
Decidability under Nondeterminism

• Let L be a language and N be an NTM.

• N decides L if for any x ∈ Σ∗, x ∈ L if and only if there

is a sequence of valid configurations that ends in “yes.”

• In other words,

– If x ∈ L, then N(x) = “yes” for some computation

path.

– If x �∈ L, then N(x) �= “yes” for all computation

paths.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 103

Decidability under Nondeterminism (concluded)

• It is not required that the NTM halts in all computation

paths.a

• If x �∈ L, no nondeterministic choices should lead to a

“yes” state.

• The key is the algorithm’s overall behavior not whether

it gives a correct answer for each particular run.

• Note that determinism is a special case of

nondeterminism.

aSo “accepts” is a more proper term, and other books use “decides”

only when the NTM always halts.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 104

Complementing a TM’s Halting States

• Let M decide L, and M ′ be M after “yes” ↔ “no”.

• If M is a deterministic TM, then M ′ decides L̄.

– So M and M ′ decide languages that are complements

of each other.

• But if M is an NTM, then M ′ may not decide L̄.

– It is possible that both M and M ′ accept x (see next

page).

– So M and M ′ accept languages that are not

complements of each other.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 105

�����

�

����

�����

�

�

����

�

�����

����

�

�

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 106

Time Complexity under Nondeterminism

• Nondeterministic machine N decides L in time f(n),

where f : N → N, if

– N decides L, and

– for any x ∈ Σ∗, N does not have a computation path

longer than f(|x |).
• We charge only the “depth” of the computation tree.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 107

Time Complexity Classes under Nondeterminism

• NTIME(f(n)) is the set of languages decided by NTMs

within time f(n).

• NTIME(f(n)) is a complexity class.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 108

NP (“Nondeterministic Polynomial”)

• Define

NP =
⋃

k>0

NTIME(nk).

• Clearly P ⊆ NP.

• Think of NP as efficiently verifiable problems (see p.

327).

– Boolean satisfiability (p. 113 and p. 193).

• The most important open problem in computer science

is whether P = NP.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 109

Simulating Nondeterministic TMs

Nondeterminism does not add power to TMs.

Theorem 6 Suppose language L is decided by an NTM N

in time f(n). Then it is decided by a 3-string deterministic

TM M in time O(cf(n)), where c > 1 is some constant

depending on N .

• On input x, M goes down every computation path of N

using depth-first search.

– M does not need to know f(n).

– As N is time-bounded, the depth-first search will not

run indefinitely.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 110

The Proof (concluded)

• If any path leads to “yes,” then M immediately enters

the “yes” state.

• If none of the paths leads to “yes,” then M enters the

“no” state.

• The simulation takes time O(cf(n)) for some c > 1

because the computation tree has that many nodes.

Corollary 7 NTIME(f(n))) ⊆ ⋃
c>1TIME(cf(n)).a

aMr. Kai-Yuan Hou (B99201038, R03922014) on October 6, 2015:
⋃

c>1 TIME(cf(n)) ⊆ NTIME(f(n)))?

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 111

NTIME vs. TIME

• Does converting an NTM into a TM require exploring

all computation paths of the NTM as done in Theorem 6

(p. 110)?

• This is the most important question in theory with

important practical implications.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 112

A Nondeterministic Algorithm for Satisfiability

φ is a boolean formula with n variables.

1: for i = 1, 2, . . . , n do

2: Guess xi ∈ {0, 1}; {Nondeterministic choices.}
3: end for

4: {Verification:}
5: if φ(x1, x2, . . . , xn) = 1 then

6: “yes”;

7: else

8: “no”;

9: end if

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 113

Computation Tree for Satisfiability

��������� �������������� �����������������

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 114

Analysis

• The computation tree is a complete binary tree of depth

n.

• Every computation path corresponds to a particular

truth assignmenta out of 2n.

• φ is satisfiable iff there is a truth assignment that

satisfies φ.

aOr a sequence of nondeterministic choices.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 115

Analysis (concluded)

• The algorithm decides language {φ : φ is satisfiable}.
– Suppose φ is satisfiable.

∗ That means there is a truth assignment that

satisfies φ.

