MIN CUT and MAX CUT

- A cut in an undirected graph $G=(V, E)$ is a partition of the nodes into two nonempty sets S and $V-S$.
- The size of a cut $(S, V-S)$ is the number of edges between S and $V-S$.
- min cut $\in P$ by the maxflow algorithm. ${ }^{\text {a }}$
- mAX CUT asks if there is a cut of size at least K.
- K is part of the input.

[^0]

MIN CUT and MAX CUT (concluded)

- maX CUT has applications in circuit layout.
- The minimum area of a VLSI layout of a graph is not less than the square of its maximum cut size. ${ }^{\text {a }}$

[^1]
MAX CUT Is NP-Complete ${ }^{\text {a }}$

- We will reduce naEsAt to max cut.
- Given a 3sat formula ϕ with m clauses, we shall construct a graph $G=(V, E)$ and a goal K.
- Furthermore, there is a cut of size at least K if and only if ϕ is NAE-satisfiable.
- Our graph will have multiple edges between two nodes.
- Each such edge contributes one to the cut if its nodes are separated.

[^2]
The Proof

- Suppose ϕ 's m clauses are $C_{1}, C_{2}, \ldots, C_{m}$.
- The boolean variables are $x_{1}, x_{2}, \ldots, x_{n}$.
- G has $2 n$ nodes: $x_{1}, x_{2}, \ldots, x_{n}, \neg x_{1}, \neg x_{2}, \ldots, \neg x_{n}$.
- Each clause with 3 distinct literals makes a triangle in G.
- For each clause with two identical literals, there are two parallel edges between the two distinct literals.

The Proof (continued)

- No need to consider clauses with one literal (why?).
- No need to consider clauses containing two opposite literals x_{i} and $\neg x_{i}$ (why?).
- For each variable x_{i}, add n_{i} copies of edge $\left[x_{i}, \neg x_{i}\right]$, where n_{i} is the number of occurrences of x_{i} and $\neg x_{i}$ in ϕ.
- Note that

$$
\sum_{i=1}^{n} n_{i}=3 m
$$

- The summation is simply the total number of literals.

The Proof (continued)

- Set $K=5 m$.
- Suppose there is a cut $(S, V-S)$ of size $5 m$ or more.
- A clause (a triangle or two parallel edges) contributes at most 2 to a cut no matter how you split it.
- Suppose some x_{i} and $\neg x_{i}$ are on the same side of the cut.
- They together contribute (at most) $2 n_{i}$ edges to the cut.
- They appear in (at most) n_{i} different clauses.
- A clause contributes at most 2 to a cut.

The Proof (continued)

- Either x_{i} or $\neg x_{i}$ contributes at most n_{i} to the cut by the pigeonhole principle.
- Changing the side of that literal does not decrease the size of the cut.
- Hence we assume variables are separated from their negations.
- The total number of edges in the cut that join opposite literals x_{i} and $\neg x_{i}$ is $\sum_{i=1}^{n} n_{i}$.
- But $\sum_{i=1}^{n} n_{i}=3 m$.

The Proof (concluded)

- The remaining $K-3 m \geq 2 m$ edges in the cut must come from the m triangles or parallel edges that correspond to the clauses.
- Each can contribute at most 2 to the cut. ${ }^{\text {a }}$
- So all are split.
- A split clause means at least one of its literals is true and at least one false.
- The other direction is left as an exercise.

[^3]This Cut Does Not Meet the Goal $K=5 \times 3=15$

- $\left(x_{1} \vee x_{2} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{3} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)$.
- The cut size is $13<15$.

This Cut Meets the Goal $K=5 \times 3=15$

- $\left(x_{1} \vee x_{2} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{3} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)$.
- The cut size is now 15 .

Remarks

- We had proved that max cut is NP-complete for multigraphs.
- How about proving the same thing for simple graphs? ${ }^{\text {a }}$
- How to modify the proof to reduce 4 SAT to MAX CUT? ${ }^{\text {b }}$
- All NP-complete problems are mutually reducible by definition. ${ }^{\text {c }}$
- So they are equally hard in this sense. ${ }^{\text {d }}$

[^4]
MAX BISECTION

- max cut becomes max bisection if we require that $|S|=|V-S|$.
- It has many applications, especially in VLSI layout.

MAX BISECTION Is NP-Complete

- We shall reduce the more general max cut to max BISECTION.
- Add $|V|=n$ isolated nodes to G to yield G^{\prime}.
- G^{\prime} has $2 n$ nodes.
- $G^{\prime \prime}$ s goal K is identical to G 's
- As the new nodes have no edges, they contribute 0 to the cut.
- This completes the reduction.

