Exponents and Primitive Roots

- From Fermat's "little" theorem, all exponents divide $p-1$.
- A primitive root of p is thus a number with exponent $p-1$.
- Let $R(k)$ denote the total number of residues in $\Phi(p)=\{1,2, \ldots, p-1\}$ that have exponent k.
- We already knew that $R(k)=0$ for $k X(p-1)$.
- So

$$
\sum_{k \mid(p-1)} R(k)=p-1
$$

as every number has an exponent.

Size of $R(k)$

- Any $a \in \Phi(p)$ of exponent k satisfies

$$
x^{k}=1 \bmod p
$$

- By Lemma 61 (p. 485) there are at most k residues of exponent k, i.e., $R(k) \leq k$.
- Let s be a residue of exponent k.
- $1, s, s^{2}, \ldots, s^{k-1}$ are distinct modulo p.
- Otherwise, $s^{i} \equiv s^{j} \bmod p$ with $i<j$.
- Then $s^{j-i}=1 \bmod p$ with $j-i<k$, a contradiction.
- As all these k distinct numbers satisfy $x^{k}=1 \bmod p$, they comprise all the solutions of $x^{k}=1 \bmod p$.

Size of $R(k)$ (continued)

- But do all of them have exponent k (i.e., $R(k)=k$)?
- And if not (i.e., $R(k)<k$), how many of them do?
- Pick s^{ℓ}, where $\ell<k$.
- Suppose $\ell \notin \Phi(k)$ with $\operatorname{gcd}(\ell, k)=d>1$.
- Then

$$
\left(s^{\ell}\right)^{k / d}=\left(s^{k}\right)^{\ell / d}=1 \bmod p .
$$

- Therefore, s^{ℓ} has exponent at most $k / d<k$.
- So s^{ℓ} has exponent k only if $\ell \in \Phi(k)$.
- We conclude that

$$
R(k) \leq \phi(k) .
$$

Size of $R(k)$ (concluded)

- Because all $p-1$ residues have an exponent,

$$
p-1=\sum_{k \mid(p-1)} R(k) \leq \sum_{k \mid(p-1)} \phi(k)=p-1
$$

by Lemma 58 (p. 472).

- Hence

$$
R(k)=\left\{\begin{array}{cl}
\phi(k) & \text { when } k \mid(p-1) \\
0 & \text { otherwise }
\end{array}\right.
$$

- In particular, $R(p-1)=\phi(p-1)>0$, and p has at least one primitive root.
- This proves one direction of Theorem 53 (p. 457).

A Few Calculations

- Let $p=13$.
- From p. $482 \phi(p-1)=4$.
- Hence $R(12)=4$.
- Indeed, there are 4 primitive roots of p.
- As

$$
\Phi(p-1)=\{1,5,7,11\},
$$

the primitive roots are

$$
g^{1}, g^{5}, g^{7}, g^{11}
$$

where g is any primitive root.

The Other Direction of Theorem 53 (p. 457)

- We show p is a prime if there is a number r such that 1. $r^{p-1}=1 \bmod p$, and

2. $r^{(p-1) / q} \neq 1 \bmod p$ for all prime divisors q of $p-1$.

- Suppose p is not a prime.
- We proceed to show that no primitive roots exist.
- Suppose $r^{p-1}=1 \bmod p($ note $\operatorname{gcd}(r, p)=1)$.
- We will show that the 2 nd condition must be violated.

The Proof (continued)

- So we proceed to show $r^{(p-1) / q}=1 \bmod p$ for some prime divisor q of $p-1$.
- $r^{\phi(p)}=1 \bmod p$ by the Fermat-Euler theorem (p. 482).
- Because p is not a prime, $\phi(p)<p-1$.
- Let k be the smallest integer such that $r^{k}=1 \bmod p$.
- With the 1 st condition, it is easy to show that $k \mid(p-1)$ (similar to p. 485).
- Note that $k \mid \phi(p)(\mathrm{p} .485)$.
- As $k \leq \phi(p), k<p-1$.

The Proof (concluded)

- Let q be a prime divisor of $(p-1) / k>1$.
- Then $k \mid(p-1) / q$.
- By the definition of k,

$$
r^{(p-1) / q}=1 \bmod p .
$$

- But this violates the 2nd condition.

