Nondeterministic and Deterministic Space

• By Theorem 6 (p. 110),

$$NTIME(f(n)) \subseteq TIME(c^{f(n)}),$$

an exponential gap.

- There is no proof yet that the exponential gap is inherent.
- How about NSPACE vs. SPACE?
- Surprisingly, the relation is only quadratic—a polynomial—by Savitch's theorem.

Savitch's Theorem

Theorem 27 (Savitch (1970))

REACHABILITY $\in SPACE(\log^2 n)$.

- Let G(V, E) be a graph with n nodes.
- For $i \geq 0$, let

mean there is a path from node x to node y of length at most 2^i .

• There is a path from x to y if and only if

$$PATH(x, y, \lceil \log n \rceil)$$

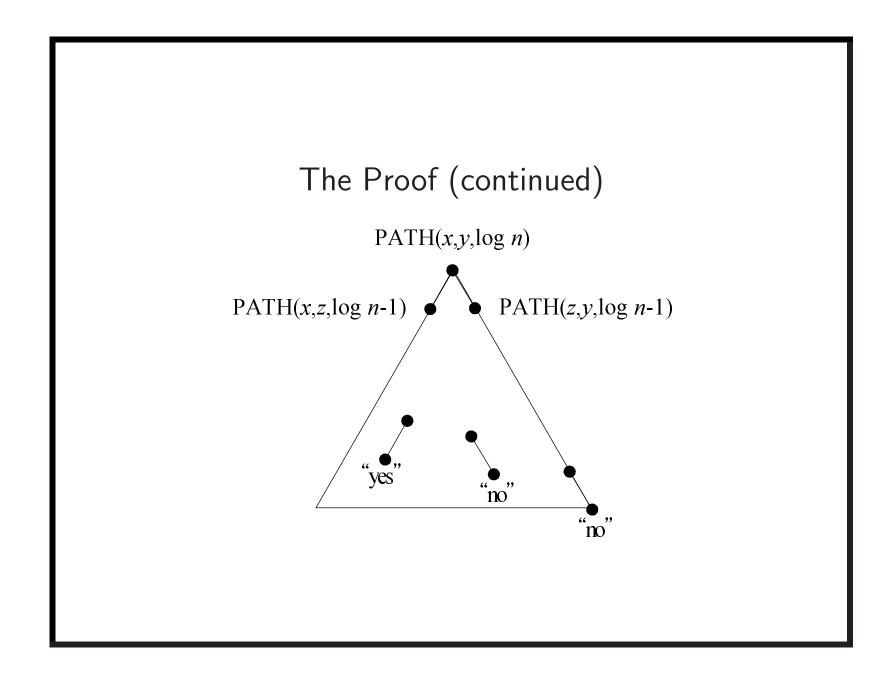
holds.

The Proof (continued)

- For i > 0, PATH(x, y, i) if and only if there exists a z such that PATH(x, z, i 1) and PATH(z, y, i 1).
- For PATH(x, y, 0), check the input graph or if x = y.
- Compute PATH $(x, y, \lceil \log n \rceil)$ with a depth-first search on a graph with nodes (x, y, z, i)s (see next page).^a
- Like stacks in recursive calls, we keep only the current path of (x, y, i)s.
- The space requirement is proportional to the depth of the tree ($\lceil \log n \rceil$) times the size of the items stored at each node.

^aContributed by Mr. Chuan-Yao Tan on October 11, 2011.

```
The Proof (continued): Algorithm for PATH(x, y, i)
1: if i = 0 then
   if x = y or (x, y) \in E then
   return true;
   else
   return false;
   end if
7: else
     for z = 1, 2, ..., n do
   if PATH(x, z, i - 1) and PATH(z, y, i - 1) then
9:
         return true;
10:
   end if
11:
   end for
12:
     return false;
13:
14: end if
```



The Proof (concluded)

- Depth is $\lceil \log n \rceil$, and each node (x, y, z, i) needs space $O(\log n)$.
- The total space is $O(\log^2 n)$.

The Relation between Nondeterministic and Deterministic Space Is Only Quadratic

Corollary 28 Let $f(n) \ge \log n$ be proper. Then

$$NSPACE(f(n)) \subseteq SPACE(f^2(n)).$$

- Apply Savitch's proof to the configuration graph of the NTM on its input.
- From p. 244, the configuration graph has $O(c^{f(n)})$ nodes; hence each node takes space O(f(n)).
- But if we construct *explicitly* the whole graph before applying Savitch's theorem, we get $O(c^{f(n)})$ space!

