Decidability under Nondeterminism

- Let L be a language and N be an NTM.
- N decides L if for any x ∈ Σ*, x ∈ L if and only if there is a sequence of valid configurations that ends in "yes."
- In other words,
 - If $x \in L$, then N(x) = "yes" for some computation path.
 - If $x \notin L$, then $N(x) \neq$ "yes" for all computation paths.

Decidability under Nondeterminism (concluded)

- It is not required that the NTM halts in all computation paths.^a
- If $x \notin L$, no nondeterministic choices should lead to a "yes" state.
- The key is the algorithm's *overall* behavior not whether it gives a correct answer for each particular run.
- Note that determinism is a special case of nondeterminism.

^aSo "accepts" is a more proper term, and other books use "decides" only when the NTM always halts.

Complementing a TM's Halting States

- Let M decide L, and M' be M after "yes" \leftrightarrow "no".
- If M is a deterministic TM, then M' decides \overline{L} .
 - So M and M' decide languages that are complements of each other.
- But if M is an NTM, then M' may not decide \overline{L} .
 - It is possible that both M and M' accept x (see next page).
 - So M and M' accept languages that are not complements of each other.

Time Complexity under Nondeterminism

- Nondeterministic machine N decides L in time f(n), where $f: \mathbb{N} \to \mathbb{N}$, if
 - N decides L, and
 - for any $x \in \Sigma^*$, N does not have a computation path longer than f(|x|).
- We charge only the "depth" of the computation tree.

Time Complexity Classes under Nondeterminism

- NTIME(f(n)) is the set of languages decided by NTMs within time f(n).
- $\operatorname{NTIME}(f(n))$ is a complexity class.

NP ("Nondeterministic Polynomial")

• Define

$$NP = \bigcup_{k>0} NTIME(n^k).$$

- Clearly $P \subseteq NP$.
- Think of NP as efficiently *verifiable* problems (see p. 327).

- Boolean satisfiability (p. 113 and p. 193).

• The most important open problem in computer science is whether P = NP.

Simulating Nondeterministic TMs

Nondeterminism does not add power to TMs.

Theorem 6 Suppose language L is decided by an NTM N in time f(n). Then it is decided by a 3-string deterministic TM M in time $O(c^{f(n)})$, where c > 1 is some constant depending on N.

• On input x, M goes down every computation path of N using depth-first search.

-M does not need to know f(n).

- As N is time-bounded, the depth-first search will not run indefinitely.

The Proof (concluded)

- If any path leads to "yes," then M immediately enters the "yes" state.
- If none of the paths leads to "yes," then M enters the "no" state.
- The simulation takes time $O(c^{f(n)})$ for some c > 1because the computation tree has that many nodes.

Corollary 7 NTIME $(f(n))) \subseteq \bigcup_{c>1} \text{TIME}(c^{f(n)}).^{a}$

^aMr. Kai-Yuan Hou (B99201038, R03922014) on October 6, 2015: $\bigcup_{c>1} \text{TIME}(c^{f(n)}) \subseteq \text{NTIME}(f(n)))?$

NTIME vs. TIME

- Does converting an NTM into a TM require exploring all computation paths of the NTM as done in Theorem 6 (p. 110)?
- This is the most important question in theory with important practical implications.

A Nondeterministic Algorithm for Satisfiability ϕ is a boolean formula with *n* variables. 1: for i = 1, 2, ..., n do Guess $x_i \in \{0, 1\}$; {Nondeterministic choices.} 2: 3: end for 4: {Verification:} 5: **if** $\phi(x_1, x_2, \dots, x_n) = 1$ **then** "yes"; 6: 7: **else** "no"; 8: 9: **end if**

Analysis

- The computation tree is a complete binary tree of depth *n*.
- Every computation path corresponds to a particular truth assignment^a out of 2^n .
- ϕ is satisfiable iff there is a truth assignment that satisfies ϕ .

^aOr a sequence of nondeterministic choices.