Function Problems

- Decision problems are yes/no problems (SAT, TSP (D), etc.).
- Function problems require a solution (a satisfying truth assignment, a best TSP tour, etc.).
- Optimization problems are clearly function problems.
- What is the relation between function and decision problems?
- Which one is harder?

Function Problems Cannot Be Easier than Decision Problems

- If we know how to generate a solution, we can solve the corresponding decision problem.
- If you can find a satisfying truth assignment efficiently, then SAT is in P.
- If you can find the best TSP tour efficiently, then TSP (D) is in P .
- But decision problems can be as hard as the corresponding function problems.

FSAT

- FSAT is this function problem:
- Let $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a boolean expression.
- If ϕ is satisfiable, then return a satisfying truth assignment.
- Otherwise, return "no."
- We next show that if $\mathrm{sat} \in \mathrm{P}$, then fsat has a polynomial-time algorithm.
- SAT is a subroutine (black box) that returns "yes" or "no" on the satisfiability of the input.

An Algorithm for FsAT Using SAT

$t:=\epsilon$; \{Truth assignment.\}
if $\phi \in$ SAT then

$$
\text { for } i=1,2, \ldots, n \text { do }
$$

$$
\text { if } \phi\left[x_{i}=\text { true }\right] \in \operatorname{SAT} \text { then }
$$

$$
t:=t \cup\left\{x_{i}=\text { true }\right\} ;
$$

$$
\phi:=\phi\left[x_{i}=\text { true }\right] ;
$$

else
$t:=t \cup\left\{x_{i}=\right.$ false $\} ;$
$\phi:=\phi\left[x_{i}=\mathrm{false}\right] ;$
end if
end for
return t;
else
14: return "no";
15: end if

Analysis

- If SAT can be solved in polynomial time, so can FSAT.
- There are $\leq n+1$ calls to the algorithm for SAT. ${ }^{\text {a }}$
- Boolean expressions shorter than ϕ are used in each call to the algorithm for SAT.
- Hence sat and fsat are equally hard (or easy).
- Note that this reduction from FSAT to SAT is not a Karp reduction (recall p. 266 and p. 270).
- Instead, it calls SAT multiple times as a subroutine, and its answers guide the search on the computation tree.

[^0]
TSP and TSP (D) Revisited

- We are given n cities $1,2, \ldots, n$ and integer distances $d_{i j}=d_{j i}$ between any two cities i and j.
- TSP (D) asks if there is a tour with a total distance at most B.
- TSP asks for a tour with the shortest total distance.
- The shortest total distance is at most $\sum_{i, j} d_{i j}$.
* Recall that the input string contains $d_{11}, \ldots, d_{n n}$.
* Thus the shortest total distance is less than $2^{|x|}$ in magnitude, where x is the input (why?).
- We next show that if TSP $(D) \in P$, then TSP has a polynomial-time algorithm.

An Algorithm for TsP Using TSP (D)

1: Perform a binary search over interval $\left[0,2^{|x|}\right]$ by calling TSP (D) to obtain the shortest distance, C;
2: for $i, j=1,2, \ldots, n$ do
3: \quad Call TSP (D) with $B=C$ and $d_{i j}=C+1$;
4: if "no" then
5: \quad Restore $d_{i j}$ to old value; \{Edge $[i, j]$ is critical. $\}$
6: end if
7: end for
8: return the tour with edges whose $d_{i j} \leq C$;

Analysis

- An edge which is not on any remaining optimal tours will be eliminated, with its $d_{i j}$ set to $C+1$.
- So the algorithm ends with n edges which are not eliminated (why?).
- This is true even if there are multiple optimal tours! ${ }^{\text {a }}$
aThanks to a lively class discussion on November 12, 2013.

Analysis (concluded)

- There are $O\left(|x|+n^{2}\right)$ calls to the algorithm for TSP (D).
- Each call has an input length of $O(|x|)$.
- So if TSP (D) can be solved in polynomial time, so can TSP.
- Hence TSP (D) and TSP are equally hard (or easy).

Randomized Computation

I know that half my advertising works, I just don't know which half. - John Wanamaker

I know that half my advertising is
a waste of money, I just don't know which half!

- McGraw-Hill ad.

