
Acceptability and Recursively Enumerable Languages

• Let L ⊆ (Σ− {⊔})∗ be a language.

• Let M be a TM such that for any string x:

– If x ∈ L, then M(x) = “yes.”

– If x �∈ L, then M(x) =↗.a

• We say M accepts L.

• It is in general difficult to verify that a TM decides or

accepts a language.b

aThis part is different from recursive languages.
bThanks to a lively discussion on September 23, 2014.
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Acceptability and Recursively Enumerable Languages
(concluded)

• If L is accepted by some TM, then L is said to be

recursively enumerable or semidecidable.a

– A recursively enumerable language can be generated

by a TM, thus the name.b

– It means there is a program such that every x ∈ L

(and only they) will be printed out eventually.

– Of course, if L is infinite in size, this program will

not terminate.

aPost (1944).
bThanks to a lively class discussion on September 20, 2011.
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Emil Post (1897–1954)
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Recursive and Recursively Enumerable Languages

Proposition 2 If L is recursive, then it is recursively

enumerable.

• Let TM M decide L.

• Need to design a TM that accepts L.

• We will modify M to obtain an M ′ that accepts L.
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The Proof (concluded)

• M ′ is identical to M except that when M is about to

halt with a “no” state, M ′ goes into an infinite loop.

– Simply replace any instruction that results in a “no”

state with ones that move the cursor to the right

forever and never halts.

• M ′ accepts L.

– If x ∈ L, then M ′(x) = M(x) = “yes.”

– If x �∈ L, then M(x) = “no” and so M ′(x) =↗.
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Recursively Enumerable Languages: Examples

• The set of C program-input pairs that do not run into

an infinite loop is recursively enumerable.

– Just run its binary code in a simulator environment.

– Then the simulator will terminate if and only if the C

program will terminate.

– When the C program terminates, the simulator

simply exits with a “yes” state.

• The set of C programs that contain an infinite loop is

not recursively enumerable (see p. 151).
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Turing-Computable Functions

• Let f : (Σ− {⊔})∗ → Σ∗.

– Optimization problems, root finding problems, etc.

• Let M be a TM with alphabet Σ.

• M computes f if for any string x ∈ (Σ− {⊔})∗,
M(x) = f(x).

• We call f a recursive functiona if such an M exists.

aKurt Gödel (1931, 1934).
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Kurt Gödela (1906–1978)

Quine (1978), “this the-

orem [· · · ] sealed his im-

mortality.”

aThis photo was taken by Alfred Eisenstaedt (1898–1995).
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Church’s Thesis or the Church-Turing Thesis

• What is computable is Turing-computable; TMs are

algorithms.a

• No “intuitively computable” problems have been shown

not to be Turing-computable, yet.b

aChurch (1936); Kleene (1953).
bQuantum computer of Manin (1980) and Feynman (1982) and DNA

computer of Adleman (1994).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 57



Church’s Thesis or the Church-Turing Thesis
(concluded)

• Many other computation models have been proposed.

– Recursive function (Gödel), λ calculus (Church),

formal language (Post), assembly language-like RAM

(Shepherdson & Sturgis), boolean circuits (Shannon),

extensions of the Turing machine (more strings,

two-dimensional strings, and so on), etc.

• All have been proved to be equivalent.
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Alonso Church (1903–1995)
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Stephen Kleene (1909–1994)
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Extended Church’s Thesisa

• All “reasonably succinct encodings” of problems are

polynomially related (e.g., n2 vs. n6).

– Representations of a graph as an adjacency matrix

and as a linked list are both succinct.

– The unary representation of numbers is not succinct.

– The binary representation of numbers is succinct.

∗ 10012 vs. 1111111111.

• All numbers for TMs will be binary from now on.

aSome call it “polynomial Church’s thesis,” which Lószló Lovász at-

tributed to Leonid Levin.
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Extended Church’s Thesis (concluded)

• Representations that are not succinct may give

misleadingly low complexities.

– Consider an algorithm with binary inputs that runs

in 2n steps.

– Suppose the input uses unary representation instead.

– Then the same algorithm runs in linear time because

the input length is now 2n!

