De Morgan's Laws ${ }^{\text {a }}$

- De Morgan's laws say that

$$
\begin{aligned}
\neg\left(\phi_{1} \wedge \phi_{2}\right) & \equiv \neg \phi_{1} \vee \neg \phi_{2} \\
\neg\left(\phi_{1} \vee \phi_{2}\right) & \equiv \neg \phi_{1} \wedge \neg \phi_{2}
\end{aligned}
$$

- Here is a proof of the first law:

ϕ_{1}	ϕ_{2}	$\neg\left(\phi_{1} \wedge \phi_{2}\right)$	$\neg \phi_{1} \vee \neg \phi_{2}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

${ }^{\text {a }}$ Augustus DeMorgan (1806-1871) or William of Ockham (12881348).

Conjunctive Normal Forms

- A boolean expression ϕ is in conjunctive normal form (CNF) if

$$
\phi=\bigwedge_{i=1}^{n} C_{i},
$$

where each clause C_{i} is the disjunction of zero or more literals. ${ }^{\text {a }}$

- For example,

$$
\left(x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{2} \vee x_{3}\right)
$$

- Convention: An empty CNF is satisfiable, but a CNF containing an empty clause is not.

[^0]
Disjunctive Normal Forms

- A boolean expression ϕ is in disjunctive normal form (DNF) if

$$
\phi=\bigvee_{i=1}^{n} D_{i}
$$

where each implicant D_{i} is the conjunction of zero or more literals.

- For example,

$$
\left(x_{1} \wedge x_{2}\right) \vee\left(x_{1} \wedge \neg x_{2}\right) \vee\left(x_{2} \wedge x_{3}\right) .
$$

Clauses and Implicants

- The \bigvee of clauses remains a clause.
- For example,

$$
\begin{aligned}
& \left(x_{1} \vee x_{2}\right) \vee\left(x_{1} \vee \neg x_{2}\right) \vee\left(x_{2} \vee x_{3}\right) \\
= & x_{1} \vee x_{2} \vee x_{1} \vee \neg x_{2} \vee x_{2} \vee x_{3} .
\end{aligned}
$$

- The \wedge of implicants remains an implicant.
- For example,

$$
\begin{aligned}
& \left(x_{1} \wedge x_{2}\right) \wedge\left(x_{1} \wedge \neg x_{2}\right) \wedge\left(x_{2} \wedge x_{3}\right) \\
= & x_{1} \wedge x_{2} \wedge x_{1} \wedge \neg x_{2} \wedge x_{2} \wedge x_{3} .
\end{aligned}
$$

Any Expression ϕ Can Be Converted into CNFs and DNFs
$\phi=x_{j}:$

- This is trivially true.
$\phi=\neg \phi_{1}$ and a CNF is sought:
- Turn ϕ_{1} into a DNF.
- Apply de Morgan's laws to make a CNF for ϕ.
$\phi=\neg \phi_{1}$ and a DNF is sought:
- Turn ϕ_{1} into a CNF.
- Apply de Morgan's laws to make a DNF for ϕ.

Any Expression ϕ Can Be Converted into CNFs and DNFs (continued)

$\phi=\phi_{1} \vee \phi_{2}$ and a DNF is sought:

- Make ϕ_{1} and ϕ_{2} DNFs.
$\phi=\phi_{1} \vee \phi_{2}$ and a CNF is sought:
- Turn ϕ_{1} and ϕ_{2} into CNFs, ${ }^{\text {a }}$

$$
\phi_{1}=\bigwedge_{i=1}^{n_{1}} A_{i}, \quad \phi_{2}=\bigwedge_{j=1}^{n_{2}} B_{j}
$$

- Set

$$
\phi=\bigwedge_{i=1}^{n_{1}} \bigwedge_{j=1}^{n_{2}}\left(A_{i} \vee B_{j}\right)
$$