The Proof (continued)

- The way out is *not* to generate the graph at all.
- Instead, keep the graph implicit.
- We checked node connectedness only when i = 0 on p. 254, by examining the input graph G.
- Now, given configurations x and y, we go over the Turing machine's program to determine if there is an instruction that can turn x into y in one step.^a

^aThanks to a lively class discussion on October 15, 2003.

The Proof (concluded)

- The z variable in the algorithm on p. 254 simply runs through all possible valid configurations.
 - Let $z = 0, 1, \dots, O(c^{f(n)})$.
 - Make sure z is a valid configuration before using it.^a
- Each z has length O(f(n)).
- So each node needs space O(f(n)).
- The depth of the recursive call on p. 254 is $O(\log c^{f(n)})$, which is O(f(n)).
- The total space is therefore $O(f^2(n))$.

^aThanks to a lively class discussion on October 13, 2004.

Implications of Savitch's Theorem

- PSPACE = NPSPACE.
- Nondeterminism is less powerful with respect to space.
- Nondeterminism may be very powerful with respect to time as it is not known if P = NP.

Nondeterministic Space Is Closed under Complement

- Closure under complement is trivially true for deterministic complexity classes (p. 229).
- It is known that^a

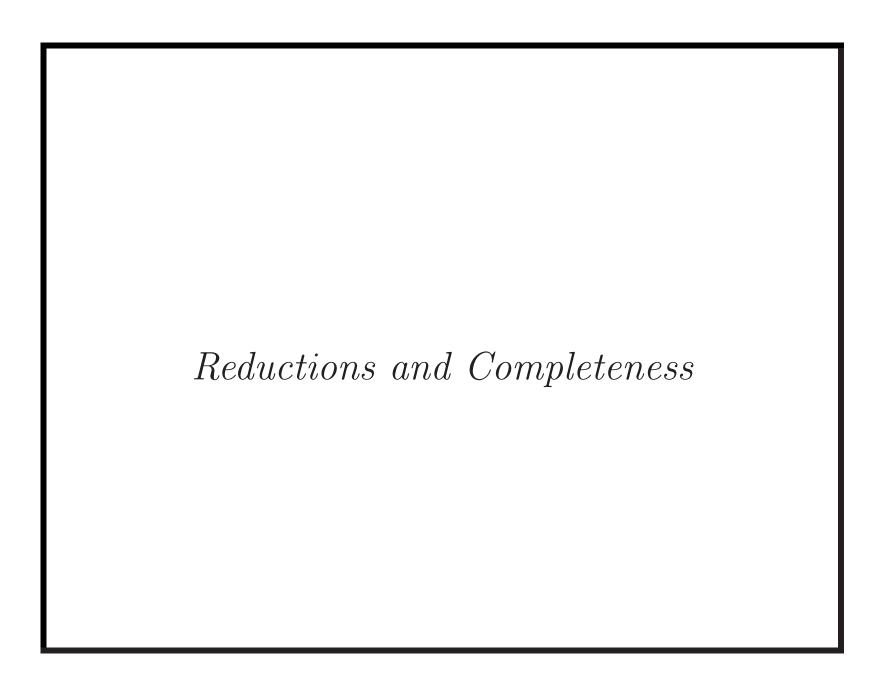
$$coNSPACE(f(n)) = NSPACE(f(n)).$$
 (2)

• So

$$coNL = NL.$$

• But it is not known whether coNP = NP.

^aSzelepscényi (1987); Immerman (1988).



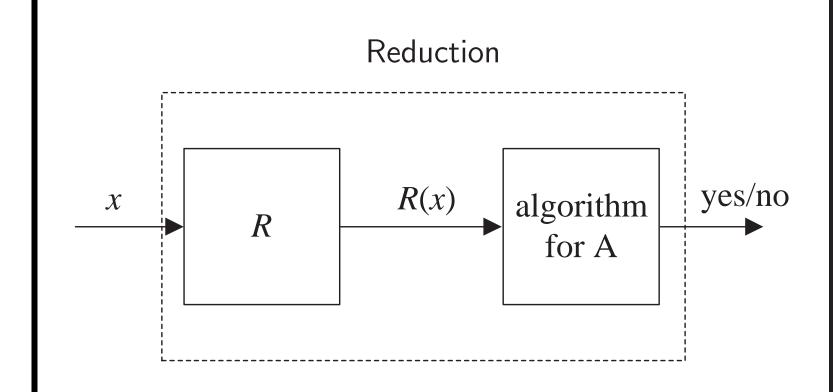
It is unworthy of excellent men to lose hours like slaves in the labor of computation. — Gottfried Wilhelm von Leibniz (1646–1716)

