Theory of Computation

Midterm Examination on November 10, 2015
Fall Semester, 2015
Problem 1 (20 points) Prove that the halting problem H is complete for RE (the set of recursively enumerable languages). (Recall that a problem A is complete for RE if every language in RE can be reduced to A.)

Problem 2 (20 points) Let $P(x, y)$ be a binary predicate, and let Q be the unary predicate defined by $Q(a) \Leftrightarrow \neg P(a, a)$. Show that Q is distinct from all the predicates P_{b}, defined by $P_{b}(a) \Leftrightarrow P(a, b)$.

Problem 3 (20 points) If the following language L is decidable, please give an algorithm; otherwise, prove that it is undecidable by reduction:
$L=\{M \mid M$ is a Turing machine and there exists an input whose length is less than $|M|$ on which M halts $\}$.

Problem 4 (20 points)

1. (10 points) Give the definitions of
(a) The complement of a complexity class.
(b) Being closed under complements.
2. (10 points) Show that if NP $\neq \mathrm{coNP}$, then $\mathrm{P} \neq \mathrm{NP}$. (Half of the grade will be deducted if any of (a) and (b) above is wrongly answered.)

Problem 5 (20 points) Recall that NL $=$ NSPACE ($\log n$) and REAChability \in NL. Prove that reachability is NL-complete.

