Theory of Computation

Homework 2 Due: 2015/10/20

Problem 1 Assume L is recursive. Prove that \overline{L} is recursively enumerable. (You cannot use Lemma 14.)

Proof: By Proposition 2 on p. 52, it suffices to show that \overline{L} is recursive. Let TM M decide L. We now construct a TM M' which accepts \overline{L} as follows. Let x be any input of M'. If M(x) =Yes, then $M'(x) = \nearrow$; otherwise, M'(x) =Yes. It is clear that M' accepts \overline{L} . Consequently, \overline{L} is recursively enumerable.

Problem 2 Let A and B be two sets and $A \subseteq B$. Prove that $|A| \leq |B|$.

Proof: Since $A \subseteq B$, the identity mapping f(x) = x between A and $A \subseteq B$. Hence, $|A| \leq |B|$ by our definition.