Theory of Computation

Homework 5

Due: 2015/1/06
Problem 1 Suppose that there are n jobs to be assigned to m machines. Let t_{i} be the running time for job $i \in\{1 \ldots n\}, A[i]=j$ mean that job i is assigned to machine $j \in\{1 \ldots m\}$, and $T[j]=\sum_{A[i]=j} t_{i}$ be the total running time for machine j. The makespan of A is the maximum time that any machine is busy, given by

$$
\operatorname{makespan}(A)=\max _{j} T[j]
$$

The LoadBalance problem is to compute the minimal makespan of A. Note that LoadBalance problem is NP-hard. Consider the following algorithm for LoadBalance:

```
for \(i \leftarrow 1\) to \(m\) do
    \(T[i] \leftarrow 0 ;\)
end for
for \(i \leftarrow 1\) to \(n\) do
    \(\min \leftarrow 1 ;\)
    for \(j \leftarrow 2\) to \(m\) do
            if \(T[j]<T[\mathrm{~min}]\) then
                min \(\leftarrow j\);
            end if
    end for
    \(A[i] \leftarrow \min ;\)
    \(T[\min ] \leftarrow T[\min ]+t_{i} ;\)
    end for
    return \(A\);
```

Show that this algorithm for LOADBALANCE is a $\frac{1}{2}$-approximation algorithm, meaning that it returns a solution that is at most $\frac{1}{1-\frac{1}{2}}=2$ times the optimum.

Proof: Let $O P T$ be the optimal makespan. Note that $O P T \geq \max _{i} t_{i}$ and $O P T \geq \frac{1}{m} \sum_{i=1}^{n} t_{i}$. Suppose that machine i^{*} has the largest total running time, and let j^{*} be the last job assigned to machine i^{*}. Since $T\left[i^{*}\right]-t_{j^{*}} \leq T[i]$ for all $i \in\{1,2, \ldots, m\}, T\left[i^{*}\right]-t_{j^{*}}$ is less than or equal to the average running time over all machines. Thus,

$$
\begin{equation*}
T\left[i^{*}\right]-t_{j^{*}} \leq \frac{1}{m} \sum_{i=1}^{m} T[i]=\frac{1}{m} \sum_{i=1}^{n} t_{i} \leq O P T . \tag{1}
\end{equation*}
$$

We conclude that $T\left[i^{*}\right] \leq 2 \times O P T$.

Problem 2 Define IP * as IP except that the prover now runs in deterministic polynomial space instead of exponential time. Show that $\mathbf{I P}^{*} \subseteq$ PSPACE. (You cannot use the known fact $\mathbf{I P}=$ PSPACE. $)$

Proof: Let $L \in \mathbf{I P}^{*},(P, V)$ be an interactive proof system, V be a probabilistic polynomialtime verifier, P be a polynomial-space prover, c and k be some positive integers, n be the length of the input, $m_{i} \in\{0,1\}^{*}$ be ACCEPT/REJECT or the message sent in round i, and $r \in\{0,1\}^{n^{k}}$ be the random bit string used by V in each round (for brevity, we had assumed r is of the same length in each round). Assume P and V interact for at most n^{c} rounds, and V accepts or rejects the input before or at round n^{c}. Construct deterministic TM M to simulate (P, V) as follows. Assume without loss of generality that V sends the first message. In the algorithm, t is the total number of choices for the random bits generated by V up to round i, and a is the number of choices for which V accepts up to round i. On any input x, M computes a and t recursively as follows by calling $\Gamma(x, 1)$:

```
Algorithm \(\Gamma\left(x, i, m_{i}, \ldots, m_{i-1}\right)\)
    \((a, t)=(0,0) ;\)
    if \(i=n^{c}\) then
        for all \(r \in\{0,1\}^{n^{k}}\) do
            if \(V\left(x, i, m_{1}, m_{2}, \ldots, m_{i-1}, r\right)=\) ACCEPT then
                \(a=a+1 ;\)
            end if
        end for
        return \(\left(a, 2^{n^{k}}\right)\);
    else
        for all \(r \in\{0,1\}^{n^{k}}\) do
        \(m_{i}=V\left(x, i, m_{1}, \ldots, m_{i-1}, r\right) ;\)
        if \(m_{i}=\) ACCEPT then
            \((a, t)=(a+1, t+1) ;\)
        else if \(m_{i}=\) REJECT then
                \((a, t)=(a, t+1) ;\)
        else
                \(m_{i+1}=P\left(x, i+1, m_{1}, \ldots, m_{i}\right) ;\)
                \((a, t)=(a, t)+\Gamma\left(x, i+2, m_{1}, \ldots, m_{i+1}\right) ;\)
            end if
        end for
        return \((a, t)\);
    end if
```

Let $s=\frac{a}{t}$. If $s \geq 2 / 3$, then M accepts x; otherwise, M rejects x. This algorithm performs in polynomial space. So M decides L in polynomial space.

