Decidability under Nondeterminism

- Let L be a language and N be an NTM.
- N decides L if for any $x \in \Sigma^{*}, x \in L$ if and only if there is a sequence of valid configurations that ends in "yes."
- In other words,
- If $x \in L$, then $N(x)=$ "yes" for some computation path.
- If $x \notin L$, then $N(x) \neq$ "yes" for all computation paths.

Decidability under Nondeterminism (concluded)

- It is not required that the NTM halts in all computation paths. ${ }^{\text {a }}$
- If $x \notin L$, no nondeterministic choices should lead to a "yes" state.
- The key is the algorithm's overall behavior not whether it gives a correct answer for each particular run.
- Note that determinism is a special case of nondeterminism.

[^0]
Complementing a TM's Halting States

- Let M decide L, and M^{\prime} be M after "yes" \leftrightarrow "no".
- If M is a deterministic TM, then M^{\prime} decides \bar{L}.
- So M and M^{\prime} decide languages that are complements of each other.
- But if M is an NTM, then M^{\prime} may not decide \bar{L}.
- It is possible that both M and M^{\prime} accept x (see next page).
- So M and M^{\prime} accept languages that are not complements of each other.

Time Complexity under Nondeterminism

- Nondeterministic machine N decides L in time $f(n)$, where $f: \mathbb{N} \rightarrow \mathbb{N}$, if
- N decides L, and
- for any $x \in \Sigma^{*}, N$ does not have a computation path longer than $f(|x|)$.
- We charge only the "depth" of the computation tree.

Time Complexity Classes under Nondeterminism

- $\operatorname{NTIME}(f(n))$ is the set of languages decided by NTMs within time $f(n)$.
- $\operatorname{NTIME}(f(n))$ is a complexity class.

NP ("Nondeterministic Polynomial")

- Define

$$
\mathrm{NP}=\bigcup_{k>0} \operatorname{NTIME}\left(n^{k}\right) .
$$

- Clearly $\mathrm{P} \subseteq \mathrm{NP}$.
- Think of NP as efficiently verifiable problems (see p. 327).
- Boolean satisfiability (p. 113 and p. 193).
- The most important open problem in computer science is whether $\mathrm{P}=\mathrm{NP}$.

Simulating Nondeterministic TMs

Nondeterminism does not add power to TMs.
Theorem 6 Suppose language L is decided by an NTM N in time $f(n)$. Then it is decided by a 3-string deterministic $T M M$ in time $O\left(c^{f(n)}\right)$, where $c>1$ is some constant depending on N.

- On input x, M goes down every computation path of N using depth-first search.
- M does not need to know $f(n)$.
- As N is time-bounded, the depth-first search will not run indefinitely.

The Proof (concluded)

- If any path leads to "yes," then M immediately enters the "yes" state.
- If none of the paths leads to "yes," then M enters the "no" state.
- The simulation takes time $O\left(c^{f(n)}\right)$ for some $c>1$ because the computation tree has that many nodes.

Corollary $7 \operatorname{NTIME}(f(n))) \subseteq \bigcup_{c>1} \operatorname{TIME}\left(c^{f(n)}\right) .{ }^{\text {a }}$

[^1]
NTIME vs. TIME

- Does converting an NTM into a TM require exploring all computation paths of the NTM as done in Theorem 6 (p. 110)?
- This is the most important question in theory with important practical implications.

A Nondeterministic Algorithm for Satisfiability

ϕ is a boolean formula with n variables.
1: for $i=1,2, \ldots, n$ do
2: Guess $x_{i} \in\{0,1\} ;\{$ Nondeterministic choices. $\}$
3: end for
4: \{Verification:\}
5: if $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1$ then
6: "yes";
7: else
8: "no";
9: end if

Computation Tree for Satisfiability

Analysis

- The computation tree is a complete binary tree of depth n.
- Every computation path corresponds to a particular truth assignment ${ }^{\text {a }}$ out of 2^{n}.
- ϕ is satisfiable iff there is a truth assignment that satisfies ϕ.

[^2]
Analysis (concluded)

- The algorithm decides language $\{\phi: \phi$ is satisfiable $\}$.
- Suppose ϕ is satisfiable.
* That means there is a truth assignment that satisfies ϕ.
* So there is a computation path that results in "yes."
- Suppose ϕ is not satisfiable. * That means every truth assignment makes ϕ false. * So every computation path results in "no."
- General paradigm: Guess a "proof" then verify it.