Degrees of Difficulty

- When is a problem more difficult than another?
- B reduces to A if:
 - There is a transformation R which for every input x of B yields an input R(x) of A.^a
 - The answer to x for B is the same as the answer to R(x) for A.
 - -R is easy to compute.
- We say problem A is at least as hard as^b problem B if B reduces to A.

^aSee also p. 160.

^bOr simply "harder than" for brevity.



Solving problem B by calling the algorithm for problem A once and without further processing its answer.^a

^aMore general reductions are possible, such as the Turing reduction (1939) and the Cook reduction (1971).

Degrees of Difficulty (concluded)

- This makes intuitive sense: If A is able to solve your problem B after only a little bit of work of R, then A must be at least as hard.
 - If A is easy to solve, it combined with R (which is also easy) would make B easy to solve, too.^a
 - So if B is hard to solve, A must be hard (if not harder), too!

^aThanks to a lively class discussion on October 13, 2009.

Comments^a

- Suppose B reduces to A via a transformation R.
- The input x is an instance of B.
- The output R(x) is an instance of A.
- R(x) may not span all possible instances of A.^c
 - Some instances of A may never appear in the range of R.
- But x must be a general instance for B.

^aContributed by Mr. Ming-Feng Tsai (D92922003) on October 29, 2003.

^bSometimes, we say "B can be reduced to A."

 $^{^{}c}R(x)$ may not be onto; Mr. Alexandr Simak (D98922040) on October 13, 2009.

Is "Reduction" a Confusing Choice of Word?^a

- If B reduces to A, doesn't that intuitively make A smaller and simpler?
- But our definition means just the opposite.
- Our definition says in this case B is a special case of A.^b
- Hence A is harder.

^aMoore and Mertens (2011).

^bSee also p. 163.

Reduction between Languages

- Language L_1 is **reducible to** L_2 if there is a function R computable by a deterministic TM in space $O(\log n)$.
- Furthermore, for all inputs $x, x \in L_1$ if and only if $R(x) \in L_2$.
- R is said to be a (Karp) reduction from L_1 to L_2 .

Reduction between Languages (concluded)

- Note that by Theorem 26 (p. 241), R runs in polynomial time.
 - In most cases, a polynomial-time R suffices for proofs.^a
- Suppose R is a reduction from L_1 to L_2 .
- Then solving " $R(x) \in L_2$?" is an algorithm for solving " $x \in L_1$?" b

 $^{^{\}mathrm{a}}$ In fact, unless stated otherwise, we will only require that the reduction R run in polynomial time.

^bOf course, it may not be an optimal one.

A Paradox?

- Degree of difficulty is not defined in terms of absolute complexity.
- So a language $B \in TIME(n^{99})$ may be "easier" than a language $A \in TIME(n^3)$.
 - Again, this happens when B is reducible to A.
- But isn't this a contradiction if the best algorithm for B requires n^{99} steps?
- That is, how can a problem requiring n^{99} steps be reducible to a problem solvable in n^3 steps?

Paradox Resolved

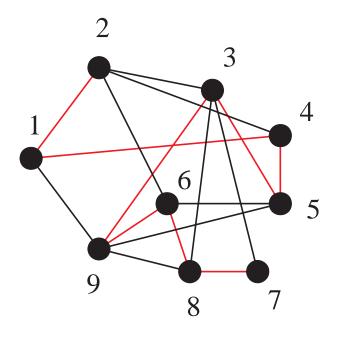
- The so-called contradiction is the result of flawed logic.
- Suppose we solve the problem " $x \in B$?" via " $R(x) \in A$?"
- We must consider the time spent by R(x) and its length |R(x)|:
 - Because R(x) (not x) is solved by A.

HAMILTONIAN PATH

- A **Hamiltonian path** of a graph is a path that visits every node of the graph exactly once.
- Suppose graph G has n nodes: $1, 2, \ldots, n$.
- A Hamiltonian path can be expressed as a permutation π of $\{1, 2, ..., n\}$ such that
 - $-\pi(i)=j$ means the *i*th position is occupied by node *j*.
 - $-(\pi(i), \pi(i+1)) \in G \text{ for } i = 1, 2, \dots, n-1.$
- HAMILTONIAN PATH asks if a graph has a Hamiltonian path.