Analysis (concluded)

- The algorithm decides language $\{\phi : \phi \text{ is satisfiable}\}$.
 - Suppose ϕ is satisfiable.
 - * That means there is a truth assignment that satisfies ϕ .
 - * So there is a computation path that results in "yes."
 - Suppose ϕ is not satisfiable.
 - * That means every truth assignment makes ϕ false.
 - * So every computation path results in "no."
- General paradigm: Guess a "proof" then verify it.

The Traveling Salesman Problem

- We are given n cities 1, 2, ..., n and integer distance d_{ij} between any two cities i and j.
- Assume $d_{ij} = d_{ji}$ for convenience.
- The **traveling salesman problem** (TSP) asks for the total distance of the shortest tour of the cities.^a
- The decision version TSP (D) asks if there is a tour with a total distance at most B, where B is an input.^b

^aEach city is visited exactly once.

^bBoth problems are extremely important and are equally hard (p. 391 and p. 493).

^aCan be made into a series of $\log_2 n$ binary choices for each x_i so that the next-state count (2) is a constant, independent of input size. Contributed by Mr. Chih-Duo Hong (R95922079) on September 27, 2006.

Analysis

- Suppose the input graph contains at least one tour of the cities with a total distance at most *B*.
 - Then there is a computation path for that tour.^a

- And it leads to "yes."

• Suppose the input graph contains no tour of the cities with a total distance at most *B*.

- Then every computation path leads to "no."

^aIt does not mean the algorithm will follow that path. It just means such a computation path (i.e., a sequence of nondeterministic choices) exists.

Remarks on the $P \stackrel{?}{=} NP$ Open Problem^a

- Many practical applications depend on answers to the $P \stackrel{?}{=} NP$ question.
- Verification of password should be easy (so it is in NP).
 - A computer should not take a long time to let a user log in.
- A password system should be hard to crack (loosely speaking, cracking it should not be in P).
- It took logicians 63 years to settle the Continuum Hypothesis; how long will it take for this one?

 $^{^{\}rm a}{\rm Contributed}$ by Mr. Kuan-Lin Huang (B96902079, R00922018) on September 27, 2011.

Nondeterministic Space Complexity Classes

- Let L be a language.
- Then

```
L \in \text{NSPACE}(f(n))
```

if there is an NTM with input and output that decides Land operates within space bound f(n).

- NSPACE(f(n)) is a set of languages.
- As in the linear speedup theorem (Theorem 5 on p. 89), constant coefficients do not matter.

Graph Reachability

- Let G(V, E) be a directed graph (**digraph**).
- REACHABILITY asks, given nodes a and b, does G contain a path from a to b?
- Can be easily solved in polynomial time by breadth-first search.
- How about its nondeterministic space complexity?

The First Try: NSPACE
$$(n \log n)$$

1: Determine the number of nodes m ; {Note $m \le n$.}
2: $x_1 := a$; {Assume $a \ne b$.}
3: for $i = 2, 3, ..., m$ do
4: Guess $x_i \in \{v_1, v_2, ..., v_m\}$; {The *i*th node.}
5: end for
6: for $i = 2, 3, ..., m$ do
7: if $(x_{i-1}, x_i) \notin E$ then
8: "no";
9: end if
10: if $x_i = b$ then
11: "yes";
12: end if
13: end for
14: "no";

Space Analysis

- Variables m, i, x, and y each require $O(\log n)$ bits.
- Testing $(x, y) \in E$ is accomplished by consulting the input string with counters of $O(\log n)$ bits long.
- Hence

```
REACHABILITY \in NSPACE(\log n).
```

- REACHABILITY with more than one terminal node also has the same complexity.
- REACHABILITY \in P (see, e.g., p. 237).