${ }^{\text {a Corrected by Mr. Chun-Jie Yang (R99922150) on November 9, } 2010 . ~}$

Any Expression ϕ Can Be Converted into CNFs and DNFs (concluded)

$\phi=\phi_{1} \wedge \phi_{2}$ and a CNF is sought:

- Make ϕ_{1} and ϕ_{2} CNFs.
$\phi=\phi_{1} \wedge \phi_{2}$ and a DNF is sought:
- Turn ϕ_{1} and ϕ_{2} into DNFs,

$$
\phi_{1}=\bigvee_{i=1}^{n_{1}} A_{i}, \quad \phi_{2}=\bigvee_{j=1}^{n_{2}} B_{j}
$$

- Set

$$
\phi=\bigvee_{i=1}^{n_{1}} \bigvee_{j=1}^{n_{2}}\left(A_{i} \wedge B_{j}\right)
$$

An Example: Turn $\neg((a \wedge y) \vee(z \vee w))$ into a DNF

$$
\begin{array}{cl}
& \neg((a \wedge y) \vee(z \vee w)) \\
\neg(\mathrm{CNF} \mathrm{\vee CNF}) & \neg(((a) \wedge(y)) \vee((z \vee w))) \\
\neg(\mathrm{CNF}) & \neg((a \vee z \vee w) \wedge(y \vee z \vee w)) \\
= & \neg(a \vee z \vee w) \vee \neg(y \vee z \vee w) \\
\text { de Morgan } & \neg \\
\text { de Morgan } & (\neg a \wedge \neg z \wedge \neg w) \vee(\neg y \wedge \neg z \wedge \neg w) .
\end{array}
$$

Functional Completeness

- A set of logical connectives is called functionally complete if every boolean expression is equivalent to one involving only these connectives.
- The set $\{\neg, \vee, \wedge\}$ is functionally complete.
- Every boolean expression can be turned into a CNF, which involves only \neg, \vee, and \wedge.
- The sets $\{\neg, \vee\}$ and $\{\neg, \wedge\}$ are functionally complete.
- By the above result and de Morgan's laws.
- $\{$ NAND $\}$ and $\{$ NOR $\}$ are functionally complete. ${ }^{\text {a }}$

[^1]
Satisfiability

- A boolean expression ϕ is satisfiable if there is a truth assignment T appropriate to it such that $T \models \phi$.
- ϕ is valid or a tautology, ${ }^{\text {a }}$ written $\models \phi$, if $T \models \phi$ for all T appropriate to ϕ.

[^2]
Satisfiability (concluded)

- ϕ is unsatisfiable or a contradiction if ϕ is false under all appropriate truth assignments.
- Or, equivalently, if $\neg \phi$ is valid (prove it).
- ϕ is a contingency if ϕ is neither a tautology nor a contradiction.

Ludwig Wittgenstein (1889-1951)

Wittgenstein (1922), "Whereof one cannot speak, thereof one must be silent."

SATISFIABILITY (SAT)

- The length of a boolean expression is the length of the string encoding it.
- satisfiability (SAT): Given a CNF ϕ, is it satisfiable?
- Solvable in exponential time on a TM by the truth table method.
- Solvable in polynomial time on an NTM, hence in NP (p. 113).
- A most important problem in settling the "P $\stackrel{?}{=} \mathrm{NP}$ " problem (p. 316).

UNSATISFIABILITY (UNSAT or SAT COMPLEMENT) and VALIDITY

- unsat (Sat complement): Given a boolean expression ϕ, is it unsatisfiable?
- VALIDITY: Given a boolean expression ϕ, is it valid?
$-\phi$ is valid if and only if $\neg \phi$ is unsatisfiable.
$-\phi$ and $\neg \phi$ are basically of the same length.
- So unsat and validity have the same complexity.
- Both are solvable in exponential time on a TM by the truth table method.
- Can we do better?