The Proof (concluded)

- Every cut $(S, V-S)$ of $G=(V, E)$ can be made into a bisection by appropriately allocating the new nodes between S and $V-S$.
- Hence each cut of G can be made a cut of G^{\prime} of the same size, and vice versa.

BISECTION WIDTH

- BISECTION WIDTH is like MAX BISECTION except that it asks if there is a bisection of size at most K (sort of MIN BISECTION).
- Unlike min cut, Bisection width is NP-complete.
- We reduce max bisection to Bisection width.
- Given a graph $G=(V, E)$, where $|V|$ is even, we generate the complement of G.
- Given a goal of K, we generate a goal of $n^{2}-K$. ${ }^{\text {a }}$
${ }^{\mathrm{a}}|V|=2 n$.

The Proof (concluded)

- To show the reduction works, simply notice the following easily verifiable claims.
- A graph $G=(V, E)$, where $|V|=2 n$, has a bisection of size K if and only if the complement ${ }^{\text {a }}$ of G has a bisection of size $n^{2}-K$.
- So G has a bisection of size $\geq K$ if and only if its complement has a bisection of size $\leq n^{2}-K$.

[^5]
HAMiltonian Path Is NP-Complete ${ }^{\text {a }}$

Theorem 45 Given an undirected graph, the question whether it has a Hamiltonian path is NP-complete.

[^6]
A Hamiltonian Path at IKEA, Covina, California?

TSP (D) Is NP-Complete

Corollary 46 TSP (D) is NP-complete.

- Consider a graph G with n nodes.
- Create a weighted complete graph G^{\prime} with the same nodes as G.
- Set $d_{i j}=1$ on G^{\prime} if $[i, j] \in G$ and $d_{i j}=2$ on G^{\prime} if $[i, j] \notin G$.
- Note that G^{\prime} is a complete graph.
- Set the budget $B=n+1$.
- This completes the reduction.

TSP (D) Is NP-Complete (continued)

- Suppose G^{\prime} has a tour of distance at most $n+1 .{ }^{\text {a }}$
- Then that tour on G^{\prime} must contain at most one edge with weight 2.
- If a tour on G^{\prime} contains one edge with weight 2 , remove that edge to arrive at a Hamiltonian path for G.
- Suppose a tour on G^{\prime} contains no edge with weight 2 .
- Remove any edge to arrive at a Hamiltonian path for G.

[^7]

- On the other hand, suppose G has a Hamiltonian path.
- There is a tour on G^{\prime} containing at most one edge with weight 2.
- Start with a Hamiltonian path and then close the loop.
- The total cost is then at most $(n-1)+2=n+1=B$.
- We conclude that there is a tour of length B or less on G^{\prime} if and only if G has a Hamiltonian path.

Random TSP

- Suppose each distance $d_{i j}$ is picked uniformly and independently from the interval $[0,1]$.
- It is known that the total distance of the shortest tour has a mean value of $\beta \sqrt{n}$ for some positive β.
- In fact, the total distance of the shortest tour deviates from the mean by more than t with probability at most $e^{-t^{2} /(4 n)}!^{\mathrm{a}}$

[^8]
Graph Coloring

- k-COLORING: Can the nodes of a graph be colored with $\leq k$ colors such that no two adjacent nodes have the same color? ${ }^{a}$
- 2-coloring is in P (why?).
- But 3-coloring is NP-complete (see next page).
- k-COLORING is NP-complete for $k \geq 3$ (why?).
- EXACT- k-COLORING asks if the nodes of a graph can be colored using exactly k colors.
- It remains NP-complete for $k \geq 3$ (why?).
${ }^{\mathrm{a}} k$ is not part of the input; k is part of the problem statement.

3-COLORING Is NP-Complete ${ }^{\text {a }}$

- We will reduce naesat to 3-coloring.
- We are given a set of clauses $C_{1}, C_{2}, \ldots, C_{m}$ each with 3 literals.
- The boolean variables are $x_{1}, x_{2}, \ldots, x_{n}$.
- We shall construct a graph G that can be colored with colors $\{0,1,2\}$ if and only if all the clauses can be NAE-satisfied.

