut is $(V_1 \cup V_3, V_2 \cup V_4)$.
- Let e_{ij} be the number of edges between V_i and V_j .
- Our algorithm returns a cut of size

$$e_{13} + e_{14} + e_{23} + e_{24}.$$

• The optimum cut size is

$$e_{12} + e_{34} + e_{14} + e_{23}.$$

Analysis (continued)

- For each node $v \in V_1$, its edges to $V_1 \cup V_2$ are outnumbered by those to $V_3 \cup V_4$.
 - Otherwise, v would have been moved to $V_3 \cup V_4$ to improve the cut.
- Considering all nodes in V_1 together, we have

 $2e_{11} + e_{12} \le e_{13} + e_{14}.$

- $-2e_{11}$, because each edge in V_1 is counted twice.
- The above inequality implies

$$e_{12} \le e_{13} + e_{14}.$$

Analysis (concluded)

• Similarly,

 $e_{12} \leq e_{23} + e_{24}$ $e_{34} \leq e_{23} + e_{13}$ $e_{34} \leq e_{14} + e_{24}$

• Add all four inequalities, divide both sides by 2, and add the inequality $e_{14} + e_{23} \le e_{14} + e_{23} + e_{13} + e_{24}$ to obtain

$$e_{12} + e_{34} + e_{14} + e_{23} \le 2(e_{13} + e_{14} + e_{23} + e_{24}).$$

• The above says our solution is at least half the optimum.

Approximability, Unapproximability, and Between

- KNAPSACK, NODE COVER, MAXSAT, and MAX CUT have approximation thresholds less than 1.
 - KNAPSACK has a threshold of 0 (p. 745).
 - But NODE COVER (p. 725) and MAXSAT have a threshold larger than 0.
- The situation is maximally pessimistic for TSP, which cannot be approximated (p. 743).
 - The approximation threshold of TSP is 1.
 - * The threshold is 1/3 if TSP satisfies the triangular inequality.
 - The same holds for INDEPENDENT SET (see the textbook).

Unapproximability of ${\rm TSP}^{\rm a}$

Theorem 85 The approximation threshold of TSP is 1 unless P = NP.

- Suppose there is a polynomial-time ϵ -approximation algorithm for TSP for some $\epsilon < 1$.
- We shall construct a polynomial-time algorithm to solve the NP-complete HAMILTONIAN CYCLE.
- Given any graph G = (V, E), construct a TSP with |V| cities with distances

$$d_{ij} = \begin{cases} 1, & \text{if } \{i, j\} \in E\\ \frac{|V|}{1-\epsilon}, & \text{otherwise} \end{cases}$$

^aSahni and Gonzales (1976).

The Proof (concluded)

- Run the alleged approximation algorithm on this TSP.
- Suppose a tour of cost |V| is returned.
 - This tour must be a Hamiltonian cycle.
- Suppose a tour that includes an edge of length $\frac{|V|}{1-\epsilon}$ is returned.
 - The total length of this tour is $> \frac{|V|}{1-\epsilon}$.
 - Because the algorithm is ϵ -approximate, the optimum is at least 1ϵ times the returned tour's length.
 - The optimum tour has a cost exceeding |V|.
 - Hence G has no Hamiltonian cycles.

${\rm KNAPSACK}$ Has an Approximation Threshold of Zero^{\rm a}

Theorem 86 For any ϵ , there is a polynomial-time ϵ -approximation algorithm for KNAPSACK.

- We have n weights $w_1, w_2, \ldots, w_n \in \mathbb{Z}^+$, a weight limit W, and n values $v_1, v_2, \ldots, v_n \in \mathbb{Z}^+$.^b
- We must find an $I \subseteq \{1, 2, ..., n\}$ such that $\sum_{i \in I} w_i \leq W$ and $\sum_{i \in I} v_i$ is the largest possible.

^aIbarra and Kim (1975).

^bIf the values are fractional, the result is slightly messier, but the main conclusion remains correct. Contributed by Mr. Jr-Ben Tian (B89902011, R93922045) on December 29, 2004.

• Let

$$V = \max\{v_1, v_2, \dots, v_n\}.$$

• Clearly,
$$\sum_{i \in I} v_i \leq nV$$
.

- Let $0 \le i \le n$ and $0 \le v \le nV$.
- W(i, v) is the minimum weight attainable by selecting only from the first *i* items and with a total value of *v*.

- It is an $(n+1) \times (nV+1)$ table.