Undecidability

God exists since mathematics is consistent, and the Devil exists since we cannot prove it. — André Weil (1906–1998)

Whatsoever we imagine is *finite*.
Therefore there is no idea, or conception of any thing we call *infinite*.
— Thomas Hobbes (1588–1679), *Leviathan*

Infinite Sets

- A set is countable if it is finite or if it can be put in one-one correspondence with N = {0, 1, ...}, the set of natural numbers.
 - Set of integers \mathbb{Z} .
 - * $0 \leftrightarrow 0$.
 - * $1 \leftrightarrow 1, 2 \leftrightarrow 3, 3 \leftrightarrow 5, \ldots$
 - * $-1 \leftrightarrow 2, -2 \leftrightarrow 4, -3 \leftrightarrow 6, \dots$
 - Set of positive integers \mathbb{Z}^+ : $i \leftrightarrow i 1$.
 - Set of positive odd integers: $i \leftrightarrow (i-1)/2$.
 - Set of (positive) rational numbers $\mathbb{Q}:$ See next page.
 - Set of squared integers: $i \leftrightarrow \sqrt{i}$.

Cardinality

- For any set A, define |A| as A's cardinality (size).
- Two sets are said to have the same cardinality, or

$$A \mid = \mid B \mid \quad \text{or} \quad A \sim B,$$

if there exists a one-to-one correspondence between their elements.

2^A denotes set A's power set, that is {B : B ⊆ A}.
The power set of {0,1} is

$$2^{\{0,1\}} = \{\emptyset, \{0\}, \{1\}, \{0,1\}\}.$$

• If
$$|A| = k$$
, then $|2^{A}| = 2^{k}$.

Cardinality (concluded)

- Define $|A| \leq |B|$ if there is a one-to-one correspondence between A and a subset of B's.
- Obviously, if $A \subseteq B$, then $|A| \leq |B|$ (prove it!).
 - So $|\mathbb{N}| \leq |\mathbb{Z}|$.
 - So $|\mathbb{N}| \le |\mathbb{R}|.$
- Define |A| < |B| if $|A| \le |B|$ but $|A| \ne |B|$.

Theorem 8 (Schröder-Bernstein theorem) If $|A| \le |B|$ and $|B| \le |A|$, then |A| = |B|.

Cardinality and Infinite Sets

- If $A \subsetneq B$, then |A| < |B|?
- If A and B are infinite sets, it is possible that $A \subsetneq B$ yet |A| = |B|.
 - $-\mathbb{N}\subsetneq\mathbb{Z}.$
 - But $|\mathbb{N}| = |\mathbb{Z}|$ (p. 129).^a
- A lot of "paradoxes."

^aLeibniz (1646–1716) uses it to "prove" that there are no infinite numbers (Russell, 1914).

Galileo's^a Paradox (1638)

- The squares of positive integers can be placed in one-to-one correspondence with positive integers.
- So they are of the same cardinality.
- But this is contrary to the axiom of Euclid^b that the whole is greater than any of its proper parts.^c
- Resolution of paradoxes: Pick the notion that results in "better" mathematics.
- The difference between a mathematical paradox and a contradiction is often a matter of opinions.

```
<sup>a</sup>Galileo (1564–1642).
```

^bEuclid (325 B.C.–265 B.C.).

^cLeibniz never challenges that axiom (Knobloch, 1999).

Hilbert's $^{\rm a}$ Paradox of the Grand Hotel

- For a hotel with a finite number of rooms with all the rooms occupied, a new guest will be turned away.
- Now imagine a hotel with an infinite number of rooms, all of which are occupied.
- A new guest comes and asks for a room.
- "But of course!" exclaims the proprietor.
- He moves the person previously occupying Room 1 to Room 2, the person from Room 2 to Room 3, and so on.
- The new customer now occupies Room 1.

^aDavid Hilbert (1862–1943).

Hilbert's Paradox of the Grand Hotel (concluded)

- Now imagine a hotel with an infinite number of rooms, all taken up.
- An infinite number of new guests come in and ask for rooms.
- "Certainly," says the proprietor.
- He moves the occupant of Room 1 to Room 2, the occupant of Room 2 to Room 4, and so on.
- Now all odd-numbered rooms become free and the infinity of new guests can be accommodated in them.^a

^a "There are many rooms in my Father's house, and I am going to prepare a place for you." (John 14:3)