Reduction of HAMILTONIAN PATH to SAT

- Given a graph G, we shall construct a CNF R(G) such that R(G) is satisfiable iff G has a Hamiltonian path.
- R(G) has n^2 boolean variables x_{ij} , $1 \le i, j \le n$.
- x_{ij} means the *i*th position in the Hamiltonian path is occupied by node *j*.
- Our reduction will produce clauses.



$$x_{12} = x_{21} = x_{34} = x_{45} = x_{53} = x_{69} = x_{76} = x_{88} = x_{97} = 1;$$

 $\pi(1) = 2, \pi(2) = 1, \pi(3) = 4, \pi(4) = 5, \pi(5) = 3, \pi(6) = 9, \pi(7) = 6, \pi(8) = 8, \pi(9) = 7.$

The Clauses of ${\cal R}(G)$ and Their Intended Meanings

- 1. Each node j must appear in the path.
 - $x_{1j} \vee x_{2j} \vee \cdots \vee x_{nj}$ for each j.
- 2. No node j appears twice in the path.
 - $\neg x_{ij} \vee \neg x_{kj} (\equiv \neg (x_{ij} \wedge x_{kj}))$ for all i, j, k with $i \neq k$.
- 3. Every position i on the path must be occupied.
 - $x_{i1} \vee x_{i2} \vee \cdots \vee x_{in}$ for each i.
- 4. No two nodes j and k occupy the same position in the path.
 - $\neg x_{ij} \lor \neg x_{ik} (\equiv \neg (x_{ij} \land x_{ik}))$ for all i, j, k with $j \neq k$.
- 5. Nonadjacent nodes i and j cannot be adjacent in the path.
 - $\neg x_{ki} \lor \neg x_{k+1,j}$ for all $(i,j) \not\in G$ and $k=1,2,\ldots,n-1$.

The Proof

- R(G) contains $O(n^3)$ clauses.
- R(G) can be computed efficiently (simple exercise).
- Suppose $T \models R(G)$.
- From the 1st and 2nd types of clauses, for each node j there is a unique position i such that $T \models x_{ij}$.
- From the 3rd and 4th types of clauses, for each position i there is a unique node j such that $T \models x_{ij}$.
- So there is a permutation π of the nodes such that $\pi(i) = j$ if and only if $T \models x_{ij}$.

The Proof (concluded)

- The 5th type of clauses furthermore guarantee that $(\pi(1), \pi(2), \dots, \pi(n))$ is a Hamiltonian path.
- Conversely, suppose G has a Hamiltonian path

$$(\pi(1),\pi(2),\ldots,\pi(n)),$$

where π is a permutation.

• Clearly, the truth assignment

$$T(x_{ij}) =$$
true if and only if $\pi(i) = j$

satisfies all clauses of R(G).

A Comment^a

- An answer to "Is R(G) satisfiable?" answers the question "Is G Hamiltonian?"
- But a "yes" does not give a Hamiltonian path for G.
 - Providing a witness is not a requirement of reduction.
- A "yes" to "Is R(G) satisfiable?" plus a satisfying truth assignment does provide us with a Hamiltonian path for G.

^aContributed by Ms. Amy Liu (J94922016) on May 29, 2006.

Reduction of REACHABILITY to CIRCUIT VALUE

- Note that both problems are in P.
- Given a graph G = (V, E), we shall construct a variable-free circuit R(G).
- The output of R(G) is true if and only if there is a path from node 1 to node n in G.
- Idea: the Floyd-Warshall algorithm.

The Gates

- The gates are
 - $-g_{ijk}$ with $1 \le i, j \le n$ and $0 \le k \le n$.
 - $-h_{ijk}$ with $1 \leq i, j, k \leq n$.
- g_{ijk} : There is a path from node i to node j without passing through a node bigger than k.
- h_{ijk} : There is a path from node i to node j passing through k but not any node bigger than k.
- Input gate $g_{ij0} = \text{true}$ if and only if i = j or $(i, j) \in E$.

The Construction

- h_{ijk} is an AND gate with predecessors $g_{i,k,k-1}$ and $g_{k,j,k-1}$, where k = 1, 2, ..., n.
- g_{ijk} is an OR gate with predecessors $g_{i,j,k-1}$ and $h_{i,j,k}$, where k = 1, 2, ..., n.
- g_{1nn} is the output gate.
- Interestingly, R(G) uses no \neg gates.
 - It is a monotone circuit.