Relations among sAT, UNSAT, and VALIDITY

- The negation of an unsatisfiable expression is a valid expression.
- None of the three problems-satisfiability, unsatisfiability, validity - are known to be in P.

Boolean Functions

- An n-ary boolean function is a function

$$
f:\{\text { true }, \text { false }\}^{n} \rightarrow\{\text { true }, \text { false }\} .
$$

- It can be represented by a truth table.
- There are $2^{2^{n}}$ such boolean functions.
- We can assign true or false to f for each of the 2^{n} truth assignments.

Boolean Functions (continued)

Assignment	Truth value
1	true or false
2	true or false
\vdots	\vdots
2^{n}	true or false

Boolean Functions (continued)

- A boolean expression expresses a boolean function.
- Think of its truth value under all truth assignments.
- A boolean function expresses a boolean expression.
$-\bigvee_{T \models \phi, \text { literal } y_{i} \text { is true in "row" } T}\left(y_{1} \wedge \cdots \wedge y_{n}\right)$. * $y_{1} \wedge \cdots \wedge y_{n}$ is called the minterm over $\left\{x_{1}, \ldots, x_{n}\right\}$ for T. ${ }^{\text {a }}$
- The size ${ }^{\mathrm{b}}$ is $\leq n 2^{n} \leq 2^{2 n}$.

[^3]
Boolean Functions (continued)

x_{1}	x_{2}	$f\left(x_{1}, x_{2}\right)$
0	0	1
0	1	1
1	0	0
1	1	1

The corresponding boolean expression:

$$
\left(\neg x_{1} \wedge \neg x_{2}\right) \vee\left(\neg x_{1} \wedge x_{2}\right) \vee\left(x_{1} \wedge x_{2}\right)
$$

Boolean Functions (concluded)

Corollary 17 Every n-ary boolean function can be expressed by a boolean expression of size $O\left(n 2^{n}\right)$.

- In general, the exponential length in n cannot be avoided (p. 212).
- The size of the truth table is also $O\left(n 2^{n}\right)$.

Boolean Circuits

- A boolean circuit is a graph C whose nodes are the gates.
- There are no cycles in C.
- All nodes have indegree (number of incoming edges) equal to 0,1 , or 2 .
- Each gate has a sort from

$$
\left\{\text { true }, \text { false }, \vee, \wedge, \neg, x_{1}, x_{2}, \ldots\right\}
$$

- There are $n+5$ sorts.

Boolean Circuits (concluded)

- Gates with a sort from $\left\{\right.$ true, $\left.\mathrm{false}, x_{1}, x_{2}, \ldots\right\}$ are the inputs of C and have an indegree of zero.
- The output gate(s) has no outgoing edges.
- A boolean circuit computes a boolean function.
- A boolean function can be realized by infinitely many equivalent boolean circuits.

Boolean Circuits and Expressions

- They are equivalent representations.
- One can construct one from the other:

An Example
 $$
\left(\left(x_{1} \wedge x_{2}\right) \wedge\left(x_{3} \vee x_{4}\right)\right) \vee\left(\neg\left(x_{3} \vee x_{4}\right)\right)
$$

- Circuits are more economical because of the possibility of sharing.

CIRCUIT SAT and CIRCUIT VALUE

CIRCUIT SAT: Given a circuit, is there a truth assignment such that the circuit outputs true?

- Circuit sat \in NP: Guess a truth assignment and then evaluate the circuit.

CIRCUIT VALUE: The same as CIRCUIT sat except that the circuit has no variable gates.

- circuit value $\in \mathrm{P}$: Evaluate the circuit from the input gates gradually towards the output gate.

Some Boolean Functions Need Exponential Circuits ${ }^{\text {a }}$

Theorem 18 (Shannon (1949)) For any $n \geq 2$, there is an n-ary boolean function f such that no boolean circuits with $2^{n} /(2 n)$ or fewer gates can compute it.