[^9]
The Proof (continued)

- Every variable x_{i} is involved in a triangle $\left[a, x_{i}, \neg x_{i}\right]$ with a common node a.
- Each clause $C_{i}=\left(c_{i 1} \vee c_{i 2} \vee c_{i 3}\right)$ is also represented by a triangle

$$
\left[c_{i 1}, c_{i 2}, c_{i 3}\right]
$$

- Node $c_{i j}$ and a node in an a-triangle $\left[a, x_{k}, \neg x_{k}\right.$] with the same label represent distinct nodes.
- There is an edge between $c_{i j}$ and the node that represents the j th literal of C_{i}. ${ }^{\text {a }}$

[^10]Construction for $\cdots \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge \cdots$

The Proof (continued)

Suppose the graph is 3-colorable.

- Assume without loss of generality that node a takes the color 2.
- A triangle must use up all 3 colors.
- As a result, one of x_{i} and $\neg x_{i}$ must take the color 0 and the other 1.

The Proof (continued)

- Treat 1 as true and 0 as false. ${ }^{\text {a }}$
- We are dealing with the a-triangles here, not the clause triangles yet.
- The resulting truth assignment is clearly contradiction free.
- As each clause triangle contains one color 1 and one color 0 , the clauses are NAE-satisfied.

[^11]
The Proof (continued)

Suppose the clauses are NAE-satisfiable.

- Color node a with color 2 .
- Color the nodes representing literals by their truth values (color 0 for false and color 1 for true).
- We are dealing with the a-triangles here, not the clause triangles.

The Proof (continued)

- For each clause triangle:
- Pick any two literals with opposite truth values. ${ }^{\text {a }}$
- Color the corresponding nodes with 0 if the literal is true and 1 if it is false.
- Color the remaining node with color 2.

[^12]
The Proof (concluded)

- The coloring is legitimate.
- If literal w of a clause triangle has color 2 , then its color will never be an issue.
- If literal w of a clause triangle has color 1 , then it must be connected up to literal w with color 0 .
- If literal w of a clause triangle has color 0 , then it must be connected up to literal w with color 1 .

Algorithms for 3-coloring and the Chromatic Number $\chi(G)$

- Assume G is 3 -colorable.
- There is a classic algorithm that finds a 3 -coloring in time $O\left(3^{n / 3}\right)=1.4422^{n}$. ${ }^{\text {a }}$
- It can be improved to $O\left(1.3289^{n}\right)$. ${ }^{\text {b }}$

[^13]
Algorithms for 3-coloring and the Chromatic Number $\chi(G)$ (concluded)

- The chromatic number $\chi(G)$ is the smallest number of colors needed to color a graph G.
- There is an algorithm to find $\chi(G)$ in time $O\left((4 / 3)^{n / 3}\right)=2.4422^{n} .{ }^{\text {a }}$
- It can be improved to $O\left(\left(4 / 3+3^{4 / 3} / 4\right)^{n}\right)=O\left(2.4150^{n}\right)^{\mathrm{b}}$ and $2^{n} n^{O(1)}$. .
- Computing $\chi(G)$ cannot be easier than 3-coloring. ${ }^{\text {d }}$

```
a}\mathrm{ Lawler (1976).
b}\mathrm{ Eppstein (2003).
' }\mp@subsup{}{}{c}\mathrm{ Koivisto (2006).
d}\mathrm{ Contributed by Mr. Ching-Hua Yu (D00921025) on October 30, 2012.
```


TRIPARTITE MATCHING

- We are given three sets B, G, and H, each containing n elements.
- Let $T \subseteq B \times G \times H$ be a ternary relation.
- tripartite matching asks if there is a set of n triples in T, none of which has a component in common.
- Each element in B is matched to a different element in G and different element in H.

Theorem 47 (Karp (1972)) tripartite matching is NP-complete.

Related Problems

- We are given a family $F=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ of subsets of a finite set U and a budget B.
- SET COVERING asks if there exists a set of B sets in F whose union is U.
- SET PACKING asks if there are B disjoint sets in F.
- Assume $|U|=3 m$ for some $m \in \mathbb{N}$ and $\left|S_{i}\right|=3$ for all i.
- EXACt COVER By 3 -SETs asks if there are m sets in F that are disjoint (so have U as their union).

Related Problems (concluded)

Corollary 48 (Karp (1972)) SET COVERING, SET packing, and Exact cover by 3 -sets are all NP-complete.

- Set covering is used to prove that the influence maximization problem in social networks is NP-complete. ${ }^{\text {a }}$
${ }^{\text {a }}$ Kempe, Kleinberg, and Tardos (2003).

