NODE COVER

- NODE COVER seeks the smallest $C \subseteq V$ in graph $G=(V, E)$ such that for each edge in E, at least one of its endpoints is in C.
- A heuristic to obtain a good node cover is to iteratively move a node with the highest degree to the cover.
- This turns out to produce an approximation ratio of ${ }^{\text {a }}$

$$
\frac{c(M(x))}{\operatorname{OPT}(x)}=\Theta(\log n)
$$

- So it is not an ϵ-approximation algorithm for any constant $\epsilon<1$ according to Eq. (19).

[^0]
A 0.5-Approximation Algorithm ${ }^{\text {a }}$

1: $C:=\emptyset$;
2: while $E \neq \emptyset$ do
3: Delete an arbitrary edge $\{u, v\}$ from E;
4: Add u and v to C; \{Add 2 nodes to C each time.\}
5: \quad Delete edges incident with u or v from E;
6: end while
7: return C;
${ }^{\text {a }}$ Johnson (1974).

Analysis

- It is easy to see that C is a node cover.
- C contains $|C| / 2$ edges. ${ }^{\text {a }}$
- No two edges of C share a node. ${ }^{\text {b }}$
- Any node cover must contain at least one node from each of these edges.
- If there is an edge in C both of whose ends are outside the cover, then that cover will not be valid.

[^1]

Analysis (concluded)

- This means that opt $(G) \geq|C| / 2$.
- The approximation ratio is hence

$$
\frac{|C|}{\operatorname{OPT}(G)} \leq 2 .
$$

- So we have a 0.5 -approximation algorithm.
- And the approximation threshold is therefore ≤ 0.5.

The 0.5 Bound Is Tight for the Algorithm ${ }^{\text {a }}$

${ }^{\text {a }}$ Contributed by Mr. Jenq-Chung Li (R92922087) on December 20, 2003. Recall that König's theorem says the size of a maximum matching equals that of a minimum node cover in a bipartite graph.

Remarks

- The approximation threshold is at least ${ }^{\text {a }}$

$$
1-(10 \sqrt{5}-21)^{-1} \approx 0.2651
$$

- The approximation threshold is 0.5 if one assumes the unique games conjecture. ${ }^{\text {b }}$
- This ratio 0.5 is also the lower bound for any "greedy" algorithms. ${ }^{\text {c }}$

[^2]
Maximum Satisfiability

- Given a set of clauses, mAXSAT seeks the truth assignment that satisfies the most.
- mAX2SAT is already NP-complete (p. 347), so mAXSAT is NP-complete.
- Consider the more general k-mAXGSAT for constant k.
- Let $\Phi=\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{m}\right\}$ be a set of boolean expressions in n variables.
- Each ϕ_{i} is a general expression involving up to k variables.
- k-MAXGSAT seeks the truth assignment that satisfies the most expressions.

A Probabilistic Interpretation of an Algorithm

- Let ϕ_{i} involve $k_{i} \leq k$ variables and be satisfied by s_{i} of the $2^{k_{i}}$ truth assignments.
- A random truth assignment $\in\{0,1\}^{n}$ satisfies ϕ_{i} with probability $p\left(\phi_{i}\right)=s_{i} / 2^{k_{i}}$.
$-p\left(\phi_{i}\right)$ is easy to calculate as k is a constant.
- Hence a random truth assignment satisfies an average of

$$
p(\Phi)=\sum_{i=1}^{m} p\left(\phi_{i}\right)
$$

expressions ϕ_{i}.

The Search Procedure

- Clearly

$$
p(\Phi)=\frac{1}{2}\left\{p\left(\Phi\left[x_{1}=\text { true }\right]\right)+p\left(\Phi\left[x_{1}=\text { false }\right]\right)\right\}
$$

- Select the $t_{1} \in\{$ true, false $\}$ such that $p\left(\Phi\left[x_{1}=t_{1}\right]\right)$ is the larger one.
- Note that $p\left(\Phi\left[x_{1}=t_{1}\right]\right) \geq p(\Phi)$.
- Repeat the procedure with expression $\Phi\left[x_{1}=t_{1}\right]$ until all variables x_{i} have been given truth values t_{i} and all ϕ_{i} are either true or false.