- There are $2^{2^{n}}$ different n-ary boolean functions (p. 202).
- So it suffices to prove that the number of boolean circuits with $2^{n} /(2 n)$ or fewer gates is less than $2^{2^{n}}$.

[^4]
The Proof (concluded)

- There are at most $\left((n+5) \times m^{2}\right)^{m}$ boolean circuits with m or fewer gates (see next page).
- But $\left((n+5) \times m^{2}\right)^{m}<2^{2^{n}}$ when $m=2^{n} /(2 n)$:

$$
\begin{aligned}
& m \log _{2}\left((n+5) \times m^{2}\right) \\
= & 2^{n}\left(1-\frac{\log _{2} \frac{4 n^{2}}{n+5}}{2 n}\right) \\
< & 2^{n}
\end{aligned}
$$

for $n \geq 2$.

Claude Elwood Shannon (1916-2001)

Howard Gardner, "[Shannon's master's thesis is] possibly the most important, and also the most famous, master's thesis of the century."

Comments

- The lower bound $2^{n} /(2 n)$ is rather tight because an upper bound is $n 2^{n}$ (p. 204).
- The proof counted the number of circuits.
- Some circuits may not be valid at all.
- Different circuits may also compute the same function.
- Both are fine because we only need an upper bound on the number of circuits.
- We do not need to consider the outgoing edges because they have been counted as incoming edges. ${ }^{\text {a }}$

[^5]
Relations between Complexity Classes

It is, I own, not uncommon to be wrong in theory and right in practice. - Edmund Burke (1729-1797), A Philosophical Enquiry into the Origin of Our Ideas of the Sublime and Beautiful (1757)

Proper (Complexity) Functions

- We say that $f: \mathbb{N} \rightarrow \mathbb{N}$ is a proper (complexity) function if the following hold:
- f is nondecreasing.
- There is a k-string TM M_{f} such that $M_{f}(x)=\square^{f(|x|)}$ for any x. ${ }^{\text {a }}$
- M_{f} halts after $O(|x|+f(|x|))$ steps.
- M_{f} uses $O(f(|x|))$ space besides its input x.
- M_{f} 's behavior depends only on $|x|$ not x 's contents.
- M_{f} 's running time is bounded by $f(n)$.
a The textbook calls " \square " the quasi-blank symbol. The use of $M_{f}(x)$ will become clear in Proposition 19 (p. 222).

Examples of Proper Functions

- Most "reasonable" functions are proper: $c,\lceil\log n\rceil$, polynomials of $n, 2^{n}, \sqrt{n}, n$!, etc.
- If f and g are proper, then so are $f+g, f g$, and 2^{g}. ${ }^{\text {a }}$
- Nonproper functions when serving as the time bounds for complexity classes spoil "theory building."
- For example, $\operatorname{TIME}(f(n))=\operatorname{TIME}\left(2^{f(n)}\right)$ for some recursive function f (the gap theorem). ${ }^{\text {b }}$
- Only proper functions f will be used in $\operatorname{TIME}(f(n))$, $\operatorname{SPACE}(f(n)), \operatorname{NTIME}(f(n))$, and $\operatorname{NSPACE}(f(n))$.

[^6]
Precise Turing Machines

- A TM M is precise if there are functions f and g such that for every $n \in \mathbb{N}$, for every x of length n, and for every computation path of M,
- M halts after precisely $f(n)$ steps, and
- All of its strings are of length precisely $g(n)$ at halting.
* Recall that if M is a TM with input and output, we exclude the first and last strings.
- M can be deterministic or nondeterministic.

Precise TMs Are General

Proposition 19 Suppose a $T M^{\text {a }} M$ decides L within time (space) $f(n)$, where f is proper. Then there is a precise TM M^{\prime} which decides L in time $O(n+f(n))$ (space $O(f(n))$, respectively).

- M^{\prime} on input x first simulates the $\mathrm{TM} M_{f}$ associated with the proper function f on x.
- M_{f} 's output, of length $f(|x|)$, will serve as a "yardstick" or an "alarm clock."