Reduction of CIRCUIT SAT to SAT

- Given a circuit C, we will construct a boolean expression R(C) such that R(C) is satisfiable iff C is.
 - -R(C) will turn out to be a CNF.
 - -R(C) is basically a depth-2 circuit; furthermore, each gate has out-degree 1.
- The variables of R(C) are those of C plus g for each gate g of C.
 - The g's propagate the truth values for the CNF.
- Each gate of C will be turned into equivalent clauses.
- Recall that clauses are \wedge ed together by definition.

The Clauses of R(C)

g is a variable gate x: Add clauses $(\neg g \lor x)$ and $(g \lor \neg x)$.

• Meaning: $g \Leftrightarrow x$.

g is a true gate: Add clause (g).

• Meaning: g must be true to make R(C) true.

g is a false gate: Add clause $(\neg g)$.

• Meaning: g must be false to make R(C) true.

g is a \neg gate with predecessor gate h: Add clauses $(\neg g \lor \neg h)$ and $(g \lor h)$.

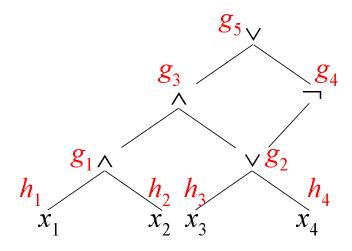
• Meaning: $g \Leftrightarrow \neg h$.

The Clauses of R(C) (concluded)

- g is a \vee gate with predecessor gates h and h': Add clauses $(\neg h \vee g)$, $(\neg h' \vee g)$, and $(h \vee h' \vee \neg g)$.
 - Meaning: $g \Leftrightarrow (h \vee h')$.
- g is a \land gate with predecessor gates h and h': Add clauses $(\neg g \lor h)$, $(\neg g \lor h')$, and $(\neg h \lor \neg h' \lor g)$.
 - Meaning: $g \Leftrightarrow (h \land h')$.
- g is the output gate: Add clause (g).
 - Meaning: g must be true to make R(C) true.

Note: If gate g feeds gates h_1, h_2, \ldots , then variable g appears in the clauses for h_1, h_2, \ldots in R(C).

An Example



$$(h_1 \Leftrightarrow x_1) \land (h_2 \Leftrightarrow x_2) \land (h_3 \Leftrightarrow x_3) \land (h_4 \Leftrightarrow x_4)$$

$$\land \quad [g_1 \Leftrightarrow (h_1 \land h_2)] \land [g_2 \Leftrightarrow (h_3 \lor h_4)]$$

$$\land \quad [g_3 \Leftrightarrow (g_1 \land g_2)] \land (g_4 \Leftrightarrow \neg g_2)$$

$$\land \quad [g_5 \Leftrightarrow (g_3 \vee g_4)] \land g_5.$$

An Example (concluded)

- In general, the result is a CNF.
- The CNF has size proportional to the circuit's number of gates.
- The CNF adds new variables to the circuit's original input variables.
- Had we used the idea on p. 211 for the reduction, the resulting formula may have an exponential length because of the copying.^a

 $^{^{\}rm a} {\rm Contributed}$ by Mr. Ching-Hua Yu (D00921025) on October 16, 2012.

Composition of Reductions

Proposition 29 If R_{12} is a reduction from L_1 to L_2 and R_{23} is a reduction from L_2 to L_3 , then the composition $R_{12} \circ R_{23}$ is a reduction from L_1 to L_3 .

• So reducibility is transitive.

Completeness^a

- As reducibility is transitive, problems can be ordered with respect to their difficulty.
- Is there a maximal element (the hardest problem)?
- It is not obvious that there should be a maximal element.
 - Many infinite structures (such as integers and real numbers) do not have maximal elements.
- Surprisingly, most of the complexity classes that we have seen so far have maximal elements!

^aCook (1971); Levin (1973); Post (1944).

Completeness (concluded)

- Let \mathcal{C} be a complexity class and $L \in \mathcal{C}$.
- L is C-complete if every $L' \in C$ can be reduced to L.
 - Most of the complexity classes we have seen so far have complete problems!
- Complete problems capture the difficulty of a class because they are the hardest problems in the class.