Randomized Algorithms ${ }^{\text {a }}$

- Randomized algorithms flip unbiased coins.
- There are important problems for which there are no known efficient deterministic algorithms but for which very efficient randomized algorithms exist.
- Extraction of square roots, for instance.
- There are problems where randomization is necessary.
- Secure protocols.
- Randomized version can be more efficient.
- Parallel algorithms for maximal independent set. ${ }^{\text {b }}$

[^1]
"Four Most Important Randomized Algorithms" a

1. Primality testing. ${ }^{\text {b }}$
2. Graph connectivity using random walks. ${ }^{\text {c }}$
3. Polynomial identity testing. ${ }^{\text {d }}$
4. Algorithms for approximate counting. ${ }^{\text {e }}$
${ }^{\text {a }}$ Trevisan (2006).
${ }^{\mathrm{b}}$ Rabin (1976); Solovay and Strassen (1977).
${ }^{c}$ Aleliunas, Karp, Lipton, Lovász, and Rackoff (1979).
${ }^{\text {d }}$ Schwartz (1980); Zippel (1979).
${ }^{e}$ Sinclair and Jerrum (1989).

Bipartite Perfect Matching

- We are given a bipartite graph $G=(U, V, E)$.
- $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$.
$-V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
- $E \subseteq U \times V$.
- We are asked if there is a perfect matching.
- A permutation π of $\{1,2, \ldots, n\}$ such that

$$
\left(u_{i}, v_{\pi(i)}\right) \in E
$$

for all $i \in\{1,2, \ldots, n\}$.

- A perfect matching contains n edges.

A Perfect Matching in a Bipartite Graph

Symbolic Determinants

- We are given a bipartite graph G.
- Construct the $n \times n$ matrix A^{G} whose (i, j) th entry $A_{i j}^{G}$ is a symbolic variable $x_{i j}$ if $\left(u_{i}, v_{j}\right) \in E$ and 0 otherwise:

$$
A_{i j}^{G}= \begin{cases}x_{i j}, & \text { if }\left(u_{i}, v_{j}\right) \in E \\ 0, & \text { othersie }\end{cases}
$$

Symbolic Determinants (continued)

- The matrix for the bipartite graph G on p. 508 is $^{\text {a }}$

$$
A^{G}=\left[\begin{array}{ccccc}
0 & 0 & x_{13} & x_{14} & 0 \tag{7}\\
0 & x_{22} & 0 & 0 & 0 \\
x_{31} & 0 & 0 & 0 & x_{35} \\
x_{41} & 0 & x_{43} & x_{44} & 0 \\
x_{51} & 0 & 0 & 0 & x_{55}
\end{array}\right] .
$$

${ }^{\text {a }}$ The idea is similar to the Tanner graph in coding theory by Tanner (1981).

Symbolic Determinants (concluded)

- The determinant of A^{G} is

$$
\begin{equation*}
\operatorname{det}\left(A^{G}\right)=\sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} A_{i, \pi(i)}^{G} \tag{8}
\end{equation*}
$$

- π ranges over all permutations of n elements.
$-\operatorname{sgn}(\pi)$ is 1 if π is the product of an even number of transpositions and -1 otherwise.
- Equivalently, $\operatorname{sgn}(\pi)=1$ if the number of (i, j) s such that $i<j$ and $\pi(i)>\pi(j)$ is even. ${ }^{\text {a }}$
- $\operatorname{det}\left(A^{G}\right)$ contains $n!$ terms, many of which may be 0s.
${ }^{\text {a }}$ Contributed by Mr. Hwan-Jeu Yu (D95922028) on May 1, 2008.

Determinant and Bipartite Perfect Matching

- In $\sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} A_{i, \pi(i)}^{G}$, note the following:
- Each summand corresponds to a possible perfect matching π.
- Nonzero summands $\prod_{i=1}^{n} A_{i, \pi(i)}^{G}$ are distinct monomials and will not cancel.
- $\operatorname{det}\left(A^{G}\right)$ is essentially an exhaustive enumeration. Proposition 62 (Edmonds (1967)) G has a perfect matching if and only if $\operatorname{det}\left(A^{G}\right)$ is not identically zero.

