The point of philosophy is to start with something so simple as not to seem worth stating, and to end with something so paradoxical that no one will believe it.

- Bertrand Russell (1872-1970)

Cantor's Theorem (1895)

Theorem 9 The set of all subsets of $\mathbb{N}\left(2^{\mathbb{N}}\right)$ is infinite and not countable.

- Suppose $\left(2^{\mathbb{N}}\right)$ is countable with $f: \mathbb{N} \rightarrow 2^{\mathbb{N}}$ being a bijection. ${ }^{\text {a }}$
- Consider the set $B=\{k \in \mathbb{N}: k \notin f(k)\} \subseteq \mathbb{N}$.
- Suppose $B=f(n)$ for some $n \in \mathbb{N}$.

[^0]
The Proof (concluded)

- If $n \in f(n)=B$, then $n \in B$, but then $n \notin B$ by B 's definition.
- If $n \notin f(n)=B$, then $n \notin B$, but then $n \in B$ by B 's definition.
- Hence $B \neq f(n)$ for any n.
- f is not a bijection, a contradiction.

Georg Cantor (1845-1918)

Kac and Ulam (1968), "[If] one had to name a single person whose work has had the most decisive influence on the present spirit of mathematics, it would almost surely be Georg Cantor."

Cantor's Diagonalization Argument Illustrated

A Corollary of Cantor's Theorem

Corollary 10 For any set T, finite or infinite,

$$
|T|<\left|2^{T}\right| .
$$

- The inequality holds in the finite T case as $k<2^{k}$.
- Assume T is infinite now. ${ }^{\text {a }}$

[^1]
The Proof (concluded)

- $|T| \leq\left|2^{T}\right|$.
- Consider $f(x)=\{x\} \in 2^{T}$.
- f maps a member of $T=\{a, b, c, \ldots\}$ to the corresponding member of $\{\{a\},\{b\},\{c\}, \ldots\} \subseteq 2^{T}$.
- $|T| \neq\left|2^{T}\right|$.
- Use the same argument as Cantor's theorem.

A Second Corollary of Cantor's Theorem

Corollary 11 The set of all functions on \mathbb{N} is not countable.

- It suffices to prove it for functions from \mathbb{N} to $\{0,1\}$.
- Every function $f: \mathbb{N} \rightarrow\{0,1\}$ determines a subset of \mathbb{N} :

$$
\{n: f(n)=1\} \subseteq \mathbb{N},
$$

and vice versa.

- So the set of functions from \mathbb{N} to $\{0,1\}$ has cardinality $\left|2^{\mathbb{N}}\right|$.
- Cantor's theorem (p. 139) then implies the claim.

Existence of Uncomputable Problems

- Every program is a finite sequence of 0 s and 1 s , thus a nonnegative integer. ${ }^{\text {a }}$
- Hence every program corresponds to some integer.
- The set of programs is therefore countable.
${ }^{\text {a }}$ Different binary strings may be mapped to the same integer (e.g., "001" and "01"). To prevent it, use the lexicographic order as the mapping or simply insert " 1 " as the most significant bit of the binary string before the mapping (so "001" becomes "1001"). Contributed by Mr. Yu-Chih Tung (R98922167) on October 5, 2010.

Existence of Uncomputable Problems (concluded)

- A function is a mapping from integers to integers.
- The set of functions is not countable by Corollary 11 (p. 145).
- So there are functions for which no programs exist. ${ }^{\text {a }}$

[^2]He [Turing] invented the idea of software, essentially[.]

It's software that's really
the important invention.

- Freeman Dyson (2015)

Universal Turing Machine ${ }^{\text {a }}$

- A universal Turing machine U interprets the input as the description of a TM M concatenated with the description of an input to that machine, x.
- Both M and x are over the alphabet of U.
- U simulates M on x so that

$$
U(M ; x)=M(x) .
$$

- U is like a modern computer, which executes any valid machine code, or a Java virtual machine, which executes any valid bytecode.
${ }^{\text {a }}$ Turing (1936).

The Halting Problem

- Undecidable problems are problems that have no algorithms.
- Equivalently, they are languages that are not recursive.
- We knew undecidable problems exist (p. 146).
- We now define a concrete undecidable problem, the halting problem:

$$
H=\{M ; x: M(x) \neq \nearrow\} .
$$

- Does M halt on input x ?

H Is Recursively Enumerable

- Use the universal TM U to simulate M on x.
- When M is about to halt, U enters a "yes" state.
- If $M(x)$ diverges, so does U.
- This TM accepts H.

H Is Not Recursive ${ }^{\text {a }}$

- Suppose H is recursive.
- Then there is a TM M_{H} that decides H.
- Consider the program $D(M)$ that calls M_{H} :

1: if $M_{H}(M ; M)=$ "yes" then
2: $\quad \nearrow$; \{Writing an infinite loop is easy.\}
3: else
4: "yes";
5: end if
${ }^{\text {a }}$ Turing (1936).