The Search Procedure (continued)

- By our hill-climbing procedure,

$$
\begin{aligned}
& p(\Phi) \\
\leq & p\left(\Phi\left[x_{1}=t_{1}\right]\right) \\
\leq & p\left(\Phi\left[x_{1}=t_{1}, x_{2}=t_{2}\right]\right) \\
\leq & \cdots \\
\leq & p\left(\Phi\left[x_{1}=t_{1}, x_{2}=t_{2}, \ldots, x_{n}=t_{n}\right]\right)
\end{aligned}
$$

- So at least $p(\Phi)$ expressions are satisfied by truth assignment $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$.

The Search Procedure (concluded)

- Note that the algorithm is deterministic!
- It is called the method of conditional expectations. ${ }^{\text {a }}$

[^3]
Approximation Analysis

- The optimum is at most the number of satisfiable ϕ_{i}-i.e., those with $p\left(\phi_{i}\right)>0$.
- Hence the ratio of algorithm's output vs. the optimum is ${ }^{\text {a }}$

$$
\geq \frac{p(\Phi)}{\sum_{p\left(\phi_{i}\right)>0} 1}=\frac{\sum_{i} p\left(\phi_{i}\right)}{\sum_{p\left(\phi_{i}\right)>0} 1} \geq \min _{p\left(\phi_{i}\right)>0} p\left(\phi_{i}\right) .
$$

- So this is a polynomial-time ϵ-approximation algorithm with $\epsilon=1-\min _{p\left(\phi_{i}\right)>0} p\left(\phi_{i}\right)$.
- Because $p\left(\phi_{i}\right) \geq 2^{-k}$ for a satisfiable ϕ_{i}, the heuristic is a polynomial-time ϵ-approximation algorithm with $\epsilon=1-2^{-k}$.
${ }^{\text {a Recall that }} \sum_{i} a_{i} / \sum_{i} b_{i} \geq \min _{i}\left(a_{i} / b_{i}\right)$.

Back to MAXSAT

- In maxsat, the ϕ_{i} 's are clauses (like $x \vee y \vee \neg z$).
- Hence $p\left(\phi_{i}\right) \geq 1 / 2$, which happens when ϕ_{i} contains a single literal.
- The heuristic becomes a polynomial-time ϵ-approximation algorithm with $\epsilon=1 / 2$. ${ }^{\text {a }}$
- Suppose we set each boolean variable to true with probability $(\sqrt{5}-1) / 2$, the golden ratio.
- Then follow through the method of conditional expectations to derandomize it.

[^4]
Back to MAxsAT (concluded)

- We will obtain a $[(3-\sqrt{5})] / 2$-approximation algorithm. ${ }^{\text {a }}$
- Note $[(3-\sqrt{5})] / 2 \approx 0.382$.
- If the clauses have k distinct literals,

$$
p\left(\phi_{i}\right)=1-2^{-k} .
$$

- The heuristic becomes a polynomial-time ϵ-approximation algorithm with $\epsilon=2^{-k}$.
- This is the best possible for $k \geq 3$ unless $\mathrm{P}=\mathrm{NP}$.

[^5]
MAX CUT Revisited

- MAX CUT seeks to partition the nodes of graph $G=(V, E)$ into $(S, V-S)$ so that there are as many edges as possible between S and $V-S$.
- It is NP-complete. ${ }^{\text {a }}$
- Local search starts from a feasible solution and performs "local" improvements until none are possible.
- Next we present a local-search algorithm for max cut.

[^6]
A 0.5-Approximation Algorithm for Max cut

1: $S:=\emptyset$;
2: while $\exists v \in V$ whose switching sides results in a larger cut do
3: \quad Switch the side of v;
4: end while
5: return S;

- A 0.12-approximation algorithm exists. ${ }^{\text {a }}$
- 0.059-approximation algorithms do not exist unless NP $=$ ZPP.