• So a succinct representation is for honest accounting.
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Physical Church-Turing Thesis

• Church’s thesis

is a profound claim about the physical laws of our

universe, i.e.: any physical system that purports

to be a ‘computer’ is not capable of any

computational task that a Turing machine is

incapable of.a

• Church’s and extended Church’s theses

are not statements about mathematics, but rather

conjectured constraints on physical laws.b

aWarren Smith (1998).
bYao (2003).
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Physical Church-Turing Thesis (concluded)

• The physical Church-Turing thesis states that:

Anything computable in physics can also be

computed on a Turing machine.a

• The universe is a Turing machine.b

aCooper (2012).
bEdward Fredkin’s (1992) digital physics.
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The Strong Church-Turing Thesisa

• The strong Church-Turing thesis states that:

A Turing machine can compute any function

computable by any “reasonable” physical device

with only polynomial slowdown.b

• A CPU and a DSP chip are good examples of physical

devices.c

aVergis, Steiglitz, and Dickinson (1986).
bhttp://ocw.mit.edu/courses/mathematics/18-405j-advanced

-complexity-theory-fall-2001/lecture-notes/lecture10.pdf
cThanks to a lively discussion on September 23, 2014.
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The Strong Church-Turing Thesis (concluded)

• Factoring is believed to be a hard problem for Turing

machines (but there is no proof yet).

• But a quantum computer can factor numbers in

probabilistic polynomial time.a

• So if a large-scale quantum computer can be reliably

built, the strong Church-Turing thesis may be refuted.b

aShor (1994).
bContributed by Mr. Kai-Yuan Hou (B99201038, R03922014) on

September 22, 2015.
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Turing Machines with Multiple Strings

• A k-string Turing machine (TM) is a quadruple

M = (K,Σ, δ, s).

• K,Σ, s are as before.

• δ : K ×Σk → (K ∪{h, “yes”, “no”})× (Σ×{←,→,−})k.
• All strings start with a �.

• The first string contains the input.

• Decidability and acceptability are the same as before.

• When TMs compute functions, the output is the last

(kth) string.
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A 2-String TM

δ

�1000110000111001110001110���

�111110000�������������������
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palindrome Revisited

• A 2-string TM can decide palindrome in O(n) steps.

– It copies the input to the second string.

– The cursor of the first string is positioned at the first

symbol of the input.

– The cursor of the second string is positioned at the

last symbol of the input.

– The symbols under the cursors are then compared.

– The two cursors are then moved in opposite

directions until the ends are reached.

– The machine accepts if and only if the symbols under

the two cursors are identical at all steps.
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δ

�ababbaabbaabbaabbaba���

�ababbaabbaabbaabbaba���
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palindrome Revisited (concluded)

• The running times of a 2-string TM and a single-string

TM are quadratically related: n2 vs. n.

• This is consistent with the extended Church’s thesis.

– “Reasonable” models are related polynomially in

running times.
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Configurations and Yielding

• The concept of configuration and yielding is the same as

before except that a configuration is a (2k + 1)-tuple

(q, w1, u1, w2, u2, . . . , wk, uk).

– wiui is the ith string.

– The ith cursor is reading the last symbol of wi.

– Recall that � is each wi’s first symbol.

• The k-string TM’s initial configuration is

(s,

2k︷ ︸︸ ︷
�, x︸︷︷︸

1

, �, ε︸︷︷︸
2

, �, ε︸︷︷︸
3

, . . . , �, ε︸︷︷︸
k

).
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Time seemed to be

the most obvious measure

of complexity.

— Stephen Arthur Cook (1939–)
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Time Complexity

• The multistring TM is the basis of our notion of the

time expended by TMs.

• If a k-string TM M halts after t steps on input x, then

the time required by M on input x is t.

• If M(x) =↗, then the time required by M on x is ∞.
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Time Complexity (concluded)

• Machine M operates within time f(n) for f : N→ N

if for any input string x, the time required by M on x is

at most f(|x |).
– |x | is the length of string x.

• Function f(n) is a time bound for M .
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Time Complexity Classesa

• Suppose language L ⊆ (Σ− {⊔})∗ is decided by a

multistring TM operating in time f(n).

