Theory of Computation

Homework 4

Due: 2015/12/08
Problem 1. Find all the primitive roots of 5 and all the primitive roots of 7.

Solution.

The primitive roots of 5 are 2 and 3 , because $\phi(5)=4$ and

$$
\begin{array}{ll}
2^{1} \equiv 2(\bmod 5) ; & 2^{2} \equiv 4(\bmod 5), \\
2^{3} \equiv 3(\bmod 5) ; & 2^{4} \equiv 1(\bmod 5)
\end{array}
$$

and

$$
\begin{array}{ll}
3^{1} \equiv 3(\bmod 5) ; & 3^{2} \equiv 4(\bmod 5), \\
3^{3} \equiv 2(\bmod 5) ; & 3^{4} \equiv 1(\bmod 5) .
\end{array}
$$

Similarly, the primitive roots of 7 are 3 and 5 because $\phi(7)=6$ and

$$
\begin{array}{ll}
3^{1} \equiv 3(\bmod 7) ; & 3^{2} \equiv 2(\bmod 7), \\
3^{3} \equiv 6(\bmod 7) ; & 3^{4} \equiv 4(\bmod 7), \\
3^{5} \equiv 5(\bmod 7) ; & 3^{6} \equiv 1(\bmod 7),
\end{array}
$$

and

$$
\begin{array}{ll}
5^{1} \equiv 5(\bmod 7) ; & 5^{2} \equiv 4(\bmod 7), \\
5^{3} \equiv 6(\bmod 7) ; & 5^{4} \equiv 2(\bmod 7), \\
5^{5} \equiv 3(\bmod 7) ; & 5^{6} \equiv 1(\bmod 7) .
\end{array}
$$

Problem 2. We know that 3-SAT is NP-complete. Show that for $n>3$, n-SAT is also NP-complete. (You don't need to show that is in NP.)

Solution.

We reduce 3 -sat to n-SAT as follows. Let ϕ be a 3 -SAT boolean expression. For any clause $(a \vee b \vee c)$, we replace it with $(a \vee b \vee \underbrace{c \vee \cdots \vee c}_{n-2 \text { times }})$. By repeating this process in all the clauses of ϕ, we get an n-SAT boolean expression ϕ^{\prime}. Now, we proceed to show that this is a reduction from 3 -SAT to n-SAT as follows:
(\Rightarrow) From the construction, we see that if a truth assignment satisfies ϕ, then it must satisfy ϕ^{\prime}.
(\Leftarrow) Let's note that if a truth assignment satisfy ϕ^{\prime}, then it must also satisfy ϕ.

From this, we then deduce that ϕ is satisfiable if and only if ϕ^{\prime} is satisfiable; hence 3 -SAT is reducible to n-SAT, proving that n-SAT is NP-complete.