[^7]

Analysis (continued)

- Partition $V=V_{1} \cup V_{2} \cup V_{3} \cup V_{4}$, where
- Our algorithm returns $\left(V_{1} \cup V_{2}, V_{3} \cup V_{4}\right)$.
- The optimum cut is $\left(V_{1} \cup V_{3}, V_{2} \cup V_{4}\right)$.
- Let $e_{i j}$ be the number of edges between V_{i} and V_{j}.
- Our algorithm returns a cut of size

$$
e_{13}+e_{14}+e_{23}+e_{24}
$$

- The optimum cut size is

$$
e_{12}+e_{34}+e_{14}+e_{23}
$$

Analysis (continued)

- For each node $v \in V_{1}$, its edges to $V_{1} \cup V_{2}$ are outnumbered by those to $V_{3} \cup V_{4}$.
- Otherwise, v would have been moved to $V_{3} \cup V_{4}$ to improve the cut.
- Considering all nodes in V_{1} together, we have

$$
2 e_{11}+e_{12} \leq e_{13}+e_{14} .
$$

$-2 e_{11}$, because each edge in V_{1} is counted twice.

- The above inequality implies

$$
e_{12} \leq e_{13}+e_{14} .
$$

Analysis (concluded)

- Similarly,

$$
\begin{aligned}
e_{12} & \leq e_{23}+e_{24} \\
e_{34} & \leq e_{23}+e_{13} \\
e_{34} & \leq e_{14}+e_{24}
\end{aligned}
$$

- Add all four inequalities, divide both sides by 2 , and add the inequality $e_{14}+e_{23} \leq e_{14}+e_{23}+e_{13}+e_{24}$ to obtain

$$
e_{12}+e_{34}+e_{14}+e_{23} \leq 2\left(e_{13}+e_{14}+e_{23}+e_{24}\right)
$$

- The above says our solution is at least half the optimum.

Approximability, Unapproximability, and Between

- KNAPSACK, NODE COVER, MAXSAT, and MAX CUT have approximation thresholds less than 1.
- KNAPSACK has a threshold of 0 (p. 745).
- But node cover (p. 725) and maxsat have a threshold larger than 0 .
- The situation is maximally pessimistic for TSP, which cannot be approximated (p. 743).
- The approximation threshold of TSP is 1. * The threshold is $1 / 3$ if TSP satisfies the triangular inequality.
- The same holds for INDEPENDENT SET (see the textbook).

Unapproximability of $\mathrm{TSP}^{\mathrm{a}}$

Theorem 85 The approximation threshold of TSP is 1 unless $P=N P$.

- Suppose there is a polynomial-time ϵ-approximation algorithm for TSP for some $\epsilon<1$.
- We shall construct a polynomial-time algorithm to solve the NP-complete HAMILTONIAN CYCLE.
- Given any graph $G=(V, E)$, construct a TSP with $|V|$ cities with distances

$$
d_{i j}=\left\{\begin{array}{cl}
1, & \text { if }\{i, j\} \in E \\
\frac{|V|}{1-\epsilon}, & \text { otherwise }
\end{array}\right.
$$

[^8]
The Proof (concluded)

- Run the alleged approximation algorithm on this TSP.
- Suppose a tour of cost $|V|$ is returned.
- This tour must be a Hamiltonian cycle.
- Suppose a tour that includes an edge of length $\frac{|V|}{1-\epsilon}$ is returned.
- The total length of this tour is $>\frac{|V|}{1-\epsilon}$.
- Because the algorithm is ϵ-approximate, the optimum is at least $1-\epsilon$ times the returned tour's length.
- The optimum tour has a cost exceeding $|V|$.
- Hence G has no Hamiltonian cycles.

knapsack Has an Approximation Threshold of Zero ${ }^{a}$

Theorem 86 For any ϵ, there is a polynomial-time ϵ-approximation algorithm for KNAPSACK.

- We have n weights $w_{1}, w_{2}, \ldots, w_{n} \in \mathbb{Z}^{+}$, a weight limit W, and n values $v_{1}, v_{2}, \ldots, v_{n} \in \mathbb{Z}^{+} .{ }^{\mathrm{b}}$
- We must find an $I \subseteq\{1,2, \ldots, n\}$ such that $\sum_{i \in I} w_{i} \leq W$ and $\sum_{i \in I} v_{i}$ is the largest possible.