Perfect Matching and Determinant (p. 508)

Perfect Matching and Determinant (concluded)

- The matrix is (p. 510)

$$
A^{G}=\left[\begin{array}{ccccc}
0 & 0 & x_{13} & \boxed{x_{14}} & 0 \\
0 & \boxed{x_{22}} & 0 & 0 & 0 \\
x_{31} & 0 & 0 & 0 & \begin{array}{|c}
x_{35} \\
x_{41} \\
0
\end{array} \\
x_{43} & x_{44} & 0 \\
x_{51} & 0 & 0 & 0 & x_{55}
\end{array}\right] .
$$

- $\operatorname{det}\left(A^{G}\right)=-x_{14} x_{22} x_{35} x_{43} x_{51}+x_{13} x_{22} x_{35} x_{44} x_{51}+$ $x_{14} x_{22} x_{31} x_{43} x_{55}-x_{13} x_{22} x_{31} x_{44} x_{55}$.
- Each nonzero term denotes a perfect matching, and vice versa.

How To Test If a Polynomial Is Identically Zero?

- $\operatorname{det}\left(A^{G}\right)$ is a polynomial in n^{2} variables.
- It has, potentially, exponentially many terms.
- Expanding the determinant polynomial is thus infeasible.
- If $\operatorname{det}\left(A^{G}\right) \equiv 0$, then it remains zero if we substitute arbitrary integers for the variables $x_{11}, \ldots, x_{n n}$.
- When $\operatorname{det}\left(A^{G}\right) \not \equiv 0$, what is the likelihood of obtaining a zero?

Number of Roots of a Polynomial

Lemma 63 (Schwartz (1980)) Let $p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \not \equiv 0$ be a polynomial in m variables each of degree at most d. Let $M \in \mathbb{Z}^{+}$. Then the number of m-tuples

$$
\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in\{0,1, \ldots, M-1\}^{m}
$$

such that $p\left(x_{1}, x_{2}, \ldots, x_{m}\right)=0$ is

$$
\leq m d M^{m-1}
$$

- By induction on m (consult the textbook).

Density Attack

- The density of roots in the domain is at most

$$
\begin{equation*}
\frac{m d M^{m-1}}{M^{m}}=\frac{m d}{M} \tag{9}
\end{equation*}
$$

- So suppose $p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \not \equiv 0$.
- Then a random

$$
\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in\{0,1, \ldots, M-1\}^{m}
$$

has a probability of $\leq m d / M$ of being a root of p.

- Note that M is under our control!
- One can raise M to lower the error probability, e.g.

Density Attack (concluded)

Here is a sampling algorithm to test if $p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \not \equiv 0$.
1: Choose i_{1}, \ldots, i_{m} from $\{0,1, \ldots, M-1\}$ randomly;
2: if $p\left(i_{1}, i_{2}, \ldots, i_{m}\right) \neq 0$ then
3: return " p is not identically zero";
4: else
5: return " p is (probably) identically zero";
6: end if

Analysis

- If $p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \equiv 0$, the algorithm will always be correct as $p\left(i_{1}, i_{2}, \ldots, i_{m}\right)=0$.
- Suppose $p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \not \equiv 0$.
- The algorithm will answer incorrectly with probability at most $m d / M$ by Eq. (9) on p. 517.
- We next return to the original problem of bipartite perfect matching.

A Randomized Bipartite Perfect Matching Algorithm ${ }^{\text {a }}$

1: Choose n^{2} integers $i_{11}, \ldots, i_{n n}$ from $\left\{0,1, \ldots, 2 n^{2}-1\right\}$ randomly; $\left\{\right.$ So $M=2 n^{2}$. $\}$
2: Calculate $\operatorname{det}\left(A^{G}\left(i_{11}, \ldots, i_{n n}\right)\right)$ by Gaussian elimination;
3: if $\operatorname{det}\left(A^{G}\left(i_{11}, \ldots, i_{n n}\right)\right) \neq 0$ then
4: return " G has a perfect matching";
5: else
6: return " G has (probably) no perfect matchings";
7: end if
a Lovász (1979). According to Paul Erdős, Lovász wrote his first sig-
nificant paper "at the ripe old age of 17. ."

Analysis

- If G has no perfect matchings, the algorithm will always be correct as $\operatorname{det}\left(A^{G}\left(i_{11}, \ldots, i_{n n}\right)\right)=0$.
- Suppose G has a perfect matching.
- The algorithm will answer incorrectly with probability at most $m d / M=0.5$ with $m=n^{2}, d=1$ and $M=2 n^{2}$ in Eq. (9) on p. 517.
- Run the algorithm independently k times.
- Output " G has no perfect matchings" if and only if all say "(probably) no perfect matchings."
- The error probability is now reduced to at most 2^{-k}.

