Decidability under Nondeterminism

e Let L be a language and N be an NTM.

e N decides L if for any x € ¥*, x € L if and only if there
is a sequence of valid configurations that ends in “yes.”
e In other words,

— If x € L, then N(x) = “yes” for some computation
path.

— If x ¢ L, then N(x) # “yes” for all computation
paths.
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Decidability under Nondeterminism (concluded)

It is not required that the NTM halts in all computation
paths.?

If z ¢ L, no nondeterministic choices should lead to a

“yes” state.

The key is the algorithm’s overall behavior not whether

it gives a correct answer for each particular run.

Note that determinism is a special case of

nondeterminism.

aSo “accepts” is a more proper term, and other books use “decides”
only when the NTM always halts.
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Complementing a TM's Halting States

e Let M decide L, and M’ be M after “yes” <> “no”.

o If M is a deterministic TM, then M’ decides L

— So M and M’ decide languages that are complements
of each other.

e But if M is an NTM, then M’ may not decide L.
— It is possible that both M and M’ accept = (see next
page).
— So M and M’ accept languages that are not
complements of each other.
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Time Complexity under Nondeterminism

e Nondeterministic machine N decides L in time f(n),
where f: N — N, if

— N decides L, and

— for any x € X*, N does not have a computation path
longer than f(|x|).

e We charge only the “depth” of the computation tree.
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Time Complexity Classes under Nondeterminism

e NTIME(f(n)) is the set of languages decided by NTMs
within time f(n).

e NTIME(f(n)) is a complexity class.
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NP (“Nondeterministic Polynomial™)

Define

NP = | | NTIME(n").
k>0

Clearly P C NP.

Think of NP as efficiently verifiable problems (see p.
327).
— Boolean satisfiability (p. 113 and p. 193).

The most important open problem in computer science
is whether P = NP.
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Simulating Nondeterministic TMs

Nondeterminism does not add power to TMs.

Theorem 6 Suppose language L is decided by an NTM N
in time f(n). Then it is decided by a 3-string deterministic
TM M in time O(cf™), where ¢ > 1 is some constant
depending on N.

e On input x, M goes down every computation path of N
using depth-first search.
— M does not need to know f(n).

— As N is time-bounded, the depth-first search will not
run indefinitely.
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The Proof (concluded)

e If any path leads to “yes,” then M immediately enters
the “yes” state.

e If none of the paths leads to “yes,” then M enters the

“no” state.

e The simulation takes time O(c/(™) for some ¢ > 1

because the computation tree has that many nodes.

Corollary 7 NTIME(f(n))) C U, ., TIME(c/(™).2

aMr. Kai-Yuan Hou (B99201038, R03922014) on October 6, 2015:
Uo7 TIME(c/ (") C NTIME(f(n)))?
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NTIME vs. TIME

e Does converting an NTM into a TM require exploring
all computation paths of the NTM as done in Theorem 6

(p. 110)7

e This is the most important question in theory with

important practical implications.
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A Nondeterministic Algorithm for Satisfiability

¢ is a boolean formula with n variables.
1: for:=1,2,....,ndo
Guess z; € {0, 1}; {Nondeterministic choices.}
. end for
. {Verification:}
if ¢(x1,29,...,2,) =1 then

yes' |
. else

CCnO77 ;

2:
3
4
5
6: “ 7
7
8
9: end if
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Computation Tree for Satisfiability

[13 b5 I 11 b5 I 11 L2 N 11 12N 13 L3 I 11 b2 I 1 L3 B 14 b3 BN 11 b3

N0 y&S N0 ¥&S V&S N0 N0 1NO V&S
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Analysis

e The computation tree is a complete binary tree of depth

n.

e Lvery computation path corresponds to a particular

truth assignment® out of 2.

e ¢ is satisfiable iff there is a truth assignment that
satisfies ¢.

20r a sequence of nondeterministic choices.
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Analysis (concluded)

e The algorithm decides language {¢ : ¢ is satisfiable}.
— Suppose ¢ is satisfiable.

x That means there is a truth assignment that
satisfies ¢.

x So there is a computation path that results in

44 7

yes.

— Suppose ¢ is not satisfiable.

+x That means every truth assignment makes ¢ false.

x S0 every computation path results in “no.”

e General paradigm: Guess a “proof” then verify it.
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The Traveling Salesman Problem

We are given n cities 1,2, ..., n and integer distance d;;

between any two cities ¢ and j.
Assume d;; = d;; for convenience.

The traveling salesman problem (TsP) asks for the

total distance of the shortest tour of the cities.?

The decision version TSP (D) asks if there is a tour with

a total distance at most B, where B is an input.”

@Fach city is visited exactly once.
PBoth problems are extremely important and are equally hard (p. 391
and p. 493).
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A Shortest Path
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A Nondeterministic Algorithm for TSP (D)
for:=1,2,...,ndo
Guess z; € {1,2,...,n}; {The ith city.}*
end for
Tp41 i= T1;
{Verification:}

if 1,22,..., 7, are distinct and ) | ds; 2;,., < B then

44 79

yes
else

CCnO” ;

end if

1:
2:
3:
4:
5:
6:
7
8:
9:

[
<

2Can be made into a series of log, n binary choices for each z; so
that the next-state count (2) is a constant, independent of input size.
Contributed by Mr. Chih-Duo Hong (R95922079) on September 27, 2006.
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Analysis

e Suppose the input graph contains at least one tour of

the cities with a total distance at most B.
— Then there is a computation path for that tour.?
— And it leads to “yes.”

e Suppose the input graph contains no tour of the cities
with a total distance at most B.

— Then every computation path leads to “no.”

2]t does not mean the algorithm will follow that path. It just means
such a computation path (i.e., a sequence of nondeterministic choices)

exists.
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Remarks on the P = NP Open Problem?

