

Density^a

The **density** of language $L \subseteq \Sigma^*$ is defined as

$$dens_L(n) = |\{x \in L : |x| \le n\}|.$$

- If $L = \{0, 1\}^*$, then $dens_L(n) = 2^{n+1} 1$.
- So the density function grows at most exponentially.
- For a unary language $L \subseteq \{0\}^*$,

$$\operatorname{dens}_L(n) \leq n+1.$$

- Because
$$L \subseteq \{\epsilon, 0, 00, \dots, \overbrace{00 \cdots 0}^{n}, \dots\}$$
.

^aBerman and Hartmanis (1977).

Sparsity

- Sparse languages are languages with polynomially bounded density functions.
- **Dense languages** are languages with superpolynomial density functions.

Self-Reducibility for SAT

- An algorithm exhibits **self-reducibility** if it finds a certificate by exploiting algorithms for the *decision* version of the same problem.
- Let ϕ be a boolean expression in n variables x_1, x_2, \ldots, x_n .
- $t \in \{0,1\}^j$ is a **partial** truth assignment for x_1, x_2, \dots, x_j .
- $\phi[t]$ denotes the expression after substituting the truth values of t for $x_1, x_2, \ldots, x_{|t|}$ in ϕ .

An Algorithm for SAT with Self-Reduction

We call the algorithm below with empty t.

- 1: **if** |t| = n **then**
- 2: **return** $\phi[t]$;
- 3: **else**
- 4: **return** $\phi[t0] \vee \phi[t1];$
- 5: end if

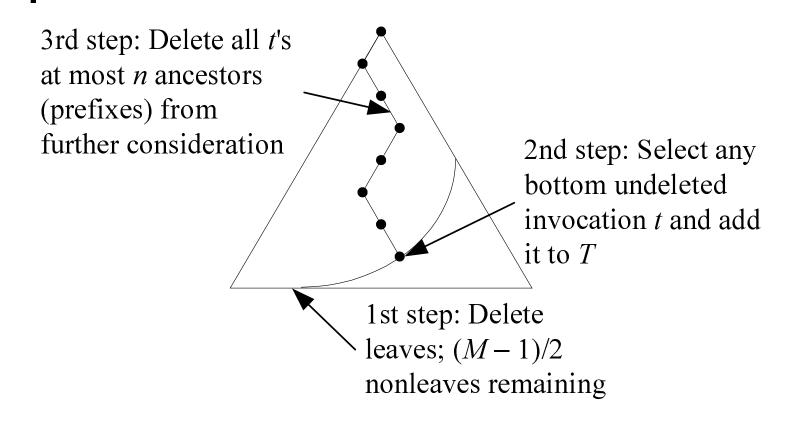
The above algorithm runs in exponential time, by visiting all the partial assignments (or nodes on a depth-n binary tree).^a

^aThe same idea was used in the proof of Proposition 72 on p. 606.

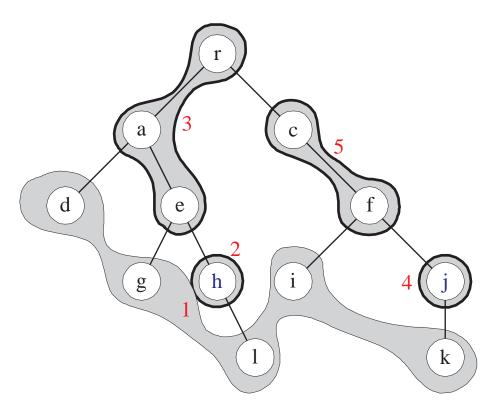
NP-Completeness and Density^a

Theorem 80 If a unary language $U \subseteq \{0\}^*$ is NP-complete, then P = NP.

- Suppose there is a reduction R from SAT to U.
- We use R to find a truth assignment that satisfies boolean expression ϕ with n variables if it is satisfiable.
- Specifically, we use R to prune the exponential-time exhaustive search on p. 750.
- The trick is to keep the already discovered results $\phi[t]$ in a table H.