Remarks ${ }^{\text {a }}$

- Note that we are calculating
prob[algorithm answers "no" $\mid G$ has no perfect matchings], prob[algorithm answers "yes" $\mid G$ has a perfect matching].
- We are not calculating ${ }^{\text {b }}$
$\operatorname{prob}[G$ has no perfect matchings \mid algorithm answers "no"], $\operatorname{prob}[G$ has a perfect matching \mid algorithm answers "yes"].

[^2]
But How Large Can $\operatorname{det}\left(A^{G}\left(i_{11}, \ldots, i_{n n}\right)\right) \mathrm{Be}$?

- It is at most

$$
n!\left(2 n^{2}\right)^{n}
$$

- Stirling's formula says $n!\sim \sqrt{2 \pi n}(n / e)^{n}$.
- Hence

$$
\log _{2} \operatorname{det}\left(A^{G}\left(i_{11}, \ldots, i_{n n}\right)\right)=O\left(n \log _{2} n\right)
$$

bits are sufficient for representing the determinant.

- We skip the details about how to make sure that all intermediate results are of polynomial sizes.

An Intriguing Question ${ }^{\text {a }}$

- Is there an $\left(i_{11}, \ldots, i_{n n}\right)$ that will always give correct answers for the algorithm on p. 520?
- A theorem on p. 625 shows that such an $\left(i_{11}, \ldots, i_{n n}\right)$ exists!
- Whether it can be found efficiently is another matter.
- Once $\left(i_{11}, \ldots, i_{n n}\right)$ is available, the algorithm can be made deterministic.

[^3]
Randomization vs. Nondeterminism ${ }^{\text {a }}$

- What are the differences between randomized algorithms and nondeterministic algorithms?
- One can think of a randomized algorithm as a nondeterministic algorithm but with a probability associated with every guess/branch.
- So each computation path of a randomized algorithm has a probability associated with it.

[^4]
Monte Carlo Algorithms ${ }^{\text {a }}$

- The randomized bipartite perfect matching algorithm is called a Monte Carlo algorithm in the sense that
- If the algorithm finds that a matching exists, it is always correct (no false positives).
- If the algorithm answers in the negative, then it may make an error (false negatives).

[^5]
Monte Carlo Algorithms (continued)

- The algorithm makes a false negative with probability ≤ 0.5. $^{\mathrm{a}}$
- Note this probability refers to ${ }^{\text {b }}$ prob[algorithm answers "no" $\mid G$ has a perfect matching] not $\operatorname{prob}[G$ has a perfect matching \mid algorithm answers "no"].

[^6]
Monte Carlo Algorithms (concluded)

- This probability 0.5 is not over the space of all graphs or determinants, but over the algorithm's own coin flips.
- It holds for any bipartite graph.
- In contrast, to calculate $\operatorname{prob}[G$ has a perfect matching \mid algorithm answers "no"], we will need the distribution of G.
- But it is an empirical statement that is very hard to verify.

The Markov Inequality ${ }^{\text {a }}$

Lemma 64 Let x be a random variable taking nonnegative integer values. Then for any $k>0$,

$$
\operatorname{prob}[x \geq k E[x]] \leq 1 / k .
$$

- Let p_{i} denote the probability that $x=i$.

$$
\begin{aligned}
E[x] & =\sum_{i} i p_{i}=\sum_{i<k E[x]} i p_{i}+\sum_{i \geq k E[x]} i p_{i} \\
& \geq \sum_{i \geq k E[x]} i p_{i} \geq k E[x] \sum_{i \geq k E[x]} p_{i} \\
& \geq k E[x] \times \operatorname{prob}[x \geq k E[x]] .
\end{aligned}
$$

${ }^{\text {a }}$ Andrei Andreyevich Markov (1856-1922).

Andrei Andreyevich Markov (1856-1922)

An Application of Markov's Inequality

- Suppose algorithm C runs in expected time $T(n)$ and always gives the right answer.
- Consider an algorithm that runs C for time $k T(n)$ and rejects the input if C does not stop within the time bound.
- Here, we treat C as a black box without going into its internal code. ${ }^{\text {a }}$
- By Markov's inequality, this new algorithm runs in time $k T(n)$ and gives the wrong answer with probability $\leq 1 / k$.