∗ So there is a computation path that results in

“yes.”

– Suppose φ is not satisfiable.

∗ That means every truth assignment makes φ false.

∗ So every computation path results in “no.”

• General paradigm: Guess a “proof” then verify it.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 116

The Traveling Salesman Problem

• We are given n cities 1, 2, . . . , n and integer distance dij

between any two cities i and j.

• Assume dij = dji for convenience.

• The traveling salesman problem (tsp) asks for the

total distance of the shortest tour of the cities.a

• The decision version tsp (d) asks if there is a tour with

a total distance at most B, where B is an input.b

aEach city is visited exactly once.
bBoth problems are extremely important and are equally hard (p. 391

and p. 493).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 117

A Shortest Path

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 118

A Nondeterministic Algorithm for tsp (d)
1: for i = 1, 2, . . . , n do

2: Guess xi ∈ {1, 2, . . . , n}; {The ith city.}a
3: end for

4: xn+1 := x1;

5: {Verification:}
6: if x1, x2, . . . , xn are distinct and

∑n
i=1 dxi,xi+1 ≤ B then

7: “yes”;

8: else

9: “no”;

10: end if

aCan be made into a series of log2 n binary choices for each xi so

that the next-state count (2) is a constant, independent of input size.

Contributed by Mr. Chih-Duo Hong (R95922079) on September 27, 2006.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 119

Analysis

• Suppose the input graph contains at least one tour of

the cities with a total distance at most B.

– Then there is a computation path for that tour.a

– And it leads to “yes.”

• Suppose the input graph contains no tour of the cities

with a total distance at most B.

– Then every computation path leads to “no.”

aIt does not mean the algorithm will follow that path. It just means

such a computation path (i.e., a sequence of nondeterministic choices)

exists.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 120

Remarks on the P
?
= NP Open Problema

• Many practical applications depend on answers to the

P
?
= NP question.

• Verification of password should be easy (so it is in NP).

– A computer should not take a long time to let a user

log in.

• A password system should be hard to crack (loosely

speaking, cracking it should not be in P).

• It took logicians 63 years to settle the Continuum

Hypothesis; how long will it take for this one?

aContributed by Mr. Kuan-Lin Huang (B96902079, R00922018) on

September 27, 2011.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 121

Nondeterministic Space Complexity Classes

• Let L be a language.

• Then

L ∈ NSPACE(f(n))

if there is an NTM with input and output that decides L

and operates within space bound f(n).

• NSPACE(f(n)) is a set of languages.

• As in the linear speedup theorem (Theorem 5 on p. 89),

constant coefficients do not matter.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 122

Graph Reachability

• Let G(V,E) be a directed graph (digraph).

• reachability asks, given nodes a and b, does G

contain a path from a to b?

• Can be easily solved in polynomial time by breadth-first

search.

• How about its nondeterministic space complexity?

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 123

The First Try: NSPACE(n log n)
1: Determine the number of nodes m; {Note m ≤ n.}
2: x1 := a; {Assume a �= b.}
3: for i = 2, 3, . . . ,m do

4: Guess xi ∈ {v1, v2, . . . , vm}; {The ith node.}
5: end for

6: for i = 2, 3, . . . ,m do

7: if (xi−1, xi) �∈ E then

8: “no”;

9: end if

10: if xi = b then

11: “yes”;

12: end if

13: end for

14: “no”;

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 124

In Fact, reachability ∈ NSPACE(log n)
1: Determine the number of nodes m; {Note m ≤ n.}
2: x := a;

3: for i = 2, 3, . . . ,m do

4: Guess y ∈ {v1, v2, . . . , vm}; {The next node.}
5: if (x, y) �∈ E then

6: “no”;

7: end if

8: if y = b then

9: “yes”;

10: end if

11: x := y;

12: end for

13: “no”;

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 125

Space Analysis

• Variables m, i, x, and y each require O(log n) bits.

• Testing (x, y) ∈ E is accomplished by consulting the

input string with counters of O(log n) bits long.

• Hence

reachability ∈ NSPACE(log n).

– reachability with more than one terminal node

also has the same complexity.