H Is Not Recursive (concluded)

- Consider $D(D)$:
$-D(D)=\nearrow \Rightarrow M_{H}(D ; D)=" y e s " \Rightarrow D ; D \in H \Rightarrow$ $D(D) \neq \nearrow$, a contradiction.
- $D(D)=$ "yes" $\Rightarrow M_{H}(D ; D)="$ no" $\Rightarrow D ; D \notin H \Rightarrow$ $D(D)=\nearrow$, a contradiction.

Comments

- Two levels of interpretations of $M:^{\text {a }}$
- A sequence of 0s and 1s (data).
- An encoding of instructions (programs).
- There are no paradoxes with $D(D)$.
- Concepts should be familiar to computer scientists.
- Feed a C compiler to a C compiler, a Lisp interpreter to a Lisp interpreter, a sorting program to a sorting program, etc.

[^3]
Cantor's Paradox ${ }^{\text {a }}$ (1899)

- Let T be the set of all sets. ${ }^{\text {b }}$
- Then $2^{T} \subseteq T$ because 2^{T} is a set.
- But we know ${ }^{\text {c }}\left|2^{T}\right|>|T|($ p. 143)!
- We got a "contradiction."
- Are we willing to give up Cantor's theorem?
- If not, what is a set? ${ }^{\text {d }}$

[^4]
Self-Loop Paradoxes ${ }^{\text {a }}$

Russell's Paradox (1901): Consider $R=\{A: A \notin A\}$.

- If $R \in R$, then $R \notin R$ by definition.
- If $R \notin R$, then $R \in R$ also by definition.
- In either case, we have a "contradiction." b

Eubulides: The Cretan says, "All Cretans are liars."
Liar's Paradox: "This sentence is false."

[^5]
Self-Loop Paradoxes (continued)

Hypochondriac: a patient (like Gödel) with imaginary symptoms and ailments.

Sharon Stone in The Specialist (1994): "I'm not a woman you can trust."

Numbers 12:3, Old Testament: "Moses was the most humble person in all the world $[\cdots]$ " (attributed to Moses).

Self-Loop Paradoxes (concluded)

The Egyptian Book of the Dead: "ye live in me and I would live in you."

John 14:10, New Testament: "Don't you believe that I am in the Father, and that the Father is in me?"

John 17:21, New Testament:"just as you are in me and I am in you."

Pagan ${ }^{8}$ Christian Creeds (1920): "I was moved to Odin, myself to myself."

Soren Kierkegaard in Fear and Trembling (1843): "to strive against the whole world is a comfort, to strive with oneself is dreadful."

Bertrand Russell (1872-1970)

Karl Popper (1974), "perhaps the greatest philosopher since Kant."

Reductions in Proving Undecidability

- Suppose we are asked to prove that L is undecidable.
- Suppose L^{\prime} (such as H) is known to be undecidable.
- Find a computable transformation R (called reduction) from L^{\prime} to L such that ${ }^{\text {a }}$

$$
\forall x\left\{x \in L^{\prime} \text { if and only if } R(x) \in L\right\}
$$

- Now we can answer " $x \in L^{\prime}$?" for any x by asking " $R(x) \in L$?" because they have the same answer.
- L^{\prime} is said to be reduced to L.

[^6]

Reductions in Proving Undecidability (concluded)

- If L were decidable, " $R(x) \in L$?" becomes computable and we have an algorithm to decide L^{\prime}, a contradiction!
- So L must be undecidable.

Theorem 12 Suppose language L_{1} can be reduced to language L_{2}. If L_{1} is undecidable, then L_{2} is undecidable.

Undecidability: Special Cases and Subsets

- Suppose L_{1} can be reduced to L_{2}.
- As the reduction R maps members of L_{1} to a subset of $L_{2},{ }^{\text {a }}$ we may say L_{1} is a "special case" of L_{2}. ${ }^{\text {b }}$
- Now suppose L_{1} is undecidable and $L_{1} \subseteq L_{2}$.
- Iis L_{2} then undecidable? ${ }^{\text {c }}$

[^7]
Undecidability: Special Cases and Subsets (concluded)

- It depends.
- When $L_{2}=\Sigma^{*}, L_{2}$ is decidable: Just answer "yes."
- If $L_{2}-L_{1}$ is decidable, then L_{2} is undecidable
- Clearly,

$$
\forall x\left\{x \in L_{1} \text { if and only if } x \notin L_{2}-L_{1} \text { and } x \in L_{2}\right\}
$$

- Therefore if L_{2} were decidable, then L_{1} would be.