^aBerman (1978).

```
1: if |t| = n then
      return \phi[t];
 3: else
      if (R(\phi[t]), v) is in table H then
         return v;
      else
         if \phi[t0] = "satisfiable" or \phi[t1] = "satisfiable" then
           Insert (R(\phi[t]), \text{ "satisfiable"}) into H;
           return "satisfiable";
 9:
         else
10:
           Insert (R(\phi[t]), \text{"unsatisfiable"}) into H;
11:
           return "unsatisfiable";
12:
         end if
13:
      end if
14:
15: end if
```


- Since R is a reduction, $R(\phi[t]) = R(\phi[t'])$ implies that $\phi[t]$ and $\phi[t']$ must be both satisfiable or unsatisfiable.
- $R(\phi[t])$ has polynomial length $\leq p(n)$ because R runs in log space.
- As R maps to unary numbers, there are only polynomially many p(n) values of $R(\phi[t])$.
- How many nodes of the complete binary tree (of invocations/truth assignments) need to be visited?

- A search of the table takes time O(p(n)) in the random-access memory model.
- The running time is O(Mp(n)), where M is the total number of invocations of the algorithm.
- If that number is a polynomial, the overall algorithm runs in polynomial time and we are done.
- The invocations of the algorithm form a binary tree of depth at most n.

- There is a set $T = \{t_1, t_2, ...\}$ of invocations (partial truth assignments, i.e.) such that:
 - 1. $|T| \ge (M-1)/(2n)$.
 - 2. All invocations in T are recursive (nonleaves).
 - 3. None of the elements of T is a prefix of another.

An Example

 $T = \{h, j\}$; none of h and j is a prefix of the other.

- All invocations $t \in T$ have different $R(\phi[t])$ values.
 - The invocation of one started after the invocation of the other had terminated.
 - If they had the same value, the one that was invoked later would have looked it up, and therefore would not be recursive, a contradiction.
- The existence of T implies that there are at least (M-1)/(2n) different $R(\phi[t])$ values in the table.

The Proof (concluded)

- We already know that there are at most p(n) such values.
- Hence $(M-1)/(2n) \le p(n)$.
- Thus $M \leq 2np(n) + 1$.
- The running time is therefore $O(Mp(n)) = O(np^2(n))$.
- We comment that this theorem holds for any sparse language, not just unary ones.^a

^aMahaney (1980).

coNP-Completeness and Density

Theorem 81 (Fortung (1979)) If a unary language $U \subseteq \{0\}^*$ is coNP-complete, then P = NP.

- Suppose there is a reduction R from SAT COMPLEMENT to U.
- The rest of the proof is basically identical except that, now, we want to make sure a formula is unsatisfiable.

The Power of Monotone Circuits

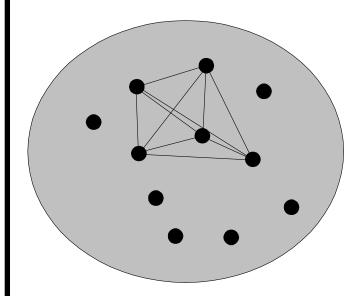
- Monotone circuits can only compute monotone boolean functions.
- They are powerful enough to solve a P-complete problem, MONOTONE CIRCUIT VALUE (p. 314).
- There are NP-complete problems that are not monotone; they cannot be computed by monotone circuits at all.
- There are NP-complete problems that are monotone; they can be computed by monotone circuits.
 - HAMILTONIAN PATH and CLIQUE.

$\mathrm{CLIQUE}_{n,k}$

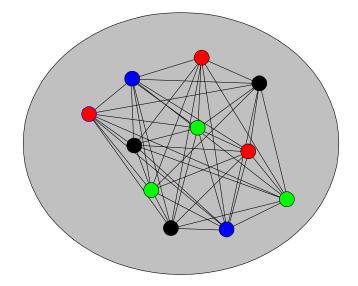
- CLIQUE_{n,k} is the boolean function deciding whether a graph G = (V, E) with n nodes has a clique of size k.
- The input gates are the $\binom{n}{2}$ entries of the adjacency matrix of G.
 - Gate g_{ij} is set to true if the associated undirected edge $\{i, j\}$ exists.
- CLIQUE_{n,k} is a monotone function.
- Thus it can be computed by a monotone circuit.
- This does not rule out that nonmonotone circuits for $CLIQUE_{n,k}$ may use fewer gates, however.

Crude Circuits

- One possible circuit for $CLIQUE_{n,k}$ does the following.
 - 1. For each $S \subseteq V$ with |S| = k, there is a circuit with $O(k^2) \wedge$ -gates testing whether S forms a clique.
 - 2. We then take an OR of the outcomes of all the $\binom{n}{k}$ subsets $S_1, S_2, \ldots, S_{\binom{n}{k}}$.
- This is a monotone circuit with $O(k^2 \binom{n}{k})$ gates, which is exponentially large unless k or n-k is a constant.
- A crude circuit $CC(X_1, X_2, ..., X_m)$ tests if any of $X_i \subseteq V$ forms a clique.
 - The above-mentioned circuit is $CC(S_1, S_2, \ldots, S_{\binom{n}{k}})$.