[^7]
The Proof (continued)

- Then M^{\prime} simulates $M(x)$.
- $M^{\prime}(x)$ halts when and only when the alarm clock runs out-even if M halts earlier.
- If f is a time bound:
- The simulation of each step of M on x is matched by advancing the cursor on the "clock" string.
- Because M^{\prime} stops at the moment the "clock" string is exhausted-even if $M(x)$ stops earlier, it is precise.
- The time bound is therefore $O(|x|+f(|x|))$.

The Proof (concluded)

- If f is a space bound (sketch):
- M^{\prime} simulates M on the quasi-blanks of M_{f} 's output string.
- The total space, not counting the input string, is $O(f(n))$.
- But we still need a way to make sure there is no infinite loop. ${ }^{\text {a }}$

[^8]
Important Complexity Classes

- We write expressions like n^{k} to denote the union of all complexity classes, one for each value of k.
- For example,

$$
\operatorname{NTIME}\left(n^{k}\right)=\bigcup_{j>0} \operatorname{NTIME}\left(n^{j}\right)
$$

Important Complexity Classes (concluded)

$$
\begin{aligned}
\mathrm{P} & =\operatorname{TIME}\left(n^{k}\right), \\
\mathrm{NP} & =\operatorname{NTIME}\left(n^{k}\right), \\
\operatorname{PSPACE} & =\operatorname{SPACE}\left(n^{k}\right), \\
\operatorname{NPSPACE} & =\operatorname{NSPACE}\left(n^{k}\right), \\
\mathrm{E} & =\operatorname{TIME}\left(2^{k n}\right), \\
\mathrm{EXP} & =\operatorname{TIME}\left(2^{n^{k}}\right), \\
\mathrm{L} & =\operatorname{SPACE}(\log n), \\
\mathrm{NL} & =\operatorname{NSACE}(\log n) .
\end{aligned}
$$

Complements of Nondeterministic Classes

- Recall that the complement of L, or \bar{L}, is the language $\Sigma^{*}-L$.
- sat complement is the set of unsatisfiable boolean expressions.
- R, RE, and coRE are distinct (p. 170).
- Again, coRE contains the complements of languages in RE, not languages that are not in RE.
- How about coC when \mathcal{C} is a complexity class?

The Co-Classes

- For any complexity class \mathcal{C}, coC denotes the class

$$
\{L: \bar{L} \in \mathcal{C}\} .
$$

- Clearly, if \mathcal{C} is a deterministic time or space complexity class, then $\mathcal{C}=c o \mathcal{C}$.
- They are said to be closed under complement.
- A deterministic TM deciding L can be converted to one that decides \bar{L} within the same time or space bound by reversing the "yes" and "no" states (p. 167).
- Whether nondeterministic classes for time are closed under complement is not known (p. 105).

Comments

- As

$$
\operatorname{coC}=\{L: \bar{L} \in \mathcal{C}\}
$$

$L \in \mathcal{C}$ if and only if $\bar{L} \in \operatorname{coC}$.

- But it is not true that $L \in \mathcal{C}$ if and only if $L \notin \operatorname{coC}$.
- coC is not defined as $\overline{\mathcal{C}}$.
- For example, suppose $\mathcal{C}=\{\{2,4,6,8,10, \ldots\}\}$.
- Then coC $=\{\{1,3,5,7,9, \ldots\}\}$.
- But $\overline{\mathcal{C}}=2^{\{1,2,3, \ldots\}^{*}}-\{\{2,4,6,8,10, \ldots\}\}$.

The Quantified Halting Problem

- Let $f(n) \geq n$ be proper.
- Define

$$
\begin{array}{r}
H_{f}=\{M ; x: M \text { accepts input } x \\
\text { after at most } f(|x|) \text { steps }\},
\end{array}
$$

where M is deterministic.