- Set $W(0, v) = \infty$ for $v \in \{1, 2, ..., nV\}$ and W(i, 0) = 0for i = 0, 1, ..., n.^a
- Then, for $0 \le i < n$,

 $W(i+1,v) = \min\{W(i,v), W(i,v-v_{i+1}) + w_{i+1}\}.$

- Finally, pick the largest v such that $W(n, v) \leq W$.^b
- The running time is $O(n^2 V)$, not polynomial time.
- Key idea: Limit the number of precision bits.

^aContributed by Mr. Ren-Shuo Liu (D98922016) and Mr. Yen-Wei Wu (D98922013) on December 28, 2009. ^bLawler (1979).

• Define

$$v_i' = 2^b \left\lfloor \frac{v_i}{2^b} \right\rfloor$$

- This is equivalent to zeroing each v_i 's last b bits.

• Call the original instance

$$x = (w_1, \ldots, w_n, W, v_1, \ldots, v_n).$$

• Call the approximate instance

$$x' = (w_1, \ldots, w_n, W, v'_1, \ldots, v'_n).$$

- Solving x' takes time $O(n^2 V/2^b)$.
 - The algorithm only performs subtractions on the v_i -related values.
 - So the *b* last bits can be *removed* from the calculations.
 - That is, use $v''_i = \lfloor \frac{v_i}{2^b} \rfloor$ and $V'' = \max(v''_1, v''_2, \dots, v''_n)$ in dynamic programming.
 - It is now an $(n+1) \times (nV+1)/2^b$ table.
 - Then multiply the returned value by 2^b .
- The selection I' is optimal for x'.

• The selection I' is close to the optimal selection I, for x:

$$\sum_{i \in I'} v_i \ge \sum_{i \in I'} v'_i \ge \sum_{i \in I} v'_i \ge \sum_{i \in I} (v_i - 2^b) \ge \left(\sum_{i \in I} v_i\right) - n2^b.$$

• Hence

$$\sum_{i \in I'} v_i \ge \left(\sum_{i \in I} v_i\right) - n2^b.$$

• Without loss of generality, assume $w_i \leq W$ for all i.

- Otherwise, item i is redundant.

- V is a lower bound on OPT.
 - Picking an item with value V is a legitimate choice.

The Proof (concluded)

• The relative error from the optimum is:

$$\frac{\sum_{i\in I} v_i - \sum_{i\in I'} v_i}{\sum_{i\in I} v_i} \le \frac{\sum_{i\in I} v_i - \sum_{i\in I'} v_i}{V} \le \frac{n2^b}{V}.$$

- Suppose we pick $b = \lfloor \log_2 \frac{\epsilon V}{n} \rfloor$.
- The algorithm becomes ϵ -approximate.^a
- The running time is then $O(n^2 V/2^b) = O(n^3/\epsilon)$, a polynomial in n and $1/\epsilon$.^b

^aSee Eq. (17) on p. 715.

^bIt hence depends on the *value* of $1/\epsilon$. Thanks to a lively class discussion on December 20, 2006. If we fix ϵ and let the problem size increase, then the complexity is cubic. Contributed by Mr. Ren-Shan Luoh (D97922014) on December 23, 2008.

Comments

- INDEPENDENT SET and NODE COVER are reducible to each other (Corollary 45, p. 371).
- NODE COVER has an approximation threshold at most 0.5 (p. 727).
- But INDEPENDENT SET is unapproximable (see the textbook).
- INDEPENDENT SET limited to graphs with degree $\leq k$ is called k-degree independent set.
- *k*-DEGREE INDEPENDENT SET is approximable (see the textbook).

On P vs. NP

If 50 million people believe a foolish thing, it's still a foolish thing. — George Bernard Shaw (1856–1950)

$\mathsf{Density}^{\mathrm{a}}$

The **density** of language $L \subseteq \Sigma^*$ is defined as

$$dens_L(n) = |\{x \in L : |x| \le n\}|.$$

- If $L = \{0, 1\}^*$, then $dens_L(n) = 2^{n+1} 1$.
- So the density function grows at most exponentially.
- For a unary language $L \subseteq \{0\}^*$,

$$dens_L(n) \le n+1.$$
- Because $L \subseteq \{\epsilon, 0, 00, \dots, \underbrace{00\cdots 0}_{n}, \dots\}.$
^aBerman and Hartmanis (1977).