Hardness

- Let C be a complexity class.
- L is C-hard if every $L' \in C$ can be reduced to L.
- It is not required that $L \in \mathcal{C}$.
- If L is C-hard, then by definition, every C-complete problem can be reduced to L.^a

^aContributed by Mr. Ming-Feng Tsai (D92922003) on October 15, 2003.

Illustration of Completeness and Hardness A_3

Closedness under Reductions

- A class C is **closed under reductions** if whenever L is reducible to L' and $L' \in C$, then $L \in C$.
- It is easy to show that P, NP, coNP, L, NL, PSPACE, and EXP are all closed under reductions.
- E is not closed under reductions.^a

^aBalcázar, Díaz, and Gabarró (1988).

Complete Problems and Complexity Classes

Proposition 30 Let C' and C be two complexity classes such that $C' \subseteq C$. Assume C' is closed under reductions and L is C-complete. Then C = C' if and only if $L \in C'$.

- Suppose $L \in \mathcal{C}'$ first.
- Every language $A \in \mathcal{C}$ reduces to $L \in \mathcal{C}'$.
- Because C' is closed under reductions, $A \in C'$.
- Hence $C \subseteq C'$.
- As $C' \subseteq C$, we conclude that C = C'.

The Proof (concluded)

- On the other hand, suppose C = C'.
- As L is C-complete, $L \in C$.
- Thus, trivially, $L \in \mathcal{C}'$.

Two Important Corollaries

Proposition 30 implies the following.

Corollary 31 P = NP if and only if an NP-complete problem in P.

Corollary 32 L = P if and only if a P-complete problem is in L.

Complete Problems and Complexity Classes

Proposition 33 Let C' and C be two complexity classes closed under reductions. If L is complete for both C and C', then C = C'.

- All languages $\mathcal{L} \in \mathcal{C}$ reduce to $L \in \mathcal{C}$ and $L \in \mathcal{C}'$.
- Since C' is closed under reductions, $\mathcal{L} \in C'$.
- Hence $C \subseteq C'$.
- The proof for $C' \subseteq C$ is symmetric.

Table of Computation

- Let $M = (K, \Sigma, \delta, s)$ be a single-string polynomial-time deterministic TM deciding L.
- Its computation on input x can be thought of as a $|x|^k \times |x|^k$ table, where $|x|^k$ is the time bound.
 - It is essentially a sequence of configurations.
- Rows correspond to time steps 0 to $|x|^k 1$.
- Columns are positions in the string of M.
- The (i, j)th table entry represents the contents of position j of the string after i steps of computation.

Some Conventions To Simplify the Table

- M halts after at most $|x|^k 2$ steps.
- Assume a large enough k to make it true for $|x| \geq 2$.
- Pad the table with \bigsqcup s so that each row has length $|x|^k$.
 - The computation will never reach the right end of the table for lack of time.
- If the cursor scans the jth position at time i when M is at state q and the symbol is σ , then the (i, j)th entry is a new symbol σ_q .

Some Conventions To Simplify the Table (continued)

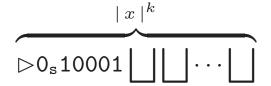
- If q is "yes" or "no," simply use "yes" or "no" instead of σ_q .
- Modify M so that the cursor starts not at \triangleright but at the first symbol of the input.
- The cursor never visits the leftmost \triangleright by telescoping two moves of M each time the cursor is about to move to the leftmost \triangleright .
- So the first symbol in every row is a \triangleright and not a \triangleright_q .

Some Conventions To Simplify the Table (concluded)

- Suppose M has halted before its time bound of $|x|^k$, so that "yes" or "no" appears at a row before the last.
- Then all subsequent rows will be identical to that row.
- M accepts x if and only if the $(|x|^k 1, j)$ th entry is "yes" for some position j.

Comments

- Each row is essentially a configuration.
- If the input x = 010001, then the first row is

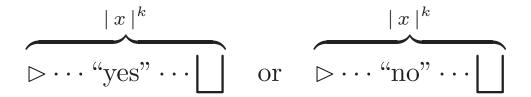


• A typical row looks like

$$\begin{array}{c|c}
 & |x|^k \\
\hline
> 10100_q 01110100 | | | | | \cdots | |
\end{array}$$

Comments (concluded)

• The last rows must look like



• Three out of the table's 4 borders are known:

\triangleright	a	b	C	d	e	f	
\triangleright							
\triangleright							Ш
\triangleright							
\triangleright							
				•			

A P-Complete Problem

Theorem 34 (Ladner (1975)) CIRCUIT VALUE is P-complete.