- Assume the input is binary.

$$
H_{f} \in \operatorname{TIME}\left(f(n)^{3}\right)
$$

- For each input $M ; x$, we simulate M on x with an alarm clock of length $f(|x|)$.
- Use the single-string simulator (p. 79), the universal TM (p. 149), and the linear speedup theorem (p. 89).
- Our simulator accepts $M ; x$ if and only if M accepts x before the alarm clock runs out.
- From p. 86, the total running time is $O\left(\ell_{M} k_{M}^{2} f(n)^{2}\right)$, where ℓ_{M} is the length to encode each symbol or state of M and k_{M} is M 's number of strings.
- As $\ell_{M} k_{M}^{2}=O(n)$, the running time is $O\left(f(n)^{3}\right)$, where the constant is independent of M.

$H_{f} \notin \operatorname{TIME}(f(\lfloor n / 2\rfloor))$

- Suppose TM $M_{H_{f}}$ decides H_{f} in time $f(\lfloor n / 2\rfloor)$.
- Consider machine:

$$
\begin{array}{ll}
D_{f}(M)\{ & \\
& \text { if } M_{H_{f}}(M ; M)=\text { "yes" } \\
& \text { then "no"; } \\
& \\
\text { else "yes"; }
\end{array}
$$

- D_{f} on input M runs in the same time as $M_{H_{f}}$ on input $M ; M$, i.e., in time $f\left(\left\lfloor\frac{2 n+1}{2}\right\rfloor\right)=f(n)$, where $n=|M|{ }^{\text {a }}$

[^9]
The Proof (concluded)

- First,

$$
\begin{aligned}
& D_{f}\left(D_{f}\right)=" \text { yes" } \\
\Rightarrow & D_{f} ; D_{f} \notin H_{f} \\
\Rightarrow & D_{f} \text { does not accept } D_{f} \text { within time } f\left(\left|D_{f}\right|\right) \\
\Rightarrow & D_{f}\left(D_{f}\right) \neq \text { "yes" }
\end{aligned}
$$

a contradiction

- Similarly, $D_{f}\left(D_{f}\right)=$ "no" $\Rightarrow D_{f}\left(D_{f}\right)=$ "yes."

The Time Hierarchy Theorem

Theorem 20 If $f(n) \geq n$ is proper, then

$$
\operatorname{TIME}(f(n)) \subsetneq \operatorname{TIME}\left(f(2 n+1)^{3}\right) .
$$

- The quantified halting problem makes it so.

Corollary $21 \mathrm{P} \subsetneq \mathrm{E}$.

- $\mathrm{P} \subseteq \operatorname{TIME}\left(2^{n}\right)$ because $\operatorname{poly}(n) \leq 2^{n}$ for n large enough.
- But by Theorem 20,
$\operatorname{TIME}\left(2^{n}\right) \subsetneq \operatorname{TIME}\left(\left(2^{2 n+1}\right)^{3}\right) \subseteq \mathrm{E}$.
- So P \subsetneq E.

The Space Hierarchy Theorem
Theorem 22 (Hennie and Stearns (1966)) If $f(n)$ is proper, then

$$
\operatorname{SPACE}(f(n)) \subsetneq \operatorname{SPACE}(f(n) \log f(n)) .
$$

Corollary $23 \mathrm{~L} \subsetneq$ PSPACE.

Nondeterministic Time Hierarchy Theorems
Theorem 24 (Cook (1973)) NTIME $\left(n^{r}\right) \subsetneq \operatorname{NTIME}\left(n^{s}\right)$ whenever $1 \leq r<s$.

Theorem 25 (Seiferas, Fischer, and Meyer (1978)) If $T_{1}(n), T_{2}(n)$ are proper, then

$$
\operatorname{NTIME}\left(T_{1}(n)\right) \subsetneq \operatorname{NTIME}\left(T_{2}(n)\right)
$$

whenever $T_{1}(n+1)=o\left(T_{2}(n)\right)$.

