
Theory of Computation Lecture
Notes

Prof. Yuh-Dauh Lyuu

Dept. Computer Science & Information Engineering

and

Department of Finance

National Taiwan University

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1



Class Information

• Papadimitriou. Computational Complexity. 2nd

printing. Addison-Wesley. 1995.

– We more or less follow the topics of the book.

– Extra materials may be added.

• You may want to review discrete mathematics.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 2



Class Information (concluded)

• More information and lecture notes can be found at

www.csie.ntu.edu.tw/~lyuu/complexity.html

– Homeworks, exams, solutions and teaching assistants

will be announced there.

• Please ask many questions in class.

– This is the best way for me to remember you in a

large class.a

a“[A] science concentrator [...] said that in his eighth semester of

[Harvard] college, there was not a single science professor who could

identify him by name.” (New York Times, September 3, 2003.)

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 3



Grading

• Homeworks.

– Do not copy others’ homeworks.

– Do not give your homeworks for others to copy.

• Two to three exams.

• You must show up for the exams in person.

• If you cannot make it to an exam for a legitimate

reason, please email me or a TA beforehand to the

extent possible.

• Missing the final exam will automatically earn a “fail”

grade.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 4



Problems and Algorithms

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 5



I have never done anything “useful.”

— Godfrey Harold Hardy (1877–1947),

A Mathematician’s Apology (1940)

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 6



What This Course Is All About

Computation: What is computation?

Computability: What can be computed?

• There are well-defined problems that cannot be

computed.

• In fact, most problems cannot be computed.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 7



What This Course Is All About (continued)

Complexity: What is a computable problem’s inherent

complexity?

• Some computable problems require at least

exponential time and/or space.

– They are said to be intractable.

• Some practical problems require superpolynomiala

resources unless certain conjectures are disproved.

• Resources besides time and space: Circuit size,

circuit layout area, program size, number of random

bits, etc.

aThe prefix “super” means “above, beyond.”

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 8



What This Course Is All About (concluded)

Applications: Intractability results can be very useful.

• Cryptography and security.

• Approximations.

• Conjectures about nature.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 9



Tractability and Intractability

• Tractability means polynomial in terms of the input size

n.

– n, n logn, n2, n90.

• It results in a fruitful and practical theory of complexity.

• Few practical, tractable problems require a large degree.

• Superpolynomial-time algorithms are seldom practical.

– nlogn, 2
√
n,a 2n, n! ∼ √2πn (n/e)n.

aSize of depth-3 circuits to compute the majority function (Wolfovitz

(2006)) and certain stochastic models used in finance (Dai (R86526008,

D8852600) and Lyuu (2007); Lyuu and Wang (F95922018) (2011); Chiu

(R98723059) (2012)).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 10



Exponential Growth of E. Colia

• Under ideal conditions, E. Coli bacteria divide every 20

minutes.

• In two days, a single E. Coli bacterium would become

2144 bacteria.

• They would weigh 2,664 times the Earth!

aNick Lane, Power, Sex, Suicide: Mitochondria and the Meaning of

Life (2005).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 11



Growth of Factorials

n n! n n!

1 1 9 362,880

2 2 10 3,628,800

3 6 11 39,916,800

4 24 12 479,001,600

5 120 13 6,227,020,800

6 720 14 87,178,291,200

7 5040 15 1,307,674,368,000

8 40320 16 20,922,789,888,000

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 12



Moore’s Lawa to the Rescue?b

• One version of Moore’s law says the computing power

doubles every 1.5 years.

• So the computing power grows like

4y/3,

where y is the number of years from now.

• Assume Moore’s law holds forever.

• Can you let the law take care of exponential complexity?

aMoore (1965).
bContributed by Ms. Amy Liu (J94922016) on May 15, 2006. Thanks

also to a lively discussion on September 14, 2010.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 13



Moore’s Law to the Rescue (continued)?