- It is easy to see that CIRCUIT VALUE $\in P$.
- For any $L \in P$, we will construct a reduction R from L to CIRCUIT VALUE.
- Given any input x, R(x) is a variable-free circuit such that $x \in L$ if and only if R(x) evaluates to true.
- Let M decide L in time n^k .
- Let T be the computation table of M on x.

- When i = 0, or j = 0, or $j = |x|^k 1$, then the value of T_{ij} is known.
 - The jth symbol of x or \bigsqcup , a \triangleright , and a \bigsqcup , respectively.
 - Recall that three out of T's 4 borders are known.

- Consider other entries T_{ij} .
- T_{ij} depends on only $T_{i-1,j-1}$, $T_{i-1,j}$, and $T_{i-1,j+1}$:^a

- Let Γ denote the set of all symbols that can appear on the table: $\Gamma = \Sigma \cup \{\sigma_q : \sigma \in \Sigma, q \in K\}.$
- Encode each symbol of Γ as an m-bit number, where^b

$$m = \lceil \log_2 |\Gamma| \rceil$$
.

^aThe dependency is thus "local."

^bCalled **state assignment** in circuit design.

- Let the *m*-bit binary string $S_{ij1}S_{ij2}\cdots S_{ijm}$ encode T_{ij} .
- We may treat them interchangeably without ambiguity.
- The computation table is now a table of binary entries $S_{ij\ell}$, where

$$0 \le i \le n^k - 1,$$

$$0 \le j \le n^k - 1,$$

$$1 \le \ell \le m$$
.

• Each bit $S_{ij\ell}$ depends on only 3m other bits:

$$T_{i-1,j-1}$$
: $S_{i-1,j-1,1}$ $S_{i-1,j-1,2}$ \cdots $S_{i-1,j-1,m}$
 $T_{i-1,j}$: $S_{i-1,j,1}$ $S_{i-1,j,2}$ \cdots $S_{i-1,j,m}$
 $T_{i-1,j+1}$: $S_{i-1,j+1,1}$ $S_{i-1,j+1,2}$ \cdots $S_{i-1,j+1,m}$

• So truth values for the 3m bits determine $S_{ij\ell}$.

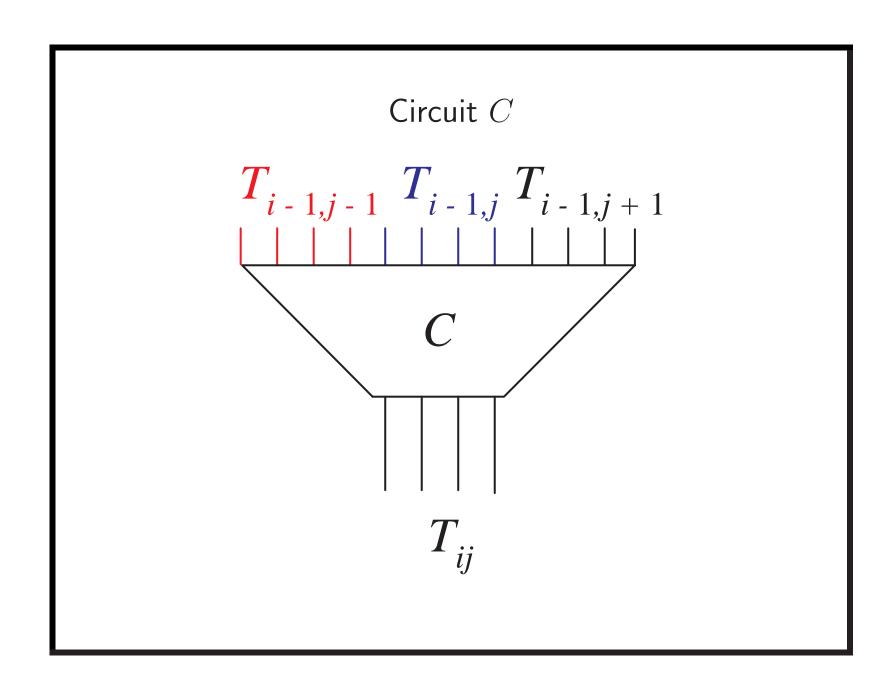
• This means there is a boolean function F_{ℓ} with 3m inputs such that

$$S_{ij\ell} = F_{\ell}(S_{i-1,j-1,1}, S_{i-1,j-1,2}, \dots, S_{i-1,j-1,m}, \frac{T_{i-1,j}}{S_{i-1,j,1}, S_{i-1,j,2}, \dots, S_{i-1,j,m}}, \frac{T_{i-1,j}}{S_{i-1,j+1,1}, S_{i-1,j+1,2}, \dots, S_{i-1,j+1,m}}$$

for all i, j > 0 and $1 \le \ell \le m$.

