
The point of philosophy is

to start with something so simple

as not to seem worth stating,

and to end with something

so paradoxical that no one will believe it.

— Bertrand Russell (1872–1970)
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Cantor’s Theorem (1895)

Theorem 9 The set of all subsets of N (2N) is infinite and

not countable.

• Suppose (2N) is countable with f : N → 2N being a

bijection.a

• Consider the set B = {k ∈ N : k �∈ f(k)} ⊆ N.

• Suppose B = f(n) for some n ∈ N.

aNote that f(k) is a subset of N.
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The Proof (concluded)

• If n ∈ f(n) = B, then n ∈ B, but then n �∈ B by B’s

definition.

• If n �∈ f(n) = B, then n �∈ B, but then n ∈ B by B’s

definition.

• Hence B �= f(n) for any n.

• f is not a bijection, a contradiction.
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Georg Cantor (1845–1918)

Kac and Ulam (1968), “[If] one

had to name a single person

whose work has had the most

decisive influence on the present

spirit of mathematics, it would

almost surely be Georg Cantor.”
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Cantor’s Diagonalization Argument Illustrated

f(0)

f(1)

f(2)

f(3)

f(4)

f(5)

B

0 1 2 3 4 5
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A Corollary of Cantor’s Theorem

Corollary 10 For any set T , finite or infinite,

|T | < | 2T |.

• The inequality holds in the finite T case as k < 2k.

• Assume T is infinite now.a

aMr. Kai-Yuan Hou (B99201038, R03922014) on October 13, 2015:

Should we limit T to be countable?
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The Proof (concluded)

• |T | ≤ |2T |.
– Consider f(x) = {x} ∈ 2T .

– f maps a member of T = { a, b, c, . . .} to the

corresponding member of { { a }, { b }, { c }, . . .} ⊆ 2T .

• |T | �= |2T |.
– Use the same argument as Cantor’s theorem.
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A Second Corollary of Cantor’s Theorem

Corollary 11 The set of all functions on N is not

countable.

• It suffices to prove it for functions from N to {0, 1}.
• Every function f : N → {0, 1} determines a subset of N:

{n : f(n) = 1} ⊆ N,

and vice versa.

• So the set of functions from N to {0, 1} has cardinality

| 2N |.
• Cantor’s theorem (p. 139) then implies the claim.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 145



Existence of Uncomputable Problems

• Every program is a finite sequence of 0s and 1s, thus a

nonnegative integer.a

• Hence every program corresponds to some integer.

• The set of programs is therefore countable.

aDifferent binary strings may be mapped to the same integer (e.g.,

“001” and “01”). To prevent it, use the lexicographic order as the map-

ping or simply insert “1” as the most significant bit of the binary string

before the mapping (so “001” becomes “1001”). Contributed by Mr.

Yu-Chih Tung (R98922167) on October 5, 2010.
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Existence of Uncomputable Problems (concluded)

• A function is a mapping from integers to integers.

• The set of functions is not countable by Corollary 11

(p. 145).

• So there are functions for which no programs exist.a

aAs a nondeterministic program may not compute a function, we

consider only deterministic programs for this sentence. Contributed by

Mr. Patrick Will (A99725101) on October 5, 2010.
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He [Turing] invented

the idea of software, essentially[.]

It’s software that’s really

the important invention.

— Freeman Dyson (2015)
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Universal Turing Machinea

• A universal Turing machine U interprets the input

as the description of a TM M concatenated with the

description of an input to that machine, x.

– Both M and x are over the alphabet of U .

• U simulates M on x so that

U(M ;x) = M(x).

• U is like a modern computer, which executes any valid

machine code, or a Java virtual machine, which executes

any valid bytecode.

aTuring (1936).
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The Halting Problem

• Undecidable problems are problems that have no

algorithms.

– Equivalently, they are languages that are not

recursive.

• We knew undecidable problems exist (p. 146).