• Suppose a problem takes an seconds of CPU time to

solve now, where n is the input length.

• The same problem will take

an

4y/3

seconds to solve y years from now.

• In particular, the hardware 3n log4 a years from now

takes 1 second to solve it.

• The overall complexity becomes linear in n!

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 14



Moore’s Law to the Rescue (concluded)?

• Potential objections:

– Moore’s law may not hold forever.

– The total number of operations is the same; so the

algorithm remains exponential in complexity.a

• What is a “good” theory on computational complexity?

aContributed by Mr. Hung-Jr Shiu (D00921020) on September 14,

2011.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 15



Turing Machines

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 16



Tarski has stressed in his lecture

(and I think justly)

the great importance of

the concept of general recursiveness

(or Turing’s computability).

— Kurt Gödel (1946)

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 17



What Is Computation?

• That can be coded in an algorithm.a

• An algorithm is a detailed step-by-step method for

solving a problem.

– The Euclidean algorithm for the greatest common

divisor is an algorithm.

– “Let s be the least upper bound of compact set A” is

not an algorithm.

– “Let s be a smallest element of a finite-sized array”

can be solved by an algorithm.

aMuhammad ibn Mūsā Al-Khwārizmī (780–850).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 18



Turing Machinesa

• A Turing machine (TM) is a quadruple M = (K,Σ, δ, s).

• K is a finite set of states.b

• s ∈ K is the initial state.

• Σ is a finite set of symbols (disjoint from K).

– Σ includes
⊔

(blank) and � (first symbol).

• δ : K ×Σ→ (K ∪ {h, “yes”, “no”})×Σ× {←,→,−} is a
transition function.

– ← (left), → (right), and − (stay) signify cursor

movements.
aTuring (1936).
bTuring (1936), “If we admitted an infinity of states of mind, some of

them will be ‘arbitrarily close’ and will be confused.”

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 19



A TM Schema

δ

�1000110000111001110001110���

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 20



More about δ

• The program has the halting state (h), the accepting

state (“yes”), and the rejecting state (“no”).

• Given current state q ∈ K and current symbol σ ∈ Σ,

δ(q, σ) = (p, ρ,D).

– It specifies:

∗ The next state p;

∗ The symbol ρ to be written over σ;

∗ The direction D the cursor will move afterwards.

• Assume δ(q,�) = (p,�,→).

– So the cursor never falls off the left end of the string.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 21



More about δ (concluded)

• Think of the program as lines of codes:

δ(q1, σ1) = (p1, ρ1, D1),

δ(q2, σ2) = (p2, ρ2, D2),

...

δ(qn, σn) = (pn, ρn, Dn).

• Assume the state is q and the symbol under the cursor σ.

• The line of code that matches (q, σ) is executed.a

• Then the process is repeated.
aSo there should be one and only one instruction for every possible

pair (q, σ). Contributed by Mr. Ya-Hsun Chang (B96902025, R00922044)

on September 13, 2011.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 22



The Operations of TMs

• Initially the state is s.

• The string on the tape is initialized to a �, followed by a

finite-length string x ∈ (Σ− {⊔})∗.
• x is the input of the TM.

– The input must not contain
⊔
s (why?)!

• The cursor is pointing to the first symbol, always a �.

• The TM takes each step according to δ.

• The cursor may overwrite
⊔

to make the string longer

during the computation.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 23



“Physical” Interpretations

• The tape: computer memory and registers.

– Except that the tape can be lengthened on demand.

• δ: program.

– A program has a finite size.

• K: instruction numbers.

• s: “main()” in the C programming language.

• Σ: alphabet, much like the ASCII code.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 24



The Halting of a TM

• A TM M may halt in three cases.

“yes”: M accepts its input x, and M(x) = “yes”.

“no”: M rejects its input x, and M(x) = “no”.

h: M(x) = y means the string (tape) consists of a �,

followed by the finite string y which contains no
⊔
s,

followed by a
⊔
.

