
Theory of Computation

Homework 5

Due: 2015/1/06

Problem 1 Suppose that there are n jobs to be assigned to m machines. Let ti be the running

time for job i ∈ {1 . . . n}, A[i] = j mean that job i is assigned to machine j ∈ {1 . . .m}, and

T [j] =
∑

A[i]=j ti be the total running time for machine j. The makespan of A is the maximum

time that any machine is busy, given by

makespan(A) = max
j

T [j].

The LoadBalance problem is to compute the minimal makespan of A. Note that LoadBalance

problem is NP-hard. Consider the following algorithm for LoadBalance:

1: for i← 1 to m do

2: T [i]← 0;

3: end for

4: for i← 1 to n do

5: min← 1;

6: for j ← 2 to m do

7: if T [j] < T [min] then

8: min← j;

9: end if

10: end for

11: A[i]← min;

12: T [min]← T [min] + ti;

13: end for

14: return A;

Show that this algorithm for LoadBalance is a 1
2
-approximation algorithm, meaning that it

returns a solution that is at most
1

1− 1
2

= 2 times the optimum.

Proof: Let OPT be the optimal makespan. Note that OPT ≥ maxi ti and OPT ≥ 1

m

∑n
i=1 ti.

Suppose that machine i∗ has the largest total running time, and let j∗ be the last job assigned

to machine i∗. Since T [i∗]− tj∗ ≤ T [i] for all i ∈ {1, 2, . . . ,m}, T [i∗]− tj∗ is less than or equal

to the average running time over all machines. Thus,

T [i∗]− tj∗ ≤
1

m

m∑
i=1

T [i] =
1

m

n∑
i=1

ti ≤ OPT. (1)

We conclude that T [i∗] ≤ 2×OPT .

1



Problem 2 Define IP∗ as IP except that the prover now runs in deterministic polynomial

space instead of exponential time. Show that IP∗ ⊆ PSPACE. (You cannot use the known

fact IP = PSPACE.)

Proof: Let L ∈ IP∗, (P, V ) be an interactive proof system, V be a probabilistic polynomial-

time verifier, P be a polynomial-space prover, c and k be some positive integers, n be the

length of the input, mi ∈ {0, 1}∗ be ACCEPT/REJECT or the message sent in round i, and

r ∈ {0, 1}nk
be the random bit string used by V in each round (for brevity, we had assumed r

is of the same length in each round). Assume P and V interact for at most nc rounds, and V

accepts or rejects the input before or at round nc. Construct deterministic TM M to simulate

(P, V ) as follows. Assume without loss of generality that V sends the first message. In the

algorithm, t is the total number of choices for the random bits generated by V up to round i,

and a is the number of choices for which V accepts up to round i. On any input x, M computes

a and t recursively as follows by calling Γ(x, 1):

Algorithm Γ(x, i,mi, . . . ,mi−1)

1: (a, t) = (0, 0);

2: if i = nc then

3: for all r ∈ {0, 1}nk
do

4: if V (x, i,m1,m2, . . . ,mi−1, r) = ACCEPT then

5: a = a + 1;

6: end if

7: end for

8: return (a, 2nk
);

9: else

10: for all r ∈ {0, 1}nk
do

11: mi = V (x, i,m1, . . . ,mi−1, r);

12: if mi = ACCEPT then

13: (a, t) = (a + 1, t + 1);

14: else if mi = REJECT then

15: (a, t) = (a, t + 1);

16: else

17: mi+1 = P (x, i + 1,m1, . . . ,mi);

18: (a, t) = (a, t) + Γ(x, i + 2,m1, . . . ,mi+1);

19: end if

20: end for

21: return (a, t);

22: end if

Let s = a
t
. If s ≥ 2/3, then M accepts x; otherwise, M rejects x. This algorithm performs

in polynomial space. So M decides L in polynomial space.

2