The Traveling Salesman Problem

- We are given n cities $1,2, \ldots, n$ and integer distance $d_{i j}$ between any two cities i and j.
- Assume $d_{i j}=d_{j i}$ for convenience.
- The traveling salesman problem (TSP) asks for the total distance of the shortest tour of the cities. ${ }^{\text {a }}$
- The decision version TSP (D) asks if there is a tour with a total distance at most B, where B is an input. ${ }^{\text {b }}$

[^3]

A Nondeterministic Algorithm for TSP (D)

1: for $i=1,2, \ldots, n$ do
2: Guess $x_{i} \in\{1,2, \ldots, n\} ;\{\text { The } i \text { th city. }\}^{a}$
3: end for
4: $x_{n+1}:=x_{1}$;
5: \{Verification:\}
6: if $x_{1}, x_{2}, \ldots, x_{n}$ are distinct and $\sum_{i=1}^{n} d_{x_{i}, x_{i+1}} \leq B$ then
7: "yes";
8: else
9: "no";
10: end if
${ }^{\text {a }}$ Can be made into a series of $\log _{2} n$ binary choices for each x_{i} so that the next-state count (2) is a constant, independent of input size. Contributed by Mr. Chih-Duo Hong (R95922079) on September 27, 2006.

Analysis

- Suppose the input graph contains at least one tour of the cities with a total distance at most B.
- Then there is a computation path for that tour. ${ }^{\text {a }}$
- And it leads to "yes."
- Suppose the input graph contains no tour of the cities with a total distance at most B.
- Then every computation path leads to "no."

[^4]
Remarks on the $\mathrm{P} \stackrel{?}{=}$ NP Open Problem ${ }^{\text {a }}$

- Many practical applications depend on answers to the $\mathrm{P} \stackrel{?}{=} \mathrm{NP}$ question.
- Verification of password should be easy (so it is in NP).
- A computer should not take a long time to let a user $\log \mathrm{in}$.
- A password system should be hard to crack (loosely speaking, cracking it should not be in P).
- It took logicians 63 years to settle the Continuum Hypothesis; how long will it take for this one?

[^5]
Nondeterministic Space Complexity Classes

- Let L be a language.
- Then

$$
L \in \operatorname{NSPACE}(f(n))
$$

if there is an NTM with input and output that decides L and operates within space bound $f(n)$.

- NSPACE $(f(n))$ is a set of languages.
- As in the linear speedup theorem (Theorem 5 on p. 89), constant coefficients do not matter.

Graph Reachability

- Let $G(V, E)$ be a directed graph (digraph).
- Reachability asks, given nodes a and b, does G contain a path from a to b ?
- Can be easily solved in polynomial time by breadth-first search.
- How about its nondeterministic space complexity?

The First Try: NSPACE $(n \log n)$

1: Determine the number of nodes m; \{Note $m \leq n$.\}
2: $x_{1}:=a ;$ Assume $a \neq b$.\}
3: for $i=2,3, \ldots, m$ do
4: Guess $x_{i} \in\left\{v_{1}, v_{2}, \ldots, v_{m}\right\} ;\{$ The i th node. $\}$
end for
6: for $i=2,3, \ldots, m$ do
7: if $\left(x_{i-1}, x_{i}\right) \notin E$ then
8: "no";
9: end if
10: \quad if $x_{i}=b$ then
11: "yes";
12: end if
13: end for
14: "no";

In Fact, REACHABILITY $\in \operatorname{NSPACE}(\log n)$

1: Determine the number of nodes m; \{Note $m \leq n$.\}
2: $x:=a$;
3: for $i=2,3, \ldots, m$ do
4: Guess $y \in\left\{v_{1}, v_{2}, \ldots, v_{m}\right\} ;\{$ The next node. $\}$
5: if $(x, y) \notin E$ then
6: "no";
7: end if
8: \quad if $y=b$ then
9: "yes";
10: end if
11: $x:=y$;
12: end for
13: "no";

Space Analysis

- Variables m, i, x, and y each require $O(\log n)$ bits.
- Testing $(x, y) \in E$ is accomplished by consulting the input string with counters of $O(\log n)$ bits long.
- Hence

$$
\text { REACHABILITY } \in \text { NSPACE }(\log n) .
$$

- REACHABILITY with more than one terminal node also has the same complexity.
- REACHABILIty $\in \mathrm{P}$ (see, e.g., p. 237).

Undecidability

God exists since mathematics is consistent, and the Devil exists since we cannot prove it. - André Weil (1906-1998)

Whatsoever we imagine is finite. Therefore there is no idea, or conception of any thing we call infinite.

- Thomas Hobbes (1588-1679), Leviathan

Infinite Sets

- A set is countable if it is finite or if it can be put in one-one correspondence with $\mathbb{N}=\{0,1, \ldots\}$, the set of natural numbers.
- Set of integers \mathbb{Z}.

$$
* 0 \leftrightarrow 0
$$

$$
* 1 \leftrightarrow 1,2 \leftrightarrow 3,3 \leftrightarrow 5, \ldots
$$

$$
*-1 \leftrightarrow 2,-2 \leftrightarrow 4,-3 \leftrightarrow 6, \ldots
$$

- Set of positive integers $\mathbb{Z}^{+}: i \leftrightarrow i-1$.
- Set of positive odd integers: $i \leftrightarrow(i-1) / 2$.
- Set of (positive) rational numbers \mathbb{Q} : See next page.
- Set of squared integers: $i \leftrightarrow \sqrt{i}$.