• reachability ∈ P (see, e.g., p. 237).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 126

Undecidability

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 127

God exists since mathematics is consistent,

and the Devil exists since we cannot prove it.

— André Weil (1906–1998)

Whatsoever we imagine is finite.

Therefore there is no idea, or conception

of any thing we call infinite.

— Thomas Hobbes (1588–1679), Leviathan

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 128

Infinite Sets

• A set is countable if it is finite or if it can be put in

one-one correspondence with N = { 0, 1, . . . }, the set of

natural numbers.

– Set of integers Z.

∗ 0 ↔ 0.

∗ 1 ↔ 1, 2 ↔ 3, 3 ↔ 5,

∗ −1 ↔ 2,−2 ↔ 4,−3 ↔ 6,

– Set of positive integers Z+: i ↔ i− 1.

– Set of positive odd integers: i ↔ (i− 1)/2.

– Set of (positive) rational numbers Q: See next page.

– Set of squared integers: i ↔ √
i .

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 129

Rational Numbers Are Countable

5/25/1

1/51/21/1 1/3 1/4

2/1 2/2 2/3 2/4

3/1 3/2 3/3 3/4

4/1 4/2 4/3

1/6

2/5

6/1

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 130

Cardinality

• For any set A, define |A| as A’s cardinality (size).

• Two sets are said to have the same cardinality, or

|A | = |B | or A ∼ B,

if there exists a one-to-one correspondence between their

elements.

• 2A denotes set A’s power set, that is {B : B ⊆ A}.
– The power set of { 0, 1 } is

2{ 0,1 } = { ∅, { 0 }, { 1 }, { 0, 1 } }.

• If |A | = k, then | 2A | = 2k.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 131

Cardinality (concluded)

• Define |A | ≤ |B | if there is a one-to-one correspondence

between A and a subset of B’s.

• Obviously, if A ⊆ B, then |A | ≤ |B | (prove it!).

– So |N | ≤ |Z |.
– So |N | ≤ |R |.

• Define |A| < |B| if |A| ≤ |B| but |A| �= |B|.
Theorem 8 (Schröder-Bernstein theorem) If |A| ≤ |B|
and |B| ≤ |A|, then |A| = |B|.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 132

Cardinality and Infinite Sets

• If A � B, then |A| < |B|?
• If A and B are infinite sets, it is possible that A � B yet

|A| = |B|.
– N � Z.

– But |N | = |Z | (p. 129).a

• A lot of “paradoxes.”

aLeibniz (1646–1716) uses it to “prove” that there are no infinite

numbers (Russell, 1914).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 133

Galileo’sa Paradox (1638)

• The squares of positive integers can be placed in

one-to-one correspondence with positive integers.

• So they are of the same cardinality.

• But this is contrary to the axiom of Euclidb that the

whole is greater than any of its proper parts.c

• Resolution of paradoxes: Pick the notion that results in

“better” mathematics.

• The difference between a mathematical paradox and a

contradiction is often a matter of opinions.

aGalileo (1564–1642).
bEuclid (325 B.C.–265 B.C.).
cLeibniz never challenges that axiom (Knobloch, 1999).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 134

Hilbert’sa Paradox of the Grand Hotel

• For a hotel with a finite number of rooms with all the

rooms occupied, a new guest will be turned away.

• Now imagine a hotel with an infinite number of rooms,

all of which are occupied.

• A new guest comes and asks for a room.

• “But of course!” exclaims the proprietor.

• He moves the person previously occupying Room 1 to

Room 2, the person from Room 2 to Room 3, and so on.

• The new customer now occupies Room 1.

aDavid Hilbert (1862–1943).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 135

Hilbert’s Paradox of the Grand Hotel (concluded)

• Now imagine a hotel with an infinite number of rooms,

all taken up.

• An infinite number of new guests come in and ask for

rooms.

• “Certainly,” says the proprietor.

• He moves the occupant of Room 1 to Room 2, the

occupant of Room 2 to Room 4, and so on.

• Now all odd-numbered rooms become free and the

infinity of new guests can be accommodated in them.a

a“There are many rooms in my Father’s house, and I am going to

prepare a place for you.” (John 14:3)

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 136

David Hilbert (1862–1943)

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 137