More Undecidability

- $H^{*}=\{M: M$ halts on all inputs $\}$.
- We will reduce H to H^{*}.
- Given the question " $M ; x \in H$?", construct the following machine (this is the reduction): ${ }^{\text {a }}$

$$
M_{x}(y)\{M(x) ;\}
$$

- M halts on x if and only if M_{x} halts on all inputs.
- In other words, $M ; x \in H$ if and only if $M_{x} \in H^{*}$.
- So if H^{*} were recursive (recall the box for L on p. 161), H would be recursive, a contradiction.
${ }^{\text {a }}$ Simplified by Mr. Chih-Hung Hsieh (D95922003) on October 5, 2006. M_{x} ignores its input $y ; x$ is part of M_{x} 's code but not M_{x} 's input.

More Undecidability (concluded)

- $\{M ; x$: there is a y such that $M(x)=y\}$.
- $\{M ; x$: the computation M on input x uses all states of $M\}$.
- $\{M ; x ; y: M(x)=y\}$.

Complements of Recursive Languages

The complement of L, denoted by \bar{L}, is the language $\Sigma^{*}-L$.

Lemma 13 If L is recursive, then so is \bar{L}.

- Let L be decided by M, which is deterministic.
- Swap the "yes" state and the "no" state of M.
- The new machine decides \bar{L}. ${ }^{\text {a }}$
${ }^{\text {a }}$ Recall p. 105.

Recursive and Recursively Enumerable Languages

Lemma 14 (Kleene's theorem) L is recursive if and only if both L and \bar{L} are recursively enumerable.

- Suppose both L and \bar{L} are recursively enumerable, accepted by M and \bar{M}, respectively.
- Simulate M and \bar{M} in an interleaved fashion.
- If M accepts, then halt on state "yes" because $x \in L$.
- If \bar{M} accepts, then halt on state "no" because $x \notin L$.
- Note that either M or \bar{M} (but not both) must accept the input and halt.

A Very Useful Corollary and Its Consequences

Corollary $15 L$ is recursively enumerable but not recursive, then \bar{L} is not recursively enumerable.

- Suppose \bar{L} is recursively enumerable.
- Then both L and \bar{L} are recursively enumerable.
- By Lemma 14 (p. 168), L is recursive, a contradiction.

Corollary $16 \bar{H}$ is not recursively enumerable. ${ }^{\text {a }}$
${ }^{\text {a Recall that }} \bar{H}=\{M ; x: M(x)=\nearrow\}$.

R, RE, and coRE

RE: The set of all recursively enumerable languages.
coRE: The set of all languages whose complements are recursively enumerable.
\mathbf{R} : The set of all recursive languages.

- Note that coRE is not $\overline{\mathrm{RE}}$.
$-\operatorname{coRE}=\{L: \bar{L} \in \operatorname{RE}\}=\{\bar{L}: L \in \operatorname{RE}\}$.
$-\overline{\mathrm{RE}}=\{L: L \notin \mathrm{RE}\}$.

R, RE, and coRE (concluded)

- $\mathrm{R}=\mathrm{RE} \cap \operatorname{coRE}$ (p. 168).
- There exist languages in RE but not in R and not in coRE.
- Such as H (p. 151, p. 152, and p. 169).
- There are languages in coRE but not in RE.
- Such as \bar{H} (p. 169).
- There are languages in neither RE nor coRE.

Undecidability in Logic and Mathematics

- First-order logic is undecidable (answer to Hilbert's (1928) Entscheidungsproblem). ${ }^{\text {a }}$
- Natural numbers with addition and multiplication is undecidable. ${ }^{\text {b }}$
- Rational numbers with addition and multiplication is undecidable. ${ }^{\text {c }}$
${ }^{\mathrm{a}}$ Church (1936).
${ }^{\text {b }}$ Rosser (1937).
${ }^{c}$ Robinson (1948).

Undecidability in Logic and Mathematics (concluded)

- Natural numbers with addition and equality is decidable and complete. ${ }^{\text {a }}$
- Elementary theory of groups is undecidable. ${ }^{\text {b }}$

[^8]
Julia Hall Bowman Robinson (1919-1985)

Alfred Tarski (1901-1983)

Boolean Logic

It seemed unworthy of a grown man to spend his time on such trivialities, but what was I to do? [...] The whole of the rest of my life might be consumed in looking at that blank sheet of paper. - Bertrand Russell (1872-1970), Autobiography, Vol. I (1967)

Boolean Logic ${ }^{\text {a }}$

Boolean variables: x_{1}, x_{2}, \ldots.
Literals: $x_{i}, \neg x_{i}$.
Boolean connectives: \vee, \wedge, \neg.
Boolean expressions: Boolean variables, $\neg \phi$ (negation), $\phi_{1} \vee \phi_{2}$ (disjunction), $\phi_{1} \wedge \phi_{2}$ (conjunction).