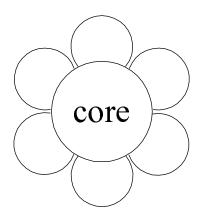

The Proof: Positive Examples

- Analysis will be applied to only **positive examples** and **negative examples** as inputs.
- A positive example is a graph that has $\binom{k}{2}$ edges connecting k nodes in all possible ways.
- There are $\binom{n}{k}$ such graphs.
- They all should elicit a true output from $CLIQUE_{n,k}$.

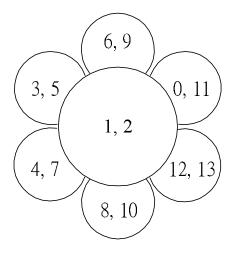

The Proof: Negative Examples

- Color the nodes with k-1 different colors and join by an edge any two nodes that are colored differently.
- There are $(k-1)^n$ such graphs.
- They all should elicit a false output from $CLIQUE_{n,k}$.
 - Each set of k nodes must have 2 identically colored nodes; hence there is no edge between them.

Positive and Negative Examples with k=5


A positive example

A negative example


Sunflowers

- Fix $p \in \mathbb{Z}^+$ and $\ell \in \mathbb{Z}^+$.
- A sunflower is a family of p sets $\{P_1, P_2, \dots, P_p\}$, called **petals**, each of cardinality at most ℓ .
- Furthermore, all pairs of sets in the family must have the same intersection (called the **core** of the sunflower).

A Sample Sunflower

 $\{\{1,2,3,5\},\{1,2,6,9\},\{0,1,2,11\},$ $\{1,2,12,13\},\{1,2,8,10\},\{1,2,4,7\}\}.$

The Erdős-Rado Lemma

Lemma 82 Let \mathcal{Z} be a family of more than $M = (p-1)^{\ell} \ell!$ nonempty sets, each of cardinality ℓ or less. Then \mathcal{Z} must contain a sunflower (with p petals).

- Induction on ℓ .
- For $\ell = 1$, p different singletons form a sunflower (with an empty core).
- Suppose $\ell > 1$.
- Consider a maximal subset $\mathcal{D} \subseteq \mathcal{Z}$ of disjoint sets.
 - Every set in $\mathcal{Z} \mathcal{D}$ intersects some set in \mathcal{D} .

The Proof of the Erdős-Rado Lemma (continued) For example,

$$\mathcal{Z} = \{\{1, 2, 3, 5\}, \{1, 3, 6, 9\}, \{0, 4, 8, 11\}, \\ \{4, 5, 6, 7\}, \{5, 8, 9, 10\}, \{6, 7, 9, 11\}\},$$

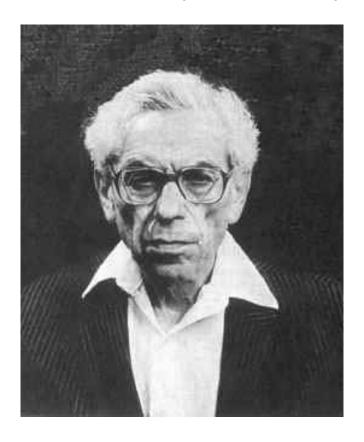
$$\mathcal{D} = \{\{1, 2, 3, 5\}, \{0, 4, 8, 11\}\}.$$

The Proof of the Erdős-Rado Lemma (continued)

- Suppose \mathcal{D} contains at least p sets.
 - $-\mathcal{D}$ constitutes a sunflower with an empty core.
- Suppose \mathcal{D} contains fewer than p sets.
 - Let C be the union of all sets in \mathcal{D} .
 - $|C| < (p-1)\ell.$
 - C intersects every set in \mathcal{Z} by \mathcal{D} 's maximality.
 - There is a $d \in C$ that intersects more than $\frac{M}{(p-1)\ell} = (p-1)^{\ell-1}(\ell-1)! \text{ sets in } \mathcal{Z}.$
 - Consider $\mathcal{Z}' = \{Z \{d\} : Z \in \mathcal{Z}, d \in Z\}.$

The Proof of the Erdős-Rado Lemma (concluded)

- (continued)
 - $-\mathcal{Z}'$ has more than $M'=(p-1)^{\ell-1}(\ell-1)!$ sets.
 - -M' is just M with ℓ replaced with $\ell-1$.
 - $-\mathcal{Z}'$ contains a sunflower by induction, say


$$\{P_1,P_2,\ldots,P_p\}.$$

- Now,

$$\{P_1 \cup \{d\}, P_2 \cup \{d\}, \dots, P_p \cup \{d\}\}\$$

is a sunflower in \mathcal{Z} .