[^9]${ }^{\mathrm{b}}$ If the values are fractional, the result is slightly messier, but the main conclusion remains correct. Contributed by Mr. Jr-Ben Tian (B89902011,

The Proof (continued)

- Let

$$
V=\max \left\{v_{1}, v_{2}, \ldots, v_{n}\right\}
$$

- Clearly, $\sum_{i \in I} v_{i} \leq n V$.
- Let $0 \leq i \leq n$ and $0 \leq v \leq n V$.
- $W(i, v)$ is the minimum weight attainable by selecting only from the first i items and with a total value of v.
- It is an $(n+1) \times(n V+1)$ table.

The Proof (continued)

- Set $W(0, v)=\infty$ for $v \in\{1,2, \ldots, n V\}$ and $W(i, 0)=0$ for $i=0,1, \ldots, n .{ }^{\text {a }}$
- Then, for $0 \leq i<n$,

$$
W(i+1, v)=\min \left\{W(i, v), W\left(i, v-v_{i+1}\right)+w_{i+1}\right\} .
$$

- Finally, pick the largest v such that $W(n, v) \leq W$. ${ }^{\text {b }}$
- The running time is $O\left(n^{2} V\right)$, not polynomial time.
- Key idea: Limit the number of precision bits.
${ }^{\text {a Contributed by Mr. Ren-Shuo Liu (D98922016) and Mr. Yen-Wei Wu }}$ (D98922013) on December 28, 2009.
${ }^{\mathrm{b}}$ Lawler (1979).

The Proof (continued)

- Define

$$
v_{i}^{\prime}=2^{b}\left\lfloor\frac{v_{i}}{2^{b}}\right\rfloor .
$$

- This is equivalent to zeroing each v_{i} 's last b bits.
- Call the original instance

$$
x=\left(w_{1}, \ldots, w_{n}, W, v_{1}, \ldots, v_{n}\right) .
$$

- Call the approximate instance

$$
x^{\prime}=\left(w_{1}, \ldots, w_{n}, W, v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right)
$$

The Proof (continued)

- Solving x^{\prime} takes time $O\left(n^{2} V / 2^{b}\right)$.
- The algorithm only performs subtractions on the v_{i}-related values.
- So the b last bits can be removed from the calculations.
- That is, use $v_{i}^{\prime \prime}=\left\lfloor\frac{v_{i}}{2^{b}}\right\rfloor$ and $V^{\prime \prime}=\max \left(v_{1}^{\prime \prime}, v_{2}^{\prime \prime}, \ldots, v_{n}^{\prime \prime}\right)$ in dynamic programming.
- It is now an $(n+1) \times(n V+1) / 2^{b}$ table.
- Then multiply the returned value by 2^{b}.
- The selection I^{\prime} is optimal for x^{\prime}.

The Proof (continued)

- The selection I^{\prime} is close to the optimal selection I, for x :

$$
\sum_{i \in I^{\prime}} v_{i} \geq \sum_{i \in I^{\prime}} v_{i}^{\prime} \geq \sum_{i \in I} v_{i}^{\prime} \geq \sum_{i \in I}\left(v_{i}-2^{b}\right) \geq\left(\sum_{i \in I} v_{i}\right)-n 2^{b}
$$

- Hence

$$
\sum_{i \in I^{\prime}} v_{i} \geq\left(\sum_{i \in I} v_{i}\right)-n 2^{b}
$$

- Without loss of generality, assume $w_{i} \leq W$ for all i.
- Otherwise, item i is redundant.
- V is a lower bound on OPT.
- Picking an item with value V is a legitimate choice.