• We say L ∈ TIME(f(n)).

• TIME(f(n)) is the set of languages decided by TMs

with multiple strings operating within time bound f(n).

• TIME(f(n)) is a complexity class.

– palindrome is in TIME(f(n)), where f(n) = O(n).

aHartmanis and Stearns (1965); Hartmanis, Lewis, and Stearns

(1965).
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Juris Hartmanisa (1928–)

aTuring Award (1993).
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Richard Edwin Stearnsa (1936–)

aTuring Award (1993).
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The Simulation Technique

Theorem 3 Given any k-string M operating within time

f(n), there exists a (single-string) M ′ operating within time

O(f(n)2) such that M(x) = M ′(x) for any input x.

• The single string of M ′ implements the k strings of M .
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The Proof

• Represent configuration (q, w1, u1, w2, u2, . . . , wk, uk) of

M by this string of M ′:

(q,�w′
1u1 � w′

2u2 � · · ·� w′
kuk ��).

– � is a special delimiter.

– w′
i is wi with the firsta and last symbols “primed.”

– It serves the purpose of “,” in a configuration.b

aThe first symbol is always �.
bAn alternative is to use (q,�w′

1u1,′ �w′
2,

′ u2 � · · ·�w′
k,

′ uk ��) by

priming only � in wi, where “,′” is a new symbol.
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The Proof (continued)

• The “priming” of the last symbol of wi ensures that M
′

knows which symbol is under each cursor of M .a

• The first symbol of wi is the primed version of �: �′.

– Recall TM cursors are not allowed to move to the left

of � (p. 21).

– Now the cursor of M ′ can move between the

simulated strings of M .b

aAdded because of comments made by Mr. Che-Wei Chang

(R95922093) on September 27, 2006.
bThanks to a lively discussion on September 22, 2009.
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The Proof (continued)

• The initial configuration of M ′ is

(s,��′′ x�

k − 1 pairs︷ ︸︸ ︷
�′′ � · · ·�′′ ��).

– �′′ is double-primed because it is the beginning and

the ending symbol as the cursor is reading it.a

aAdded after the class discussion on September 20, 2011.
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The Proof (continued)

• We simulate each move of M thus:

1. M ′ scans the string to pick up the k symbols under

the cursors.

– The states of M ′ must be enlarged to include

K × Σk to remember them.a

– The transition functions of M ′ must also reflect it.

2. M ′ then changes the string to reflect the overwriting

of symbols and cursor movements of M .

aRecall the TM program on p. 27.
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The Proof (continued)

• It is possible that some strings of M need to be

lengthened (see next page).

– The linear-time algorithm on p. 33 can be used for

each such string.

• The simulation continues until M halts.

• M ′ then erases all strings of M except the last one.a

aBecause whatever appears on the string of M ′ will be considered the

output. So those �′s and �′′s need to be removed.
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The Proof (continued)a

string 1 string 2 string 3 string 4

string 1 string 2 string 3 string 4

aIf we interleave the strings, the simulation may be easier. Con-

tributed by Mr. Kai-Yuan Hou (B99201038, R03922014) on September

22, 2015.
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The Proof (continued)

• Since M halts within time f(|x |), none of its strings

ever becomes longer than f(|x |).a

• The length of the string of M ′ at any time is O(kf(|x |)).
• Simulating each step of M takes, per string of M ,

O(kf(|x |)) steps.
– O(f(|x |)) steps to collect information from this

string.

– O(kf(|x |)) steps to write and, if needed, to lengthen

the string.

aWe tacitly assume f(n) ≥ n.
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The Proof (concluded)

• M ′ takes O(k2f(|x |)) steps to simulate each step of M

because there are k strings.

• As there are f(|x |) steps of M to simulate, M ′ operates
within time O(k2f(|x |)2).a

aIs the time reduced to O(kf(|x |)2) if the interleaving data structure

is adopted?
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Linear Speedupa

Theorem 4 Let L ∈ TIME(f(n)). Then for any ε > 0,

L ∈ TIME(f ′(n)), where f ′(n) = εf(n) + n+ 2.

aHartmanis and Stearns (1965).
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Implications of the Speedup Theorem

• State size can be traded for speed.a

• If f(n) = cn with c > 1, then c can be made arbitrarily

close to 1.