Paul Erdős (1913–1996)

Comments on the Erdős-Rado Lemma

- A family of more than M sets must contain a sunflower.
- **Plucking** a sunflower means replacing the sets in the sunflower by its core.
- By repeatedly finding a sunflower and plucking it, we can reduce a family with more than M sets to a family with at most M sets.
- If \mathcal{Z} is a family of sets, the above result is denoted by $\operatorname{pluck}(\mathcal{Z})$.
- Note: $pluck(\mathcal{Z})$ is not unique.

An Example of Plucking

• Recall the sunflower on p. 768:

$$\mathcal{Z} = \{\{1, 2, 3, 5\}, \{1, 2, 6, 9\}, \{0, 1, 2, 11\}, \{1, 2, 12, 13\}, \{1, 2, 8, 10\}, \{1, 2, 4, 7\}\}$$

• Then

$$pluck(\mathcal{Z}) = \{\{1, 2\}\}.$$

Razborov's Theorem

Theorem 83 (Razborov (1985)) There is a constant c such that for large enough n, all monotone circuits for $CLIQUE_{n,k}$ with $k = n^{1/4}$ have size at least $n^{cn^{1/8}}$.

- We shall approximate any monotone circuit for $CLIQUE_{n,k}$ by a restricted kind of crude circuit.
- The approximation will proceed in steps: one step for each gate of the monotone circuit.
- Each step introduces few errors (false positives and false negatives).
- But the final crude circuit has exponentially many errors.

The Proof

- Fix $k = n^{1/4}$.
- Fix $\ell = n^{1/8}$.
- Note that^a

$$2\binom{\ell}{2} \le k - 1.$$

- p will be fixed later to be $n^{1/8} \log n$.
- Fix $M = (p-1)^{\ell} \ell!$.
 - Recall the Erdős-Rado lemma (p. 769).

 $^{^{\}rm a} {\rm Corrected}$ by Mr. Moustapha Bande (D98922042) on January 05, 2010.

- Each crude circuit used in the approximation process is of the form $CC(X_1, X_2, ..., X_m)$, where:
 - $-X_i\subseteq V.$
 - $-|X_i| \le \ell.$
 - $-m \leq M$.
- It answers true if any X_i is a clique.
- We shall show how to approximate any circuit for $CLIQUE_{n,k}$ by such a crude circuit, inductively.
- The induction basis is straightforward:
 - Input gate g_{ij} is the crude circuit $CC(\{i,j\})$.

- Any monotone circuit can be considered the OR or AND of two subcircuits.
- We shall show how to build approximators of the overall circuit from the approximators of the two subcircuits.
 - We are given two crude circuits $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.
 - $-\mathcal{X}$ and \mathcal{Y} are two families of at most M sets of nodes, each set containing at most ℓ nodes.
 - We construct the approximate OR and the approximate AND of these subcircuits.
 - Then show both approximations introduce few errors.

