Theory of Computation

Homework 5
Due: 2015/1/06

Problem 1 Suppose that there are n jobs to be assigned to m machines. Let ¢; be the running
time for job i € {1...n}, A[i{] = j mean that job i is assigned to machine j € {1...m}, and
T[j] = >_ sy, ti e the total running time for machine j. The makespan of A is the maximum
time that any machine is busy, given by

makespan(A) = max T7[j].
J

The LOADBALANCE problem is to compute the minimal makespan of A. Note that LOADBALANCE
problem is NP-hard. Consider the following algorithm for LOADBALANCE:

: for i <+ 1 to m do
T[i] < 0;

: end for

: for i < 1 ton do

for j <+ 2 to m do

1

2

3

4

5: min < 1;
6

7 if T[j] < T'|min] then
8

9

min ¢ 7;
end if
10: end for
11: Ali] - min;
12: T'[min| < T'[min| + ¢;;
13: end for

14: return A;

Show that this algorithm for LOADBALANCE is a %—approximation algorithm, meaning that it
1

returns a solution that is at most —— = 2 times the optimum.
T2

1
Proof: Let OPT be the optimal makespan. Note that OPT > max; t; and OPT > — Y " | t;.
m
Suppose that machine ¢* has the largest total running time, and let j* be the last job assigned
to machine ¢*. Since T'[i*] — t;» < T'[i] for all ¢ € {1,2,...,m}, T[i*] — t;« is less than or equal

to the average running time over all machines. Thus,
Tl =ty < im ! En:t <oPT (1)
7=t < — | = — i < }
T T m i=1 me3

We conclude that T[i*] < 2 x OPT. |

Problem 2 Define IP* as IP except that the prover now runs in deterministic polynomial
space instead of exponential time. Show that IP* C PSPACE. (You cannot use the known
fact IP = PSPACE.)

Proof: Let L € IP*, (P,V) be an interactive proof system, V' be a probabilistic polynomial-
time verifier, P be a polynomial-space prover, ¢ and k be some positive integers, n be the
length of the input, m; € {0,1}* be ACCEPT/REJECT or the message sent in round i, and
r € {0,1}" be the random bit string used by V in each round (for brevity, we had assumed r
is of the same length in each round). Assume P and V interact for at most n® rounds, and V'
accepts or rejects the input before or at round n¢. Construct deterministic TM M to simulate
(P, V) as follows. Assume without loss of generality that V' sends the first message. In the
algorithm, ¢ is the total number of choices for the random bits generated by V up to round ¢,
and a is the number of choices for which V' accepts up to round i. On any input z, M computes

a and t recursively as follows by calling I'(x, 1):

Algorithm T'(z,i,m;,...,m;_1)
1: (a,t) = (0,0);
2: if © = n® then

3 for all r € {0,1}"" do

4 if V(x,1,my,mg,...,m;_1,7) = ACCEPT then
5 a=a+1;

6: end if

7 end for

8 return (a,2"");

9: else

10: for all r € {0,1}"" do

11: m; = V(x,i,mq,...,mi_1,7);

12: if m; = ACCEPT then

13: (a,t) = (a+1,t+1);

14: else if m; = REJECT then

15: (a,t) = (a,t +1);

16: else

17: mip1 = P(x,i+ 1,mq, ..., m;);

18: (a,t) = (a,t) + T(x,i 4+ 2,mq,. .., miy1);
19: end if

20: end for

21: return (a,t);

22: end if

Let s = ¢. If s > 2/3, then M accepts x; otherwise, M rejects z. This algorithm performs

in polynomial space. So M decides L in polynomial space. |