– y is the output of the computation.

– y may be empty denoted by ε.

• If M never halts on x, then write M(x) =↗.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 25



The First TM Programa

• Assume M = (K,Σ, δ, s), where K = {s, h},
Σ = { 0, 1,
, � }, and

p ∈ K σ ∈ Σ δ(p, σ)

s � (s, �,→)

s 1 (s, 0,→)

s 0 (s, 1,→)

s 
 (h,
,−)
• This TM converts all 1’s in the input string to 0’s and

vice versa.

aContributed by Mr. Zheyuan (Jeffrey) Gao (R01922142) on Septem-

ber 21, 2013.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 26



The Second TM Programa

• Assume M = (K,Σ, δ, s), where K = {s, s1, h},
Σ = { 0, 1,
, � }, and

aContributed by Mr. Zheyuan (Jeffrey) Gao (R01922142) on Septem-

ber 21, 2013.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 27



p ∈ K σ ∈ Σ δ(p, σ)

s � (s, �,→)

s 0 (s, 0,→)

s 1 (s1, 1,→)

s1 0 (s, 0,→)

s1 1 (h, 1,−)
s 
 (h,
,−)
s1 
 (h,
,−)

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 28



The Second TM Program (concluded)

• This TM scans to the right until it finds two consecutive

1’s and then halts.

• Otherwise, it halts at the end of the input string.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 29



The Third TM Program

• Assume M = (K,Σ, δ, s), where K = {s, s1, “yes”, “no”},
Σ = { 0, 1,
, � }, and

p ∈ K σ ∈ Σ δ(p, σ)

s � (s, �,→)

s 0 (s, 0,→)

s 1 (s1, 1,→)

s1 0 (s, 0,→)

s1 1 (“yes”, 1,−)
s 
 (“no”,
,−)
s1 
 (“no”,
,−)

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 30



The Third TM Program (concluded)

• This TM accepts the input if there are two consecutive

1’s.

• Otherwise, it rejects the input string.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 31



Why Turing Machines?

• Because of the simplicity of the TM, the model has the

advantage when it comes to complexity issues.

• One can conceivably develop a complexity theory based

on something similar to C, C++ or Java.

• But the added complexity does not yield additional

fundamental insights.

• We will describe TMs in pseudocode only.a

aBut you are strongly encouraged to read and understand the TM

codes in the textbook to gain insight on this programming language.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 32



A TM Program To Insert a Symbol

• We want to compute f(x) = ax.

– The TM moves its cursor to the last symbol.

– It moves the last symbol of x to the right by one

position.

– It moves the next to last symbol to the right, and so

on.

– The TM finally writes a in the first position.

• The total number of steps is O(n), where n is the length

of x.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 33



Remarks

• A computation model should be “physically” realizable.

– E.g., our brain, at least as powerful as a Turing

machine, is physical.

• Although a TM requires a tape of potentially infinite

length, which is not realizable, it is not a major

conceptual issue.a

– Imagine you (“the program”) are living next to a

paper mill while carrying out a TM code using pencil

(“the cursor”) and paper (“the tape”).

– The mill will produce extra paper if needed.

aThanks to a lively discussion on September 20, 2006.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 34



Remarks (concluded)

• Even our computer is only an approximation of a TM

for the same reason.

– But it is easy to imagine our computer with more and

more address space, memory space, and disk space.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 35



The Concept of Configuration

• A configurationa is a complete description of the

current state of the computation.

• The specification of a configuration is sufficient for the

computation to continue as if it had not been stopped.

– What does your PC save before it sleeps or

hibernates?

– Enough for it to resume work later.

• Similar to the concept of state in Markov processes.

aThis term was due to Turing (1936).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 36



Configurations (concluded)

• A configuration is a triple (q, w, u):

– q ∈ K.

– w ∈ Σ∗ is the string to the left of the cursor

(inclusive).