• We now define a concrete undecidable problem, the

halting problem:

H = {M ;x : M(x) �=↗}.
– Does M halt on input x?
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H Is Recursively Enumerable

• Use the universal TM U to simulate M on x.

• When M is about to halt, U enters a “yes” state.

• If M(x) diverges, so does U .

• This TM accepts H.
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H Is Not Recursivea

• Suppose H is recursive.

• Then there is a TM MH that decides H.

• Consider the program D(M) that calls MH :

1: if MH(M ;M) = “yes” then

2: ↗; {Writing an infinite loop is easy.}
3: else

4: “yes”;

5: end if

aTuring (1936).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 152



H Is Not Recursive (concluded)

• Consider D(D):

– D(D) =↗⇒ MH(D;D) = “yes” ⇒ D;D ∈ H ⇒
D(D) �=↗, a contradiction.

– D(D) = “yes” ⇒ MH(D;D) = “no” ⇒ D;D �∈ H ⇒
D(D) =↗, a contradiction.
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Comments

• Two levels of interpretations of M :a

– A sequence of 0s and 1s (data).

– An encoding of instructions (programs).

• There are no paradoxes with D(D).

– Concepts should be familiar to computer scientists.

– Feed a C compiler to a C compiler, a Lisp interpreter

to a Lisp interpreter, a sorting program to a sorting

program, etc.

aEckert and Mauchly (1943); von Neumann (1945); Turing (1946).
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Cantor’s Paradoxa (1899)

• Let T be the set of all sets.b

• Then 2T ⊆ T because 2T is a set.

• But we knowc | 2T | > |T | (p. 143)!
• We got a “contradiction.”

• Are we willing to give up Cantor’s theorem?

• If not, what is a set?d

aIn a letter to Richard Dedekind. First published in Russell (1903).
bRecall this ontological argument for the existence of God by

St Anselm (1033–1109) in the 11th century: If something is possible

but is not part of God, then God is not the greatest possible object of

thought, a contradiction.
cReally?
dIt partially answers the question on p. 143n.
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Self-Loop Paradoxesa

Russell’s Paradox (1901): Consider R = {A : A �∈ A}.
• If R ∈ R, then R �∈ R by definition.

• If R �∈ R, then R ∈ R also by definition.

• In either case, we have a “contradiction.”b

Eubulides: The Cretan says, “All Cretans are liars.”

Liar’s Paradox: “This sentence is false.”

aE.g., Quine (1966), The Ways of Paradox and Other Essays and

Hofstadter (1979), Gödel, Escher, Bach: An Eternal Golden Braid.
bGottlob Frege (1848–1925) to Bertrand Russell in 1902, “Your dis-

covery of the contradiction [. . .] has shaken the basis on which I intended

to build arithmetic.”

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 156



Self-Loop Paradoxes (continued)

Hypochondriac: a patient (like Gödel) with imaginary

symptoms and ailments.

Sharon Stone in The Specialist (1994): “I’m not a

woman you can trust.”

Numbers 12:3, Old Testament: “Moses was the most

humble person in all the world [· · · ]” (attributed to

Moses).
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Self-Loop Paradoxes (concluded)

The Egyptian Book of the Dead: “ye live in me and I

would live in you.”

John 14:10, New Testament: “Don’t you believe that I

am in the Father, and that the Father is in me?”

John 17:21, New Testament: “just as you are in me and

I am in you.”

Pagan & Christian Creeds (1920): “I was moved to

Odin, myself to myself.”

Soren Kierkegaard in Fear and Trembling (1843):

“to strive against the whole world is a comfort, to strive

with oneself is dreadful.”
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Bertrand Russell (1872–1970)

Karl Popper (1974), “per-

haps the greatest philoso-

pher since Kant.”
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Reductions in Proving Undecidability

• Suppose we are asked to prove that L is undecidable.

• Suppose L′ (such as H) is known to be undecidable.