The Proof: OR

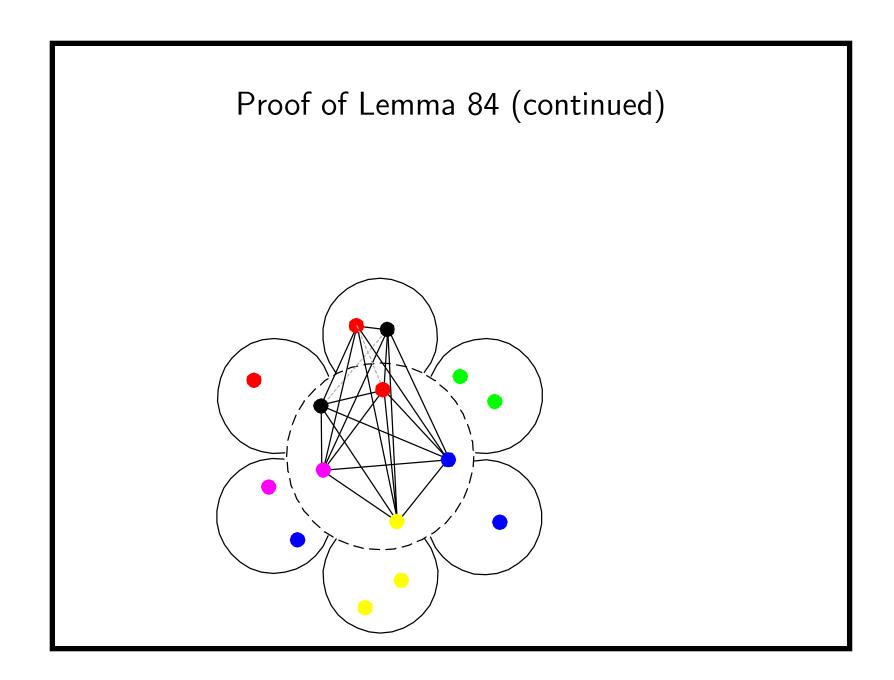
- $CC(\mathcal{X} \cup \mathcal{Y})$ is equivalent to the OR of $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.
 - A set of nodes $C \in \mathcal{X} \cup \mathcal{Y}$ is a clique if and only if $C \in \mathcal{X}$ is a clique or $C \in \mathcal{Y}$ is a clique.
- Violations in using $CC(\mathcal{X} \cup \mathcal{Y})$ occur when $|\mathcal{X} \cup \mathcal{Y}| > M$.
- Such violations can be eliminated by using

$$CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$$

as the approximate OR of $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.

The Proof: OR

- If $CC(\mathcal{Z})$ is true, then $CC(\operatorname{pluck}(\mathcal{Z}))$ must be true.
 - The quick reason: If Y is a clique, then a subset of Y must also be a clique.
 - For each $Y \in \mathcal{X} \cup \mathcal{Y}$, there must exist at least one $X \in \text{pluck}(\mathcal{X} \cup \mathcal{Y})$ such that $X \subseteq Y$.
 - If Y is a clique, then this X is also a clique.
- We now bound the number of errors this approximate OR makes on the positive and negative examples.


The Proof: OR (concluded)

- $CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces a **false positive** if a negative example makes both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return false but makes $CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return true.
- $CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces a **false negative** if a positive example makes either $CC(\mathcal{X})$ or $CC(\mathcal{Y})$ return true but makes $CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return false.
- How many false positives and false negatives are introduced by $CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$?

The Number of False Positives

Lemma 84 CC(pluck($\mathcal{X} \cup \mathcal{Y}$)) introduces at most $\frac{M}{p-1} 2^{-p} (k-1)^n$ false positives.

- A plucking replaces the sunflower $\{Z_1, Z_2, \ldots, Z_p\}$ with its core Z.
- A false positive is *necessarily* a coloring such that:
 - There is a pair of identically colored nodes in each petal Z_i (and so both crude circuits return false).
 - But the core contains distinctly colored nodes.
 - * This implies at least one node from each same-color pair was plucked away.
- We now count the number of such colorings.

Proof of Lemma 84 (continued)

- Color nodes V at random with k-1 colors and let R(X) denote the event that there are repeated colors in set X.
- Now prob $[R(Z_1) \wedge \cdots \wedge R(Z_p) \wedge \neg R(Z)]$ is at most

$$\operatorname{prob}[R(Z_1) \wedge \cdots \wedge R(Z_p) | \neg R(Z)]$$

$$= \prod_{i=1}^{p} \operatorname{prob}[R(Z_i) | \neg R(Z)] \leq \prod_{i=1}^{p} \operatorname{prob}[R(Z_i)]. (20)$$

- First equality holds because $R(Z_i)$ are independent given $\neg R(Z)$ as Z contains their only common nodes.
- Last inequality holds as the likelihood of repetitions in Z_i decreases given no repetitions in $Z \subseteq Z_i$.

Proof of Lemma 84 (continued)

- Consider two nodes in Z_i .
- The probability that they have identical color is $\frac{1}{k-1}$.
- Now prob $[R(Z_i)] \le \frac{\binom{|Z_i|}{2}}{k-1} \le \frac{\binom{\ell}{2}}{k-1} \le \frac{1}{2}$.
- So the probability^a that a random coloring is a new false positive is at most 2^{-p} by inequality (20).
- As there are $(k-1)^n$ different colorings, each plucking introduces at most $2^{-p}(k-1)^n$ false positives.