• If f(n) is superlinear, say f(n) = 14n2 + 31n, then the

constant in the leading term (14 in this example) can be

made arbitrarily small.

– Arbitrary linear speedup can be achieved.b

– This justifies the big-O notation in the analysis of

algorithms.

amk · |Σ|3mk-fold increase to gain a speedup of O(m). No free lunch.
bCan you apply the theorem multiple times to achieve superlinear

speedup? Thanks to a question by a student on September 21, 2010.
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P

• By the linear speedup theorem, any polynomial time

bound can be represented by its leading term nk for

some k ≥ 1.

• If L ∈ TIME(nk) for some k ∈ N, it is a polynomially

decidable language.

– Clearly, TIME(nk) ⊆ TIME(nk+1).

• The union of all polynomially decidable languages is

denoted by P:

P =
⋃
k>0

TIME(nk).

• P contains problems that can be efficiently solved.
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Philosophers have explained space.

They have not explained time.

— Arnold Bennett (1867–1931),

How To Live on 24 Hours a Day (1910)

I keep bumping into that silly quotation

attributed to me that says

640K of memory is enough.

— Bill Gates (1996)
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Space Complexity

• Consider a k-string TM M with input x.

• Assume non-
⊔

is never written over by
⊔
.a

– The purpose is not to artificially reduce the space

needs (see below).

• If M halts in configuration

(H,w1, u1, w2, u2, . . . , wk, uk),

then the space required by M on input x is

k∑
i=1

|wiui |.

aCorrected by Ms. Chuan-Ju Wang (R95922018, F95922018) on

September 27, 2006.
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Space Complexity (continued)

• Suppose we do not charge the space used only for input

and output.

• Let k > 2 be an integer.

• A k-string Turing machine with input and output

is a k-string TM that satisfies the following conditions.

– The input string is read-only.

– The last string, the output string, is write-only.

∗ So the cursor never moves to the left.

– The cursor of the input string does not wander off

into the
⊔
s.
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Space Complexity (concluded)

• If M is a TM with input and output, then the space

required by M on input x is

k−1∑
i=2

|wiui |.

• Machine M operates within space bound f(n) for

f : N→ N if for any input x, the space required by M

on x is at most f(|x |).
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Space Complexity Classes

• Let L be a language.

• Then

L ∈ SPACE(f(n))

if there is a TM with input and output that decides L

and operates within space bound f(n).

• SPACE(f(n)) is a set of languages.

– palindrome ∈ SPACE(log n).a

• As in the linear speedup theorem (p. 88), constant

coefficients do not matter.

aKeep 3 counters.
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Nondeterminisma

• A nondeterministic Turing machine (NTM) is a

quadruple N = (K,Σ,Δ, s).

• K,Σ, s are as before.

• Δ ⊆ K × Σ× (K ∪ {h, “yes”, “no”})× Σ× {←,→,−} is
a relation, not a function.b

– For each state-symbol combination (q, σ), there may

be multiple valid next steps.

– Multiple lines of code may be applicable.

aRabin and Scott (1959).
bCorrected by Mr. Jung-Ying Chen (D95723006) on September 23,

2008.
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Nondeterminism (continued)

• As before, a program contains lines of code:

(q1, σ1, p1, ρ1, D1) ∈ Δ,

(q2, σ2, p2, ρ2, D2) ∈ Δ,

...

(qn, σn, pn, ρn, Dn) ∈ Δ.

– We cannot write

δ(qi, σi) = (pi, ρi, Di)

as in the deterministic case (p. 22) anymore.
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Nondeterminism (concluded)

• A configuration yields another configuration in one step

if there exists a rule in Δ that makes this happen.

• But only one will be taken.

• So there is only a single thread of computation.a

– Nondeterminism is no parallism.

aThanks to a lively discussion on September 22, 2015.
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Michael O. Rabina (1931–)

aTuring Award (1976).
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Dana Stewart Scotta (1932–)

aTuring Award (1976).
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Computation Tree and Computation Path
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