Theory of Computation

Homework 4

Due: 2015/12/08

Problem 1. Find all the primitive roots of 5 and all the primitive roots of 7.

Solution.

The primitive roots of 5 are 2 and 3, because $\phi(5) = 4$ and

$$2^1 \equiv 2 \pmod{5}$$
; $2^2 \equiv 4 \pmod{5}$,
 $2^3 \equiv 3 \pmod{5}$; $2^4 \equiv 1 \pmod{5}$,

and

$$3^1 \equiv 3 \pmod{5}$$
; $3^2 \equiv 4 \pmod{5}$,
 $3^3 \equiv 2 \pmod{5}$; $3^4 \equiv 1 \pmod{5}$.

Similarly, the primitive roots of 7 are 3 and 5 because $\phi(7) = 6$ and

$$3^{1} \equiv 3 \pmod{7} ; \quad 3^{2} \equiv 2 \pmod{7},$$

$$3^{3} \equiv 6 \pmod{7} ; \quad 3^{4} \equiv 4 \pmod{7},$$

$$3^{5} \equiv 5 \pmod{7} ; \quad 3^{6} \equiv 1 \pmod{7},$$

and

$$5^1 \equiv 5 \pmod{7}$$
; $5^2 \equiv 4 \pmod{7}$,
 $5^3 \equiv 6 \pmod{7}$; $5^4 \equiv 2 \pmod{7}$,
 $5^5 \equiv 3 \pmod{7}$; $5^6 \equiv 1 \pmod{7}$.

Problem 2. We know that 3-SAT is NP-complete. Show that for n > 3, n-SAT is also NP-complete. (You don't need to show that is in NP.)

Solution.

We reduce 3-SAT to *n*-SAT as follows. Let ϕ be a 3-SAT boolean expression. For any clause $(a \lor b \lor c)$, we replace it with $(a \lor b \lor \underline{c} \lor \cdots \lor \underline{c})$. By repeating this process in all the clauses of ϕ , we get an *n*-SAT boolean expression ϕ' . Now, we proceed to show that this is a reduction from 3-SAT to *n*-SAT as follows:

- (⇒) From the construction, we see that if a truth assignment satisfies ϕ , then it must satisfy ϕ' .
- (\Leftarrow) Let's note that if a truth assignment satisfy ϕ' , then it must also satisfy ϕ .

From this, we then deduce that ϕ is satisfiable if and only if ϕ' is satisfiable; hence 3-SAT is reducible to *n*-SAT, proving that *n*-SAT is NP-complete. \Box