The Proof (concluded)

- The relative error from the optimum is:

$$
\frac{\sum_{i \in I} v_{i}-\sum_{i \in I^{\prime}} v_{i}}{\sum_{i \in I} v_{i}} \leq \frac{\sum_{i \in I} v_{i}-\sum_{i \in I^{\prime}} v_{i}}{V} \leq \frac{n 2^{b}}{V}
$$

- Suppose we pick $b=\left\lfloor\log _{2} \frac{\epsilon V}{n}\right\rfloor$.
- The algorithm becomes ϵ-approximate. ${ }^{\text {a }}$
- The running time is then $O\left(n^{2} V / 2^{b}\right)=O\left(n^{3} / \epsilon\right)$, a polynomial in n and $1 / \epsilon$. ${ }^{\text {b }}$

[^10]
Comments

- INDEPENDENT SET and NODE COVER are reducible to each other (Corollary 45, p. 371).
- NODE COVER has an approximation threshold at most 0.5 (p. 727).
- But independent set is unapproximable (see the textbook).
- INDEPENDENT SET limited to graphs with degree $\leq k$ is called k-DEGREE INDEPENDENT SET.
- k-DEGREE INDEPENDENT SET is approximable (see the textbook).

On P vs. NP

If 50 million people believe a foolish thing, it's still a foolish thing. - George Bernard Shaw (1856-1950)

Density ${ }^{\text {a }}$

The density of language $L \subseteq \Sigma^{*}$ is defined as

$$
\operatorname{dens}_{L}(n)=|\{x \in L:|x| \leq n\}| .
$$

- If $L=\{0,1\}^{*}$, then $\operatorname{dens}_{L}(n)=2^{n+1}-1$.
- So the density function grows at most exponentially.
- For a unary language $L \subseteq\{0\}^{*}$,

$$
\operatorname{dens}_{L}(n) \leq n+1 .
$$

- Because $L \subseteq\{\epsilon, 0,00, \ldots, \overbrace{00 \cdots 0}^{n}, \ldots\}$.

[^11]
Sparsity

- Sparse languages are languages with polynomially bounded density functions.
- Dense languages are languages with superpolynomial density functions.

Self-Reducibility for SAT

- An algorithm exhibits self-reducibility if it finds a certificate by exploiting algorithms for the decision version of the same problem.
- Let ϕ be a boolean expression in n variables $x_{1}, x_{2}, \ldots, x_{n}$.
- $t \in\{0,1\}^{j}$ is a partial truth assignment for $x_{1}, x_{2}, \ldots, x_{j}$.
- $\phi[t]$ denotes the expression after substituting the truth values of t for $x_{1}, x_{2}, \ldots, x_{|t|}$ in ϕ.

An Algorithm for sat with Self-Reduction

We call the algorithm below with empty t.
1: if $|t|=n$ then
2: return $\phi[t]$;
3: else
4: return $\phi[t 0] \vee \phi[t 1]$;
5: end if
The above algorithm runs in exponential time, by visiting all the partial assignments (or nodes on a depth- n binary tree). ${ }^{\text {a }}$

[^12]
NP-Completeness and Density ${ }^{\text {a }}$

Theorem 87 If a unary language $U \subseteq\{0\}^{*}$ is
$N P$-complete, then $P=N P$.

- Suppose there is a reduction R from sat to U.
- We use R to find a truth assignment that satisfies boolean expression ϕ with n variables if it is satisfiable.
- Specifically, we use R to prune the exponential-time exhaustive search on p. 759.
- The trick is to keep the already discovered results $\phi[t]$ in a table H.

