Theory of Computation

Homework 5

Due: 2015/1/06
Problem 1 Suppose that there are n jobs to be assigned to m machines. Let t_{i} be the running time for job $i \in\{1 \ldots n\}, A[i]=j$ mean that job i is assigned to machine $j \in\{1 \ldots m\}$, and $T[j]=\sum_{A[i]=j} t_{i}$ be the total running time for machine j. The makespan of A is the maximum time that any machine is busy, given by

$$
\operatorname{makespan}(A)=\max _{j} T[j] .
$$

The LoadBalance problem is to compute the minimal makespan of A. Note that LoadBalance problem is NP-hard. Consider the following algorithm for LoadBalance:

```
for \(i \leftarrow 1\) to \(m\) do
        \(T[i] \leftarrow 0 ;\)
    end for
    for \(i \leftarrow 1\) to \(n\) do
        \(\min \leftarrow 1 ;\)
        for \(j \leftarrow 2\) to \(m\) do
        if \(T[j]<T[\mathrm{~min}]\) then
            \(\min \leftarrow j\);
        end if
    end for
    \(A[i] \leftarrow \min ;\)
    \(T[\min ] \leftarrow T[\min ]+t_{i} ;\)
    end for
    return \(A\);
```

Show that this algorithm for LOADBALANCE is a $\frac{1}{2}$-approximation algorithm, meaning that it returns a solution that is at most $\frac{1}{1-\frac{1}{2}}=2$ times the optimum.

Problem 2 Define IP* as IP except that the prover now runs in deterministic polynomial space instead of exponential time. Show that $\mathbf{I P}^{*} \subseteq$ PSPACE. (You cannot use the known fact $\mathbf{I P}=\mathbf{P S P A C E}$.)