[^7]
An Application of Markov's Inequality (concluded)

- By running this algorithm m times (the total running time is $m k T(n)$), we reduce the error probability to $\leq k^{-m}$. ${ }^{\text {a }}$
- Suppose, instead, we run the algorithm for the same running time $m k T(n)$ once and rejects the input if it does not stop within the time bound.
- By Markov's inequality, this new algorithm gives the wrong answer with probability $\leq 1 /(m k)$.
- This is much worse than the previous algorithm's error probability of $\leq k^{-m}$ for the same amount of time.

[^8]
FSAT for k-SAT Formulas (p. 496)

- Let $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a k-sAT formula.
- If ϕ is satisfiable, then return a satisfying truth assignment.
- Otherwise, return "no."
- We next propose a randomized algorithm for this problem.

A Random Walk Algorithm for ϕ in CNF Form

1: Start with an arbitrary truth assignment T;
2: for $i=1,2, \ldots, r$ do
3: \quad if $T \models \phi$ then
4: return " ϕ is satisfiable with T ";
5: else
6: \quad Let c be an unsatisfied clause in ϕ under T; \{All of its literals are false under T.\}
7: \quad Pick any x of these literals at random;
8: \quad Modify T to make x true;
9: end if
10: end for
11: return " ϕ is unsatisfiable";

3sAT vs. 2SAT Again

- Note that if ϕ is unsatisfiable, the algorithm will answer "unsatisfiable."
- The random walk algorithm needs expected exponential time for 3sat.
- In fact, it runs in expected $O\left((1.333 \cdots+\epsilon)^{n}\right)$ time with $r=3 n,{ }^{\mathrm{a}}$ much better than $O\left(2^{n}\right) .{ }^{\mathrm{b}}$
- We will show immediately that it works well for 2 Sat.
- The state of the art as of 2006 is expected $O\left(1.322^{n}\right)$ time for 3sat and expected $O\left(1.474^{n}\right)$ time for 4 Sat. ${ }^{\text {c }}$

[^9]
Random Walk Works for $2 \mathrm{SAT}^{\text {a }}$

Theorem 65 Suppose the random walk algorithm with $r=2 n^{2}$ is applied to any satisfiable 2SAT problem with n variables. Then a satisfying truth assignment will be discovered with probability at least 0.5.

- Let \hat{T} be a truth assignment such that $\hat{T} \models \phi$.
- Assume our starting T differs from \hat{T} in i values.
- Their Hamming distance is i.
- Recall T is arbitrary.

[^10]
The Proof

- Let $t(i)$ denote the expected number of repetitions of the flipping step ${ }^{\text {a }}$ until a satisfying truth assignment is found.
- It can be shown that $t(i)$ is finite.
- $t(0)=0$ because it means that $T=\hat{T}$ and hence $T \models \phi$.
- If $T \neq \hat{T}$ or any other satisfying truth assignment, then we need to flip the coin at least once.
- We flip a coin to pick among the 2 literals of a clause not satisfied by the present T.
- At least one of the 2 literals is true under \hat{T} because \hat{T} satisfies all clauses.
${ }^{\text {a }}$ That is, Statement 7.

The Proof (continued)

- So we have at least 0.5 chance of moving closer to \hat{T}.
- Thus

$$
t(i) \leq \frac{t(i-1)+t(i+1)}{2}+1
$$

for $0<i<n$.

- Inequality is used because, for example, T may differ from \hat{T} in both literals.
- It must also hold that

$$
t(n) \leq t(n-1)+1
$$

because at $i=n$, we can only decrease i.

The Proof (continued)

- Now, put the necessary relations together:

$$
\begin{align*}
t(0) & =0 \tag{10}\\
t(i) & \leq \frac{t(i-1)+t(i+1)}{2}+1, \quad 0<i<n \tag{11}\\
t(n) & \leq t(n-1)+1 \tag{12}
\end{align*}
$$

- Technically, this is a one-dimensional random walk with an absorbing barrier at $i=0$ and a reflecting barrier at $i=n$ (if we replace " \leq " with "="). ${ }^{\text {a }}$

[^11]
The Proof (continued)