[^13]```
 1: if }|t|=n\mathrm{ then
 2: return }\phi[t]
 3: else
 4: if (R(\phi[t]),v) is in table H then
 5: return v;
 6: else
 7: if \phi[t0]="satisfiable" or }\phi[t1]=\mathrm{ "satisfiable" then
 8: Insert (R(\phi[t]), "satisfiable") into H;
 9: return "satisfiable";
10: else
11: Insert (R(\phi[t]),"unsatisfiable") into H;
12: return "unsatisfiable";
13: end if
14: end if
15: end if
```


## The Proof (continued)

- Since $R$ is a reduction, $R(\phi[t])=R\left(\phi\left[t^{\prime}\right]\right)$ implies that $\phi[t]$ and $\phi\left[t^{\prime}\right]$ must be both satisfiable or unsatisfiable.
- $R(\phi[t])$ has polynomial length $\leq p(n)$ because $R$ runs in $\log$ space.
- As $R$ maps to unary numbers, there are only polynomially many $p(n)$ values of $R(\phi[t])$.
- How many nodes of the complete binary tree (of invocations/truth assignments) need to be visited?


## The Proof (continued)

- A search of the table takes time $O(p(n))$ in the random-access memory model.
- The running time is $O(M p(n))$, where $M$ is the total number of invocations of the algorithm.
- If that number is a polynomial, the overall algorithm runs in polynomial time and we are done.
- The invocations of the algorithm form a binary tree of depth at most $n$.


## The Proof (continued)

- There is a set $T=\left\{t_{1}, t_{2}, \ldots\right\}$ of invocations ${ }^{\text {a }}$ such that: 1. $|T| \geq(M-1) /(2 n)$.

2. All invocations in $T$ are recursive (nonleaves).
3. None of the elements of $T$ is a prefix of another.

- To build one such $T$, carry out the 1st step and then loop over the 2 nd and 3rd steps on the next page.

[^14]3 rd step: Delete all $t$ 's at most $n$ ancestors (prefixes) from further consideration


$T=\{\mathrm{h}, \mathrm{j}\}$; none of h and j is a prefix of the other.

## The Proof (continued)

- All invocations $t \in T$ have different $R(\phi[t])$ values.
- The invocation of one started after the invocation of the other had terminated.
- If they had the same value, the one that was invoked later would have looked it up, and therefore would not be recursive, a contradiction.
- The existence of $T$ implies that there are at least $(M-1) /(2 n)$ different $R(\phi[t])$ values in the table.


## The Proof (concluded)

- We already know that there are at most $p(n)$ such values.
- Hence $(M-1) /(2 n) \leq p(n)$.
- Thus $M \leq 2 n p(n)+1$.
- The running time is therefore $O(M p(n))=O\left(n p^{2}(n)\right)$.


## Other Results for Sparse Languages

Theorem 88 (Mahaney (1980)) If a sparse language is $N P$-complete, then $P=N P$.

Theorem 89 (Fortung (1979)) If a unary language
$U \subseteq\{0\}^{*}$ is coNP-complete, then $P=N P$.

- Suppose there is a reduction $R$ from sat complement to $U$.
- The rest of the proof is basically identical except that, now, we want to make sure a formula is unsatisfiable.


[^0]:    ${ }^{\text {a }}$ Chvátal (1979).

[^1]:    ${ }^{\text {a }}$ The edges deleted in Line 3.
    ${ }^{\mathrm{b}}$ In fact, $C$ as a set of edges is a maximal matching.

[^2]:    ${ }^{\text {a }}$ Dinur and Safra (2002).
    ${ }^{\mathrm{b}}$ Khot and Regev (2008).
    ${ }^{\text {c }}$ Davis and Impagliazzo (2004).

[^3]:    ${ }^{\text {a }}$ Erdős and Selfridge (1973); Spencer (1987).

[^4]:    ${ }^{\text {a }}$ Johnson (1974).

[^5]:    ${ }^{\text {a }}$ Lieberherr and Specker (1981).

[^6]:    ${ }^{\text {a Recall p. } 378 . ~}$

[^7]:    ${ }^{\mathrm{a}}$ Goemans and Williamson (1995).

[^8]:    ${ }^{\text {a }}$ Sahni and Gonzales (1976).

[^9]:    ${ }^{\text {a }}$ Ibarra and Kim (1975). R93922045) on December 29, 2004.

[^10]:    ${ }^{\text {a }}$ See Eq. (17) on p. 715.
    ${ }^{\mathrm{b}}$ It hence depends on the value of $1 / \epsilon$. Thanks to a lively class discussion on December 20, 2006. If we fix $\epsilon$ and let the problem size increase, then the complexity is cubic. Contributed by Mr. Ren-Shan Luoh (D97922014) on December 23, 2008.

[^11]:    a Berman and Hartmanis (1977).

[^12]:    ${ }^{\text {a }}$ The same idea was used in the proof of Proposition 79 on p. 614.

[^13]:    ${ }^{a}$ Berman (1978).

[^14]:    ${ }^{\text {a }}$ Partial truth assignments, i.e.