• Find a computable transformation R (called reduction)

from L′ to L such thata

∀x {x ∈ L′ if and only if R(x) ∈ L}.

• Now we can answer “x ∈ L′?” for any x by asking

“R(x) ∈ L?” because they have the same answer.

• L′ is said to be reduced to L.

aContributed by Mr. Tai-Dai Chou (J93922005) on May 19, 2005.
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x yes/noR(x)
R algorithm 

for L

algorithm for L
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Reductions in Proving Undecidability (concluded)

• If L were decidable, “R(x) ∈ L?” becomes computable

and we have an algorithm to decide L′, a contradiction!

• So L must be undecidable.

Theorem 12 Suppose language L1 can be reduced to

language L2. If L1 is undecidable, then L2 is undecidable.
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Undecidability: Special Cases and Subsets

• Suppose L1 can be reduced to L2.

• As the reduction R maps members of L1 to a subset of

L2,
a we may say L1 is a “special case” of L2.

b

• Now suppose L1 is undecidable and L1 ⊆ L2.

• Iis L2 then undecidable?c

aBecause R may not be onto.
bContributed by Ms. Mei-Chih Chang (D03922022) and Mr. Kai-Yuan

Hou (B99201038, R03922014) on October 13, 2015.
cContributed by Ms. Mei-Chih Chang (D03922022) on October 13,

2015.
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Undecidability: Special Cases and Subsets (concluded)

• It depends.

• When L2 = Σ∗, L2 is decidable: Just answer “yes.”

• If L2 − L1 is decidable, then L2 is undecidable

– Clearly,

∀x {x ∈ L1 if and only if x �∈ L2 − L1 and x ∈ L2}.

– Therefore if L2 were decidable, then L1 would be.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 164



More Undecidability

• H∗ = {M : M halts on all inputs}.
– We will reduce H to H∗.

– Given the question “M ;x ∈ H?”, construct the

following machine (this is the reduction):a

Mx(y) {M(x); }

– M halts on x if and only if Mx halts on all inputs.

– In other words, M ;x ∈ H if and only if Mx ∈ H∗.

– So if H∗ were recursive (recall the box for L on p.

161), H would be recursive, a contradiction.

aSimplified by Mr. Chih-Hung Hsieh (D95922003) on October 5, 2006.

Mx ignores its input y; x is part of Mx’s code but not Mx’s input.
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More Undecidability (concluded)

• {M ;x : there is a y such that M(x) = y}.
• {M ;x : the computation M on input x uses all states of M}.

• {M ;x; y : M(x) = y}.
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Complements of Recursive Languages

The complement of L, denoted by L̄, is the language

Σ∗ − L.

Lemma 13 If L is recursive, then so is L̄.

• Let L be decided by M , which is deterministic.

• Swap the “yes” state and the “no” state of M .

• The new machine decides L̄.a

aRecall p. 105.
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Recursive and Recursively Enumerable Languages

Lemma 14 (Kleene’s theorem) L is recursive if and

only if both L and L̄ are recursively enumerable.

• Suppose both L and L̄ are recursively enumerable,

accepted by M and M̄ , respectively.

• Simulate M and M̄ in an interleaved fashion.

• If M accepts, then halt on state “yes” because x ∈ L.

• If M̄ accepts, then halt on state “no” because x �∈ L.

• Note that either M or M̄ (but not both) must accept

the input and halt.
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A Very Useful Corollary and Its Consequences

Corollary 15 L is recursively enumerable but not recursive,

then L̄ is not recursively enumerable.

• Suppose L̄ is recursively enumerable.

• Then both L and L̄ are recursively enumerable.

• By Lemma 14 (p. 168), L is recursive, a contradiction.

Corollary 16 H̄ is not recursively enumerable.a

aRecall that H̄ = {M ;x : M(x) =↗}.
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R, RE, and coRE

RE: The set of all recursively enumerable languages.

coRE: The set of all languages whose complements are

recursively enumerable.

