Theory of Computation

homework 1

Due: 9/29/2015
Problem 1 The TM on p. 30 of the slides halts with a "yes" if the input string contains two consecutive 1's; otherwise, it halts at "no". That program assumes the input alphabet $\Sigma=\{0,1, \bigsqcup, \triangleright\}$. Now, write a TM program for the same problem when $\Sigma=\{0,1,2, \bigsqcup, \triangleright\}$.

Ans: Assume $M=(K, \Sigma, \delta, s)$, where $K=\left(s, s_{1}, h\right), \Sigma=\{0,1,2, \bigsqcup, \triangleright\}$. Then

$p \in K$	$\sigma \in \Sigma$	$\delta(p, \sigma)$
s	\triangleright	$(s, \triangleright, \rightarrow)$
s	0	$(s, 0, \rightarrow)$
s	1	$\left(s_{1}, 1, \rightarrow\right)$
s	2	$(s, 2, \rightarrow)$
s_{1}	0	$(s, 0, \rightarrow)$
s_{1}	1	("yes", $1,-)$
s_{1}	2	$(s, 2, \rightarrow)$
s	\sqcup	("no", $\sqcup,-)$
s_{1}	\sqcup	("no", $\sqcup,-)$

Problem 2 Explain why the following Turing machine does not decide the language of polynomials with integer coefficients which have integer roots: The input represents a polynomial over variables x_{1}, \ldots, x_{n} with integer coefficients.

1. Examine all possible integer values of x_{1}, \ldots, x_{n}.
2. Evaluate the polynomial on all of them.
3. If any of them evaluates to 0 , accept; else reject.

Ans: The variables x_{1}, \ldots, x_{n} have infinitely many possible integer values. A Turing machine would required infinite time to try them all. But we require that every stage in the Turing machine description be completed in a finite number of steps.