– u ∈ Σ∗ is the string to the right of the cursor.

• Note that (w, u) describes both the string and the cursor

position.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 37



�

�1000110000111001110001110���

• w = �1000110000.

• u = 111001110001110.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 38



Yielding

• Fix a TM M .

• Configuration (q, w, u) yields configuration (q′, w′, u′) in one

step,

(q, w, u)
M−→ (q′, w′, u′),

if a step of M from configuration (q, w, u) results in

configuration (q′, w′, u′).

• (q, w, u)
Mk−→ (q′, w′, u′): Configuration (q, w, u) yields

configuration (q′, w′, u′) after k ∈ N steps.

• (q, w, u)
M∗−→ (q′, w′, u′): Configuration (q, w, u) yields

configuration (q′, w′, u′).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 39



Alan Turing (1912–1954)

Richard Dawkins (2006), “Tur-

ing arguably made a greater

contribution to defeating the

Nazis than Eisenhower or

Churchill.”

Michael Peck (2014), “But UL-

TRA didn’t detect German

preparations, which was taken

as an indication that nothing

was happening.”

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 40



Palindromesa

• A string is a palindrome if it reads the same forwards

and backwards (e.g., 001100).

• A TM program can be written to recognize palindromes:

– It matches the first character with the last character.

– It matches the second character with the next to last

character, etc. (see next page).

– “yes” for palindromes and “no” for nonpalindromes.

• This program takes O(n2) steps.

• Can we do better?

aBryson (2001), “Possibly the most demanding form of wordplay in

English[.]”

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 41



100011000000100111

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 42



A Matching Lower Bound for palindrome

Theorem 1 (Hennie (1965)) palindrome on

single-string TMs takes Ω(n2) steps in the worst case.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 43



Comments on Lower-Bound Proofs

• They are usually difficult.

– Worthy of a Ph.D. degree.

• An algorithm whose running time matches a lower

bound means it is optimal.

– The simple O(n2) algorithm for palindrome is

optimal.

• This happens rarely and is model dependent.

– Searching, sorting, palindrome, matrix-vector

multiplication, etc.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 44



The Kleene Star Operation ∗a
• Let A be a set.

• The Kleene star of A, denoted by A∗, is the set of all

strings obtained by concatenating zero or more strings

from A.

– For example, suppose A = { 0, 1 }.
– Then

A∗ = { ε, 0, 1, 00, 01, 10, 11, 000, . . .}.

– Note that every string in A∗ must be of finite length.

aKleene (1956).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 45



Decidability and Recursive Languages

• Let L ⊆ (Σ− {⊔})∗ be a language, i.e., a set of strings

of non-
⊔

symbols, with a finite length.

– For example, {0, 01, 10, 210, 1010, . . .}.
• Let M be a TM such that for any string x:

– If x ∈ L, then M(x) = “yes.”

– If x �∈ L, then M(x) = “no.”

• We say M decides L.

• If there exists a TM that decides L, then L is

recursivea or decidable.

aLittle to do with the concept of “recursive” calls.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 46



Recursive and Nonrecursive Languages: Examples

• The set of palindromes over any alphabet is recursive.a

– palindrome cannot be solved by finite state

automata.

– In fact, finite state automata are equivalent to

read-only, right-moving Turing machines.b

• The set of prime numbers { 2, 3, 5, 7, 11, 13, 17, . . .} is
recursive.c

aNeed a program that returns “yes” iff the input is a palindrome.
bThanks to a lively discussion on September 15, 2015.
cNeed a program that returns “yes” iff the input is a prime.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 47



Recursive and Nonrecursive Languages: Examples
(concluded)

• The set of C programs that do not contain a while, a

for, or a goto is recursive.a

• But, the set of C programs that do not contain an

infinite loop is not recursive (see p. 148).

aNeed a program that returns “yes” iff the input C code does not

contain any of the keywords.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 48