- $\bigvee_{i=1}^{n} \phi_{i}$ stands for $\phi_{1} \vee \phi_{2} \vee \cdots \vee \phi_{n}$.
- $\bigwedge_{i=1}^{n} \phi_{i}$ stands for $\phi_{1} \wedge \phi_{2} \wedge \cdots \wedge \phi_{n}$.

Implications: $\phi_{1} \Rightarrow \phi_{2}$ is a shorthand for $\neg \phi_{1} \vee \phi_{2}$.
Biconditionals: $\phi_{1} \Leftrightarrow \phi_{2}$ is a shorthand for

$$
\left(\phi_{1} \Rightarrow \phi_{2}\right) \wedge\left(\phi_{2} \Rightarrow \phi_{1}\right)
$$

[^9]
Truth Assignments

- A truth assignment T is a mapping from boolean variables to truth values true and false.
- A truth assignment is appropriate to boolean expression ϕ if it defines the truth value for every variable in ϕ.
$-\left\{x_{1}=\right.$ true,$\left.x_{2}=\mathrm{false}\right\}$ is appropriate to $x_{1} \vee x_{2}$.
- $\left\{x_{2}=\right.$ true, $x_{3}=$ false $\}$ is not appropriate to $x_{1} \vee x_{2}$.

Satisfaction

- $T \models \phi$ means boolean expression ϕ is true under T; in other words, T satisfies ϕ.
- ϕ_{1} and ϕ_{2} are equivalent, written

$$
\phi_{1} \equiv \phi_{2},
$$

if for any truth assignment T appropriate to both of them, $T \models \phi_{1}$ if and only if $T \models \phi_{2}$.

Truth Tables

- Suppose ϕ has n boolean variables.
- A truth table contains 2^{n} rows.
- Each row corresponds to one truth assignment of the n variables and records the truth value of ϕ under that truth assignment.
- A truth table can be used to prove if two boolean expressions are equivalent.
- Just check if they give identical truth values under all appropriate truth assignments.

A Second Truth Table

p	q	$p \vee q$
0	0	0
0	1	1
1	0	1
1	1	1

\section*{A Third Truth Table
 | p | $\neg p$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |}

Proof of Equivalency: $p \Rightarrow q \equiv \neg q \Rightarrow \neg p$

p	q	$p \Rightarrow q$	$\neg q \Rightarrow \neg p$
0	0	1	1
0	1	1	1
1	0	0	0
1	1	1	1

[^0]: a Note that $f(k)$ is a subset of \mathbb{N}.

[^1]: ${ }^{\text {a Mr. Kai-Yuan Hou (B99201038, R03922014) on October 13, 2015: }}$ Should we limit T to be countable?

[^2]: ${ }^{\text {a }}$ As a nondeterministic program may not compute a function, we consider only deterministic programs for this sentence. Contributed by Mr. Patrick Will (A99725101) on October 5, 2010.

[^3]: ${ }^{\text {a }}$ Eckert and Mauchly (1943); von Neumann (1945); Turing (1946).

[^4]: ${ }^{\text {a }}$ In a letter to Richard Dedekind. First published in Russell (1903).
 ${ }^{\mathrm{b}}$ Recall this ontological argument for the existence of God by St Anselm (1033-1109) in the 11th century: If something is possible but is not part of God, then God is not the greatest possible object of thought, a contradiction.
 ${ }^{c}$ Really?
 ${ }^{\mathrm{d}}$ It partially answers the question on p. 143 n .

[^5]: ${ }^{\text {a }}$ E.g., Quine (1966), The Ways of Paradox and Other Essays and Hofstadter (1979), Gödel, Escher, Bach: An Eternal Golden Braid.
 ${ }^{\mathrm{b}}$ Gottlob Frege (1848-1925) to Bertrand Russell in 1902, "Your discovery of the contradiction [...] has shaken the basis on which I intended to build arithmetic."

[^6]: ${ }^{\text {a }}$ Contributed by Mr. Tai-Dai Chou (J93922005) on May 19, 2005.

[^7]: ${ }^{\text {a }}$ Because R may not be onto.
 ${ }^{\text {b }}$ Contributed by Ms. Mei-Chih Chang (D03922022) and Mr. Kai-Yuan Hou (B99201038, R03922014) on October 13, 2015.
 ${ }^{\text {c }}$ Contributed by Ms. Mei-Chih Chang (D03922022) on October 13, 2015.

[^8]: ${ }^{\text {a }}$ Presburger's Master's thesis (1928), his only work in logic. The direction was suggested by Tarski. Mojz̄esz Presburger (1904-1943) died in a concentration camp during World War II.
 ${ }^{\mathrm{b}}$ Tarski (1949).

[^9]: ${ }^{\text {a }}$ George Boole (1815-1864) in 1847.