The Reachability Method

- The computation of a time-bounded TM can be represented by a directed graph.
- The TM's configurations constitute the nodes.
- There is a directed edge from node x to node y if x yields y in one step.
- The start node representing the initial configuration has zero in degree.

The Reachability Method (concluded)

- When the TM is nondeterministic, a node may have an out degree greater than one.
- The graph is the same as the computation tree earlier except that identical configurations are merged into one node.
- So M accepts the input if and only if there is a path from the start node to a node with a "yes" state.
- It is the reachability problem.

Illustration of the Reachability Method

Relations between Complexity Classes

Theorem 26 Suppose $f(n)$ is proper. Then

1. $\operatorname{SPACE}(f(n)) \subseteq \operatorname{NSPACE}(f(n))$, $\operatorname{TIME}(f(n)) \subseteq \operatorname{NTIME}(f(n))$.
2. $\operatorname{NTIME}(f(n)) \subseteq \operatorname{SPACE}(f(n))$.
3. $\operatorname{NSPACE}(f(n)) \subseteq \operatorname{TIME}\left(k^{\log n+f(n)}\right)$.

- Proof of 2 :
- Explore the computation tree of the NTM for "yes."
- Specifically, generate an $f(n)$-bit sequence denoting the nondeterministic choices over $f(n)$ steps.

Proof of Theorem 26(2)

- (continued)
- Simulate the NTM based on the choices.
- Recycle the space and repeat the above steps.
- Halt with "yes" when a "yes" is encountered or "no" if the tree is exhausted.
- Each path simulation consumes at most $O(f(n))$ space because it takes $O(f(n))$ time.
- The total space is $O(f(n))$ because space is recycled.

Proof of Theorem 26(3)

- Let k-string NTM

$$
M=(K, \Sigma, \Delta, s)
$$

with input and output decide $L \in \operatorname{NSPACE}(f(n))$.

- Use the reachability method on the configuration graph of M on input x of length n.
- A configuration is a $(2 k+1)$-tuple

$$
\left(q, w_{1}, u_{1}, w_{2}, u_{2}, \ldots, w_{k}, u_{k}\right)
$$

Proof of Theorem 26(3) (continued)

- We only care about

$$
\left(q, i, w_{2}, u_{2}, \ldots, w_{k-1}, u_{k-1}\right)
$$

where i is an integer between 0 and n for the position of the first cursor.

- The number of configurations is therefore at most

$$
\begin{equation*}
|K| \times(n+1) \times|\Sigma|^{2(k-2) f(n)}=O\left(c_{1}^{\log n+f(n)}\right) \tag{1}
\end{equation*}
$$

for some c_{1}, which depends on M.

- Add edges to the configuration graph based on M's transition function.

Proof of Theorem 26(3) (concluded)

- $x \in L \Leftrightarrow$ there is a path in the configuration graph from the initial configuration to a configuration of the form ("yes", i, \ldots). ${ }^{\text {a }}$
- This is REACHABILITY on a graph with $O\left(c_{1}^{\log n+f(n)}\right)$ nodes.
- It is in $\operatorname{TIME}\left(c^{\log n+f(n)}\right)$ for some c because REACHABILITY $\in \operatorname{TIME}\left(n^{j}\right)$ for some j and

$$
\left[c_{1}^{\log n+f(n)}\right]^{j}=\left(c_{1}^{j}\right)^{\log n+f(n)}
$$

[^10]
Space-Bounded Computation and Proper Functions

- In the definition of space-bounded computations earlier (p. 104), the TMs are not required to halt at all.
- When the space is bounded by a proper function f, computations can be assumed to halt:
- Run the TM associated with f to produce a quasi-blank output of length $f(n)$ first.
- The space-bounded computation must repeat a configuration if it runs for more than $c^{\log n+f(n)}$ steps for some c (p. 243).