- Add up the relations for $2 t(1), 2 t(2), 2 t(3), \ldots, 2 t(n-1), t(n)$ to obtain ${ }^{\text {a }}$

$$
\begin{array}{ll}
& 2 t(1)+2 t(2)+\cdots+2 t(n-1)+t(n) \\
\leq & t(0)+t(1)+2 t(2)+\cdots+2 t(n-2)+2 t(n-1)+t(n) \\
& +2(n-1)+1
\end{array}
$$

- Simplify it to yield

$$
\begin{equation*}
t(1) \leq 2 n-1 \tag{13}
\end{equation*}
$$

${ }^{\text {a }}$ Adding up the relations for $t(1), t(2), t(3), \ldots, t(n-1)$ will also work, thanks to Mr. Yen-Wu Ti (D91922010).

The Proof (continued)

- Add up the relations for $2 t(2), 2 t(3), \ldots, 2 t(n-1), t(n)$ to obtain

$$
\begin{array}{ll}
& 2 t(2)+\cdots+2 t(n-1)+t(n) \\
\leq & t(1)+t(2)+2 t(3)+\cdots+2 t(n-2)+2 t(n-1)+t(n) \\
& +2(n-2)+1
\end{array}
$$

- Simplify it to yield

$$
t(2) \leq t(1)+2 n-3 \leq 2 n-1+2 n-3=4 n-4
$$

by Eq. (13) on p. 541.

The Proof (continued)

- Continuing the process, we shall obtain

$$
t(i) \leq 2 i n-i^{2} .
$$

- The worst upper bound happens when $i=n$, in which case

$$
t(n) \leq n^{2}
$$

- We conclude that

$$
t(i) \leq t(n) \leq n^{2}
$$

for $0 \leq i \leq n$.

The Proof (concluded)

- So the expected number of steps is at most n^{2}.
- The algorithm picks $r=2 n^{2}$.
- This amounts to invoking the Markov inequality (p. 530) with $k=2$, resulting in a probability of 0.5 . $^{\text {a }}$
- The proof does not yield a polynomial bound for 3sat. ${ }^{\text {b }}$
${ }^{\text {a Recall p. } 532 .}$
${ }^{\mathrm{b}}$ Contributed by Mr. Cheng-Yu Lee (R95922035) on November 8, 2006.

Boosting the Performance

- We can pick $r=2 m n^{2}$ to have an error probability of

$$
\leq \frac{1}{2 m}
$$

by Markov's inequality.

- Alternatively, with the same running time, we can run the " $r=2 n^{2}$ " algorithm m times.
- The error probability is now reduced to

$$
\leq 2^{-m}
$$

[^0]: ${ }^{\text {a }}$ Contributed by Ms. Eva Ou (R93922132) on November 24, 2004.

[^1]: ${ }^{\text {a }}$ Rabin (1976); Solovay and Strassen (1977).
 b"Maximal" (a local maximum) not "maximum" (a global maximum).

[^2]: ${ }^{\text {a }}$ Thanks to a lively class discussion on May 1, 2008.
 ${ }^{\mathrm{b}}$ Numerical Recipes in C (1988), "statistics is not a branch of mathematics!"

[^3]: a Thanks to a lively class discussion on November 24, 2004.

[^4]: ${ }^{\text {a }}$ Contributed by Mr. Olivier Valery (D01922033) and Mr. Hasan Alhasan (D01922034) on November 27, 2012.

[^5]: ${ }^{a}$ Metropolis and Ulam (1949).

[^6]: ${ }^{\text {a }}$ Equivalently, among the coin flip sequences, at most half of them lead to the wrong answer.
 ${ }^{\text {b }}$ In general, prob[algorithm answers "no" | input is a "yes" instance].

[^7]: ${ }^{\text {a }}$ Contributed by Mr. Hsien-Chun Huang (R03922103) on December 2, 2014.

[^8]: ${ }^{\text {a }}$ With the same input. Thanks to a question on December 7, 2010.

[^9]: ${ }^{\text {a }}$ Use this setting per run of the algorithm.
 ${ }^{\text {b }}$ Schöning (1999).
 ${ }^{\text {c }}$ Kwama and Tamaki (2004); Rolf (2006).

[^10]: ${ }^{\text {a }}$ Papadimitriou (1991).

[^11]: ${ }^{\text {a }}$ The proof in the textbook does exactly that. But a student pointed out difficulties with this proof technique on December 8, 2004. So our proof here uses the original inequalities.