KNAPSACK

- There is a set of n items.
- Item i has value $v_{i} \in \mathbb{Z}^{+}$and weight $w_{i} \in \mathbb{Z}^{+}$.
- We are given $K \in \mathbb{Z}^{+}$and $W \in \mathbb{Z}^{+}$.
- KNAPSACK asks if there exists a subset

$$
I \subseteq\{1,2, \ldots, n\}
$$

such that $\sum_{i \in I} w_{i} \leq W$ and $\sum_{i \in I} v_{i} \geq K$.

- We want to achieve the maximum satisfaction within the budget.

KNAPSACK Is NP-Complete ${ }^{\text {a }}$

- Knapsack \in NP: Guess an I and check the constraints.
- We shall reduce EXACT COVER BY 3-SETS to KNAPSACK, in which $v_{i}=w_{i}$ for all i and $K=W$.
- The simplified KnAPSACK now asks if a subset of $v_{1}, v_{2}, \ldots, v_{n}$ adds up to exactly $K .{ }^{\text {b }}$
- Picture yourself as a radio DJ.
${ }^{\text {a }}$ Karp (1972).
${ }^{\mathrm{b}}$ This problem is called SUBSET SUM.

The Proof (continued)

- The primary differences between the two problems are: ${ }^{a}$
- Sets vs. numbers.
- Union vs. addition.
- We are given a family $F=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ of size-3 subsets of $U=\{1,2, \ldots, 3 m\}$.
- EXACT COVER BY 3-SETS asks if there are m disjoint sets in F that cover the set U.

[^14]
The Proof (continued)

- Think of a set as a bit vector in $\{0,1\}^{3 m}$.
- Assume $m=3$.
-110010000 means the set $\{1,2,5\}$.
- 001100010 means the set $\{3,4,8\}$.
- Assume there are $n=5$ size- 3 subsets in F.
- Our goal is

$$
\overbrace{11 \cdots 1}^{3 m} .
$$

The Proof (continued)

- A bit vector can also be seen as a binary number.
- Set union resembles addition:

001100010
$+\quad 110010000$
111110010

which denotes the set $\{1,2,3,4,5,8\}$, as desired.

The Proof (continued)

- Trouble occurs when there is carry:

010000000
$+\quad 010000000$
100000000

which denotes the wrong set $\{1\}$, not the correct $\{2\}$.

The Proof (continued)

- Or consider

001100010
$+\quad 001110000$
011010010

which denotes the set $\{2,3,5,8\}$, not the correct $\{3,4,5,8\}$. ${ }^{\text {a }}$
${ }^{\text {a Corrected by Mr. Chihwei Lin (D97922003) on January 21, } 2010 . ~}$

The Proof (continued)

- Carry may also lead to a situation where we obtain our solution $11 \cdots 1$ with more than m sets in F.
- For example,

000100010
001110000
101100000
$+\quad 000001101$
111111111

- But the correct answer, $\{1,3,4,5,6,7,8,9\}$, is not an exact cover.

The Proof (continued)

- And it uses 4 sets instead of the required $m=3 .{ }^{\text {a }}$
- To fix this problem, we enlarge the base just enough so that there are no carries. ${ }^{\text {b }}$
- Because there are n vectors in total, we change the base from 2 to $n+1$.

[^15]
The Proof (continued)

- Set v_{i} to be the integer corresponding to the bit vector encoding S_{i} in base $n+1$:

$$
\begin{equation*}
v_{i}=\sum_{j \in S_{i}} 1 \times(n+1)^{3 m-j} \tag{3}
\end{equation*}
$$

- Set

$$
K=\sum_{j=0}^{3 m-1} 1 \times(n+1)^{j}=\overbrace{11 \cdots 1}^{3 m} \quad(\text { base } n+1) .
$$

- Now in base $n+1$, if there is a set S such that $\sum_{i \in S} v_{i}=\overbrace{11 \cdots 1}^{3 m}$, then every position must be contributed by exactly one v_{i} and $|S|=m$.

The Proof (continued)

- For example, the case on p. 423 becomes

000100010
001110000
101100000
$+000001101$
102311111
in base $n+1=6$.

- As desired, it no longer meets the goal.

The Proof (continued)

- Suppose F admits an exact cover, say $\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$.
- Then picking $I=\{1,2, \ldots, m\}$ clearly results in

$$
v_{1}+v_{2}+\cdots+v_{m}=\overbrace{11 \cdots 1}^{3 m} .
$$

- It is important to note that the meaning of addition (+) is independent of the base. ${ }^{\text {a }}$
- It is just regular addition.
- But an S_{i} may give rise to different integers v_{i} in Eq. (3) on p. 425 under different bases.
${ }^{\text {a }}$ Contributed by Mr. Kuan-Yu Chen (R92922047) on November 3, 2004.