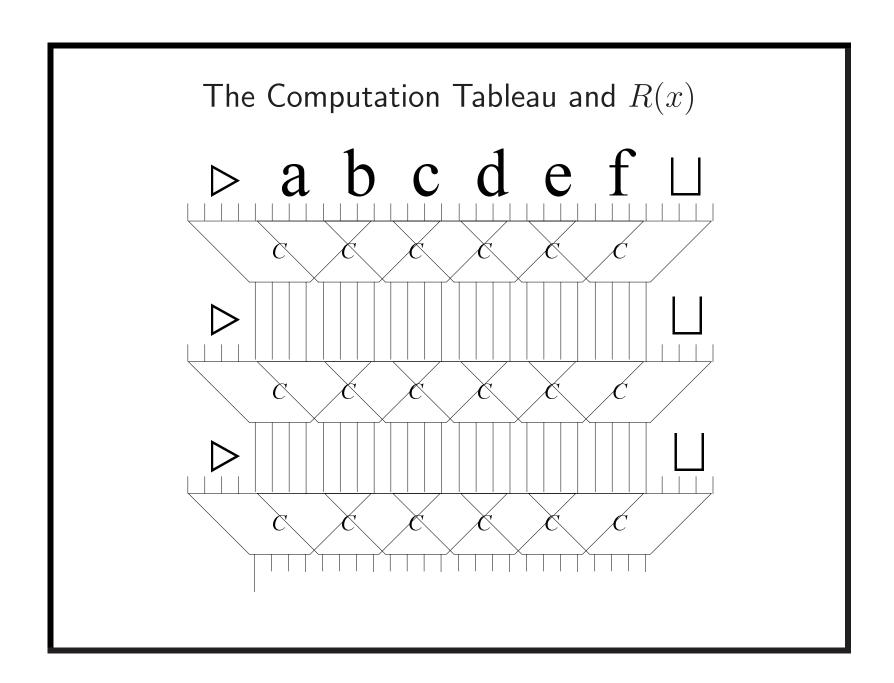
- These F_{ℓ} 's depend only on M's specification, not on x, i, or j.
- Their sizes are constant.
- These boolean functions can be turned into boolean circuits (see p. 210).
- Compose these m circuits in parallel to obtain circuit C with 3m-bit inputs and m-bit outputs.
 - Schematically, $C(T_{i-1,j-1}, T_{i-1,j}, T_{i-1,j+1}) = T_{ij}$.^a

 $^{^{\}mathrm{a}}C$ is like an ASIC (application-specific IC) chip.



The Proof (concluded)

- A copy of circuit C is placed at each entry of the table.
 - Exceptions are the top row and the two extreme column borders.
- R(x) consists of $(|x|^k 1)(|x|^k 2)$ copies of circuit C.
- Without loss of generality, assume the output "yes"/"no" appear at position $(|x|^k 1, 1)$.
- Encode "yes" as 1 and "no" as 0.



A Corollary

The construction in the above proof yields the following, more general result.

Corollary 35 If $L \in TIME(T(n))$, then a circuit with $O(T^2(n))$ gates can decide L.

MONOTONE CIRCUIT VALUE

- A monotone boolean circuit's output cannot change from true to false when one input changes from false to true.
- Monotone boolean circuits are hence less expressive than general circuits.
 - They can compute only *monotone* boolean functions.
- Monotone circuits do not contain ¬ gates (prove it).
- MONOTONE CIRCUIT VALUE is CIRCUIT VALUE applied to monotone circuits.

MONOTONE CIRCUIT VALUE Is P-Complete

Despite their limitations, MONOTONE CIRCUIT VALUE is as hard as CIRCUIT VALUE.

Corollary 36 MONOTONE CIRCUIT VALUE is P-complete.

• Given any general circuit, "move the ¬'s downwards" using de Morgan's laws^a to yield a monotone circuit with the same output.

^aHow? Need to make sure no exponential blowup.