R: The set of all recursive languages.

• Note that coRE is not RE.

– coRE = {L : L ∈ RE } = {L : L ∈ RE }.
– RE = {L : L �∈ RE }.
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R, RE, and coRE (concluded)

• R = RE ∩ coRE (p. 168).

• There exist languages in RE but not in R and not in

coRE.

– Such as H (p. 151, p. 152, and p. 169).

• There are languages in coRE but not in RE.

– Such as H̄ (p. 169).

• There are languages in neither RE nor coRE.
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R
coRERE
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Undecidability in Logic and Mathematics

• First-order logic is undecidable (answer to Hilbert’s

(1928) Entscheidungsproblem).a

• Natural numbers with addition and multiplication is

undecidable.b

• Rational numbers with addition and multiplication is

undecidable.c

aChurch (1936).
bRosser (1937).
cRobinson (1948).
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Undecidability in Logic and Mathematics (concluded)

• Natural numbers with addition and equality is decidable

and complete.a

• Elementary theory of groups is undecidable.b

aPresburger’s Master’s thesis (1928), his only work in logic. The

direction was suggested by Tarski. Mojz̄esz Presburger (1904–1943) died

in a concentration camp during World War II.
bTarski (1949).
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Julia Hall Bowman Robinson (1919–1985)

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 175



Alfred Tarski (1901–1983)
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Boolean Logic
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It seemed unworthy of a grown man

to spend his time on such trivialities,

but what was I to do? [· · · ]
The whole of the rest of my life might be

consumed in looking at

that blank sheet of paper.

— Bertrand Russell (1872–1970),

Autobiography, Vol. I (1967)
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Boolean Logica

Boolean variables: x1, x2, . . ..

Literals: xi, ¬xi.

Boolean connectives: ∨,∧,¬.
Boolean expressions: Boolean variables, ¬φ (negation),

φ1 ∨ φ2 (disjunction), φ1 ∧ φ2 (conjunction).

• ∨n
i=1 φi stands for φ1 ∨ φ2 ∨ · · · ∨ φn.

• ∧n
i=1 φi stands for φ1 ∧ φ2 ∧ · · · ∧ φn.

Implications: φ1 ⇒ φ2 is a shorthand for ¬φ1 ∨ φ2.

Biconditionals: φ1 ⇔ φ2 is a shorthand for

(φ1 ⇒ φ2) ∧ (φ2 ⇒ φ1).

aGeorge Boole (1815–1864) in 1847.
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Truth Assignments

• A truth assignment T is a mapping from boolean

variables to truth values true and false.

• A truth assignment is appropriate to boolean

expression φ if it defines the truth value for every

variable in φ.

– {x1 = true, x2 = false} is appropriate to x1 ∨ x2.

– {x2 = true, x3 = false} is not appropriate to

x1 ∨ x2.
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Satisfaction

• T |= φ means boolean expression φ is true under T ; in

other words, T satisfies φ.

• φ1 and φ2 are equivalent, written

φ1 ≡ φ2,

if for any truth assignment T appropriate to both of

them, T |= φ1 if and only if T |= φ2.
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Truth Tables

• Suppose φ has n boolean variables.

• A truth table contains 2n rows.

• Each row corresponds to one truth assignment of the n

variables and records the truth value of φ under that

truth assignment.

• A truth table can be used to prove if two boolean

expressions are equivalent.

– Just check if they give identical truth values under all

appropriate truth assignments.
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A Truth Table

p q p ∧ q

0 0 0

0 1 0

1 0 0

1 1 1
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A Second Truth Table

p q p ∨ q

0 0 0

0 1 1

1 0 1

1 1 1
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A Third Truth Table

p ¬p
0 1

1 0
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Proof of Equivalency: p ⇒ q ≡ ¬q ⇒ ¬p
p q p ⇒ q ¬q ⇒ ¬p
0 0 1 1

0 1 1 1

1 0 0 0

1 1 1 1
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