The Proof (concluded)

- On the other hand, suppose there exists an I such that

$$
\sum_{i \in I} v_{i}=\overbrace{11 \cdots 1}^{3 m}
$$

in base $n+1$.

- The no-carry property implies that $|I|=m$ and

$$
\left\{S_{i}: i \in I\right\}
$$

is an exact cover.

An Example

- Let $m=3, U=\{1,2,3,4,5,6,7,8,9\}$, and

$$
\begin{aligned}
& S_{1}=\{1,3,4\}, \\
& S_{2}=\{2,3,4\}, \\
& S_{3}=\{2,5,6\}, \\
& S_{4}=\{6,7,8\}, \\
& S_{5}=\{7,8,9\} .
\end{aligned}
$$

- Note that $n=5$, as there are $5 S_{i}$'s.

An Example (continued)

- Our reduction produces

$$
\begin{aligned}
& K=\sum_{j=0}^{3 \times 3-1} 6^{j}=\overbrace{11 \cdots 1_{6}}^{3 \times 3}=2015539_{10} \\
& v_{1}=101100000=1734048 \\
& v_{2}=011100000=334368 \\
& v_{3}=010011000=281448 \\
& v_{4}=000001110=258 \\
& v_{5}=000000111=43
\end{aligned}
$$

An Example (concluded)

- Note $v_{1}+v_{3}+v_{5}=K$ because

101100000
010011000
$+\quad 000000111$
111111111

- Indeed,

$$
S_{1} \cup S_{3} \cup S_{5}=\{1,2,3,4,5,6,7,8,9\},
$$

an exact cover by 3 -sets.

BIN PACKING

- We are given N positive integers $a_{1}, a_{2}, \ldots, a_{N}$, an integer C (the capacity), and an integer B (the number of bins).
- BIN PACKING asks if these numbers can be partitioned into B subsets, each of which has total sum at most C.
- Think of packing bags at the check-out counter.

Theorem 49 BIN PACKING is NP-complete.

BIN PACKING (concluded)

- But suppose $a_{1}, a_{2}, \ldots, a_{N}$ are randomly distributed between 0 and 1 .
- Let B be the smallest number of unit-capacity bins capable of holding them.
- Then B can deviate from its average by more than t with probability at most $2 e^{-2 t^{2} / N}$. a
${ }^{a}$ Dubhashi and Panconesi (2012).

[^0]: ${ }^{\text {a }}$ In time $O(|V| \cdot|E|)$ by Orlin (2012).

[^1]: ${ }^{\text {a Raspaud, Sýkora, and Vrťo (1995); Mak and Wong (2000). }}$

[^2]: ${ }^{\text {a }}$ Karp (1972); Garey, Johnson, and Stockmeyer (1976).

[^3]: ${ }^{\text {a }}$ So $K=5 m$.

[^4]: ${ }^{\text {a }}$ Contributed by Mr. Tai-Dai Chou (J93922005) on June 2, 2005.
 ${ }^{\mathrm{b}}$ Contributed by Mr. Chien-Lin Chen (J94922015) on June 8, 2006.
 ${ }^{\text {c }}$ Contributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.
 ${ }^{\mathrm{d}}$ Contributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.

[^5]: ${ }^{\text {a Recall p. }} 374$.

[^6]: ${ }^{a}$ Karp (1972).

[^7]: ${ }^{\mathrm{a}}$ A tour is a cycle, not a path.

[^8]: ${ }^{\text {a }}$ Dubhashi and Panconesi (2012).

[^9]: ${ }^{a}$ Karp (1972).

[^10]: ${ }^{\text {a }}$ Alternative proof: There is an edge between $\neg c_{i j}$ and the node that represents the j th literal of C_{i}. Contributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.

[^11]: ${ }^{\text {a }}$ The opposite also works.

[^12]: ${ }^{\text {a }}$ Break ties arbitrarily.

[^13]: ${ }^{\text {a }}$ Lawler (1976).
 ${ }^{\text {b }}$ Beigel and Eppstein (2000).

[^14]: ${ }^{\text {a }}$ Thanks to a lively class discussion on November 16, 2010.

[^15]: ${ }^{\text {a }}$ Thanks to a lively class discussion on November 20, 2002.
 ${ }^{\mathrm{b}}$ You cannot map \cup to \vee because KNAPSACK requires + not \vee !