Rational Numbers Are Countable

Cardinality

- For any set A, define $|A|$ as A 's cardinality (size).
- Two sets are said to have the same cardinality, or

$$
|A|=|B| \quad \text { or } \quad A \sim B,
$$

if there exists a one-to-one correspondence between their elements.

- 2^{A} denotes set A 's power set, that is $\{B: B \subseteq A\}$.
- The power set of $\{0,1\}$ is

$$
2^{\{0,1\}}=\{\emptyset,\{0\},\{1\},\{0,1\}\} .
$$

- If $|A|=k$, then $\left|2^{A}\right|=2^{k}$.

Cardinality (concluded)

- Define $|A| \leq|B|$ if there is a one-to-one correspondence between A and a subset of B 's.
- Obviously, if $A \subseteq B$, then $|A| \leq|B|$ (prove it!).
$-\operatorname{So}|\mathbb{N}| \leq|\mathbb{Z}|$.
- So $|\mathbb{N}| \leq|\mathbb{R}|$.
- Define $|A|<|B|$ if $|A| \leq|B|$ but $|A| \neq|B|$.

Theorem 8 (Schröder-Bernstein theorem) If $|A| \leq|B|$ and $|B| \leq|A|$, then $|A|=|B|$.

Cardinality and Infinite Sets

- If $A \subsetneq B$, then $|A|<|B|$?
- If A and B are infinite sets, it is possible that $A \subsetneq B$ yet $|A|=|B|$.
$-\mathbb{N} \subsetneq \mathbb{Z}$.
$-\operatorname{But}|\mathbb{N}|=|\mathbb{Z}|\left(\right.$ p. 129). ${ }^{a}$
- A lot of "paradoxes."

[^6]
Galileo's ${ }^{\text {a }}$ Paradox (1638)

- The squares of positive integers can be placed in one-to-one correspondence with positive integers.
- So they are of the same cardinality.
- But this is contrary to the axiom of Euclid ${ }^{\text {b }}$ that the whole is greater than any of its proper parts. ${ }^{\text {c }}$
- Resolution of paradoxes: Pick the notion that results in "better" mathematics.
- The difference between a mathematical paradox and a contradiction is often a matter of opinions.

[^7]
Hilbert's ${ }^{\text {a }}$ Paradox of the Grand Hotel

- For a hotel with a finite number of rooms with all the rooms occupied, a new guest will be turned away.
- Now imagine a hotel with an infinite number of rooms, all of which are occupied.
- A new guest comes and asks for a room.
- "But of course!" exclaims the proprietor.
- He moves the person previously occupying Room 1 to Room 2, the person from Room 2 to Room 3, and so on.
- The new customer now occupies Room 1.

[^8]
Hilbert's Paradox of the Grand Hotel (concluded)

- Now imagine a hotel with an infinite number of rooms, all taken up.
- An infinite number of new guests come in and ask for rooms.
- "Certainly," says the proprietor.
- He moves the occupant of Room 1 to Room 2, the occupant of Room 2 to Room 4, and so on.
- Now all odd-numbered rooms become free and the infinity of new guests can be accommodated in them. ${ }^{\text {a }}$

[^9]
David Hilbert (1862-1943)

[^0]: aSo "accepts" is a more proper term, and other books use "decides" only when the NTM always halts.

[^1]: ${ }^{\text {a }}$ Mr. Kai-Yuan Hou (B99201038, R03922014) on October 6, 2015: $\left.\bigcup_{c>1} \operatorname{TIME}\left(c^{f(n)}\right) \subseteq \operatorname{NTIME}(f(n))\right) ?$

[^2]: ${ }^{\mathrm{a}}$ Or a sequence of nondeterministic choices.

[^3]: ${ }^{\text {a }}$ Each city is visited exactly once.
 ${ }^{\mathrm{b}}$ Both problems are extremely important and are equally hard (p. 391 and p. 493).

[^4]: ${ }^{\text {a }}$ It does not mean the algorithm will follow that path. It just means such a computation path (i.e., a sequence of nondeterministic choices) exists.

[^5]: ${ }^{\text {a }}$ Contributed by Mr. Kuan-Lin Huang (B96902079, R00922018) on September 27, 2011.

[^6]: ${ }^{\text {a }}$ Leibniz (1646-1716) uses it to "prove" that there are no infinite numbers (Russell, 1914).

[^7]: ${ }^{\text {a }}$ Galileo (1564-1642).
 ${ }^{\text {b }}$ Euclid (325 B.C.-265 B.C.).
 ${ }^{\mathrm{c}}$ Leibniz never challenges that axiom (Knobloch, 1999).

[^8]: ${ }^{\text {a }}$ David Hilbert (1862-1943).

[^9]: a"There are many rooms in my Father's house, and I am going to prepare a place for you." (John 14:3)