Many practical applications depend on answers to the

P = NP question.

Verification of password should be easy (so it is in NP).

— A computer should not take a long time to let a user
log in.

A password system should be hard to crack (loosely

speaking, cracking it should not be in P).

It took logicians 63 years to settle the Continuum
Hypothesis; how long will it take for this one?

2Contributed by Mr. Kuan-Lin Huang (B96902079, R00922018) on
September 27, 2011.
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Nondeterministic Space Complexity Classes

Let L be a language.

Then
L € NSPACE(f(n))

if there is an NTM with input and output that decides L

and operates within space bound f(n).
NSPACE(f(n)) is a set of languages.

As in the linear speedup theorem (Theorem 5 on p. 89),

constant coeflicients do not matter.
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Graph Reachability

Let G(V, E) be a directed graph (digraph).

REACHABILITY asks, given nodes a and b, does G
contain a path from a to b7

Can be easily solved in polynomial time by breadth-first

search.

How about its nondeterministic space complexity?
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The First Try: NSPACE(n logn)
: Determine the number of nodes m; {Note m < n.}
: x1 := a; {Assume a # b.}
: fort=2,3,...,mdo
Guess x; € {v1,v2,...,Um}; {The ith node.}
: end for

. for1=2,3,...,m do

if (azi_l,azi) g E then

CCnO” ;

end if
if ©; = b then

44 7

yes
end if

- end for

. “no” :
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In Fact, REACHABILITY € NSPACE(logn)

: Determine the number of nodes m; {Note m < n.}
T = a;
: fort=2,3,...,mdo
Guess y € {v1,v2,...,Um}; {The next node.}
if (z,y) € E then
“no”;
end if
if y =06 then
“yes”;
end if
z =y
: end for

. “no” :

1

2:
3

4:
5:
6:
7
8:
9:

—_ =
= O
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Space Analysis

Variables m, i, z, and y each require O(logn) bits.

Testing (x,y) € E is accomplished by consulting the
input string with counters of O(logn) bits long.

Hence

REACHABILITY € NSPACE(logn).

— REACHABILITY with more than one terminal node

also has the same complexity.

REACHABILITY € P (see, e.g., p. 237).
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Undecidability
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God exists since mathematics is consistent,

and the Devil exists since we cannot prove it.
— André Weil (1906-1998)

Whatsoever we imagine is finite.
Therefore there is no idea, or conception

of any thing we call infinite.
— Thomas Hobbes (1588-1679), Leviathan
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Infinite Sets

e A set is countable if it is finite or if it can be put in
one-one correspondence with N ={0,1,...}, the set of
natural numbers.

— Set of integers Z.

x 0 <> 0.
x 11,24 3,3 5,....
x —1 42, -2 4,-36,....

Set of positive integers ZT: ¢ +> i — 1.
Set of positive odd integers: ¢ <» (i — 1)/2.

Set of (positive) rational numbers Q: See next page.

Set of squared integers: i <> V/i.
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Rational Numbers Are Countable

1
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Cardinality
For any set A, define |A| as A’s cardinality (size).
Two sets are said to have the same cardinality, or
|A|=|B|] or A~ B,

if there exists a one-to-one correspondence between their

elements.

2 denotes set A’s power set, that is {B: B C A}.
— The power set of {0,1} is

2001} = {0,{0},{1},{0,1} }.
If | A| = k, then |24 ]| = 2%,
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Cardinality (concluded)

e Define | A| < | B| if there is a one-to-one correspondence

between A and a subset of B’s.
e Obviously, if A C B, then |A| < | B/| (prove it!).
— So |[N| < |Z].

— So |[N| <R

o Define |A| < |B| if |A| < |B| but |A| # |B.

Theorem 8 (Schréder-Bernstein theorem) If |A| < |B|
and |B| < |A|, then |A| = |B].
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Cardinality and Infinite Sets

e If AC B, then |A| < |B|?

e If A and B are infinite sets, it is possible that A C B yet
Al = |B|.
- N C Z.
— But |[N|=|Z| (p. 129).2

e A lot of “paradoxes.”

2Leibniz (1646-1716) uses it to “prove” that there are no infinite
numbers (Russell, 1914).
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Galileo’s* Paradox (1638)

The squares of positive integers can be placed in

one-to-one correspondence with positive integers.

So they are of the same cardinality.

But this is contrary to the axiom of Euclid® that the

whole is greater than any of its proper parts.©

Resolution of paradoxes: Pick the notion that results in

“better” mathematics.

The difference between a mathematical paradox and a

contradiction is often a matter of opinions.

2Galileo (1564-1642).

PEuclid (325 B.C.-265 B.C.).
“Leibniz never challenges that axiom (Knobloch, 1999).
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Hilbert's* Paradox of the Grand Hotel

For a hotel with a finite number of rooms with all the

rooms occupied, a new guest will be turned away.

Now imagine a hotel with an infinite number of rooms,

all of which are occupied.

A new guest comes and asks for a room.

“But of course!” exclaims the proprietor.

He moves the person previously occupying Room 1 to

Room 2, the person from Room 2 to Room 3, and so on.

e The new customer now occupies Room 1.

2David Hilbert (1862-1943).
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Hilbert's Paradox of the Grand Hotel (concluded)

Now imagine a hotel with an infinite number of rooms,

all taken up.

An infinite number of new guests come in and ask for

rooms.
“Certainly,” says the proprietor.

He moves the occupant of Room 1 to Room 2, the
occupant of Room 2 to Room 4, and so on.

Now all odd-numbered rooms become free and the

infinity of new guests can be accommodated in them.?

@“There are many rooms in my Father’s house, and I am going to
prepare a place for you.” (John 14:3)
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David Hilbert (1862-1943)
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