Space-Bounded Computation and Proper Functions (concluded)

- (continued)
- So an infinite loop occurs during simulation for a computation path longer than $c^{\log n+f(n)}$ steps.
- Hence we only simulate up to $c^{\log n+f(n)}$ time steps per computation path.

A Grand Chain of Inclusions ${ }^{\text {a }}$

- It is an easy application of Theorem 26 (p. 240) that

$$
\mathrm{L} \subseteq \mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE} \subseteq \mathrm{EXP} .
$$

- By Corollary 23 (p. 235), we know L \subsetneq PSPACE.
- So the chain must break somewhere between L and EXP.
- It is suspected that all four inclusions are proper.
- But there are no proofs yet.
${ }^{a}$ With input from Mr. Chin-Luei Chang (R93922004, D95922007) on October 22, 2004.

What Is Wrong with the Proof? ${ }^{a}$

- By Theorem 26(2) (p. 240),

$$
\operatorname{NL} \subseteq \operatorname{TIME}\left(k^{O(\log n)}\right) \subseteq \operatorname{TIME}\left(n^{c_{1}}\right)
$$

for some $c_{1}>0$.

- By Theorem 20 (p. 234),

$$
\operatorname{TIME}\left(n^{c_{1}}\right) \subsetneq \operatorname{TIME}\left(n^{c_{2}}\right) \subseteq \mathrm{P}
$$

for some $c_{2}>c_{1}$.

- So

$$
\mathrm{NL} \neq \mathrm{P} .
$$

${ }^{\text {a }}$ Contributed by Mr. Yuan-Fu Shao (R02922083) on November 11, 2014.

What Is Wrong with the Proof? (concluded)

- Recall from p. 225 that $\operatorname{TIME}\left(k^{O(\log n)}\right)$ is a shorthand for

$$
\bigcup_{j>0} \operatorname{TIME}\left(j^{O(\log n)}\right) .
$$

- So the correct proof runs more like

$$
\mathrm{NL} \subseteq \bigcup_{j>0} \operatorname{TIME}\left(j^{O(\log n)}\right) \subseteq \bigcup_{c>0} \operatorname{TIME}\left(n^{c}\right)=\mathrm{P}
$$

- And

$$
\mathrm{NL} \neq \mathrm{P}
$$

no longer follows.

[^0]: ${ }^{\text {a }}$ Improved by Mr. Aufbu Huang (R95922070) on October 5, 2006.

[^1]: ${ }^{a}$ Peirce (c. 1880) and Sheffer (1913).

[^2]: ${ }^{a}$ Wittgenstein (1889-1951) in 1922. Wittgenstein is one of the most important philosophers of all time. Russell (1919), "The importance of 'tautology' for a definition of mathematics was pointed out to me by my former pupil Ludwig Wittgenstein, who was working on the problem. I do not know whether he has solved it, or even whether he is alive or dead." "God has arrived," the great economist Keynes (1883-1946) said of him on January 18, 1928. "I met him on the 5:15 train."

[^3]: ${ }^{\text {a }}$ Similar to programmable logic array.
 ${ }^{\mathrm{b}}$ We count only the literals here.

[^4]: ${ }^{\text {a }}$ Can be strengthened to "almost all boolean functions ..."

[^5]: ${ }^{\text {a }}$ If you prove it by considering outgoing edges, the bound will not be good. (Try it!)

[^6]: ${ }^{\text {a }}$ For $f(g)$, we need to add $f(n) \geq n$.
 ${ }^{\mathrm{b}}$ Trakhtenbrot (1964); Borodin (1972).

[^7]: ${ }^{\text {a }}$ It can be deterministic or nondeterministic.

[^8]: ${ }^{\text {a }}$ See the proof of Theorem 26 on p. 240.

[^9]: ${ }^{\text {a }}$ A student pointed out on October 6, 2004, that this estimation forgets to include the time to write down $M ; M$.

[^10]: ${ }^{\text {a }}$ There may be many of them.