Sparsity

- **Sparse languages** are languages with polynomially bounded density functions.
- **Dense languages** are languages with superpolynomial density functions.

Self-Reducibility for ${\rm SAT}$

- An algorithm exhibits **self-reducibility** if it finds a certificate by exploiting algorithms for the *decision* version of the same problem.
- Let ϕ be a boolean expression in n variables x_1, x_2, \dots, x_n .
- $t \in \{0, 1\}^j$ is a **partial** truth assignment for x_1, x_2, \dots, x_j .
- $\phi[t]$ denotes the expression after substituting the truth values of t for $x_1, x_2, \ldots, x_{|t|}$ in ϕ .

An Algorithm for ${\rm SAT}$ with Self-Reduction

We call the algorithm below with empty t.

- 1: **if** |t| = n **then**
- 2: return $\phi[t]$;
- 3: **else**
- 4: **return** $\phi[t0] \lor \phi[t1];$
- 5: end if

The above algorithm runs in exponential time, by visiting all the partial assignments (or nodes on a depth-n binary tree).^a

^aThe same idea was used in the proof of Proposition 79 on p. 614.

NP-Completeness and $\mathsf{Density}^{\mathrm{a}}$

Theorem 87 If a unary language $U \subseteq \{0\}^*$ is *NP-complete, then* P = NP.

- Suppose there is a reduction R from SAT to U.
- We use R to find a truth assignment that satisfies boolean expression ϕ with n variables if it is satisfiable.
- Specifically, we use R to prune the exponential-time exhaustive search on p. 759.
- The trick is to keep the already discovered results $\phi[t]$ in a table H.

^aBerman (1978).

- 1: **if** |t| = n **then**
- 2: return $\phi[t]$;

3: **else**

- 4: **if** $(R(\phi[t]), v)$ is in table *H* **then**
- 5: return v;
- 6: **else**
- 7: **if** $\phi[t0] =$ "satisfiable" or $\phi[t1] =$ "satisfiable" **then**

```
8: Insert (R(\phi[t]), \text{``satisfiable''}) into H;
```

```
9: return "satisfiable";
```

```
10: else
```

```
11: Insert (R(\phi[t]), "unsatisfiable") into H;
```

```
12: return "unsatisfiable";
```

```
13: end if
```

```
14: end if
```

15: **end if**

- Since R is a reduction, $R(\phi[t]) = R(\phi[t'])$ implies that $\phi[t]$ and $\phi[t']$ must be both satisfiable or unsatisfiable.
- R(φ[t]) has polynomial length ≤ p(n) because R runs in log space.
- As R maps to unary numbers, there are only polynomially many p(n) values of $R(\phi[t])$.
- How many nodes of the complete binary tree (of invocations/truth assignments) need to be visited?

- A search of the table takes time O(p(n)) in the random-access memory model.
- The running time is O(Mp(n)), where M is the total number of invocations of the algorithm.
- If that number is a polynomial, the overall algorithm runs in polynomial time and we are done.
- The invocations of the algorithm form a binary tree of depth at most *n*.

- There is a set $T = \{t_1, t_2, ...\}$ of invocations^a such that: 1. $|T| \ge (M-1)/(2n)$.
 - 2. All invocations in T are recursive (nonleaves).
 - 3. None of the elements of T is a prefix of another.
- To build one such T, carry out the 1st step and then loop over the 2nd and 3rd steps on the next page.

^aPartial truth assignments, i.e.

- All invocations $t \in T$ have different $R(\phi[t])$ values.
 - The invocation of one started after the invocation of the other had terminated.
 - If they had the same value, the one that was invoked later would have looked it up, and therefore would not be recursive, a contradiction.
- The existence of T implies that there are at least (M-1)/(2n) different $R(\phi[t])$ values in the table.

The Proof (concluded)

- We already know that there are at most p(n) such values.
- Hence $(M-1)/(2n) \le p(n)$.
- Thus $M \leq 2np(n) + 1$.
- The running time is therefore $O(Mp(n)) = O(np^2(n))$.

Other Results for Sparse Languages **Theorem 88 (Mahaney (1980))** If a sparse language is NP-complete, then P = NP.

Theorem 89 (Fortung (1979)) If a unary language $U \subseteq \{0\}^*$ is coNP-complete, then P = NP.

- Suppose there is a reduction R from SAT COMPLEMENT to U.
- The rest of the proof is basically identical except that, now, we want to make sure a formula is unsatisfiable.