^aProportion, i.e.

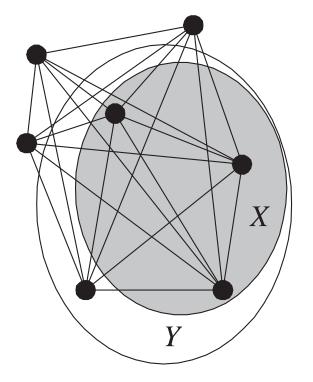
Proof of Lemma 84 (concluded)

- Recall that $|\mathcal{X} \cup \mathcal{Y}| \leq 2M$.
- pluck $(\mathcal{X} \cup \mathcal{Y})$ ends the moment the set system contains $\leq M$ sets.
- Each plucking reduces the number of sets by p-1.
- Hence at most $\frac{M}{p-1}$ pluckings occur in pluck $(\mathcal{X} \cup \mathcal{Y})$.
- At most

$$\frac{M}{p-1} 2^{-p} (k-1)^n$$

false positives are introduced.^a

^aNote that the numbers of errors are added not multiplied. Recall that we count how many new errors are introduced by each approximation step. Contributed by Mr. Ren-Shuo Liu (D98922016) on January 5, 2010.


The Number of False Negatives

Lemma 85 CC(pluck($\mathcal{X} \cup \mathcal{Y}$)) introduces no false negatives.

- A plucking replaces sets in a crude circuit by their (common) subset.
- This makes the test for cliqueness less stringent (p. 781).^a

^aRecall that $CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces a false negative if a positive example makes either $CC(\mathcal{X})$ or $CC(\mathcal{Y})$ return true but makes $CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return false.

The Number of False Negatives (concluded)

The Proof: AND

• The approximate AND of crude circuits $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ is

$$CC(pluck(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell\})).$$

• We now count the number of errors this approximate AND makes on the positive and negative examples.

The Proof: AND (concluded)

- The approximate AND introduces a **false positive** if a negative example makes either $CC(\mathcal{X})$ or $CC(\mathcal{Y})$ return false but makes the approximate AND return true.
- The approximate AND introduces a **false negative** if a positive example makes both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return true but makes the approximate AND return false.
- How many false positives and false negatives are introduced by the approximate AND?

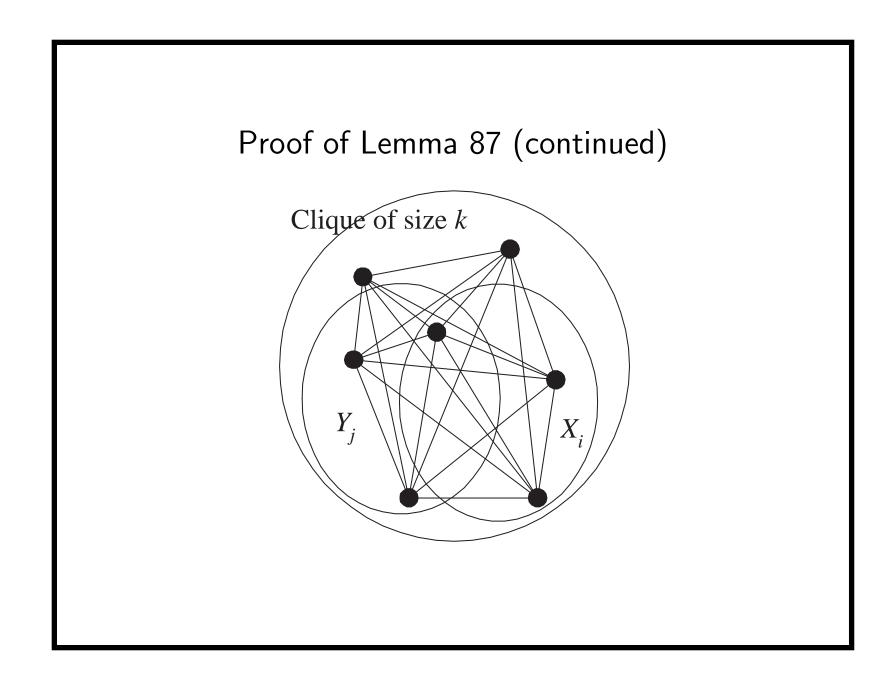
The Number of False Positives

Lemma 86 The approximate AND introduces at most $M^2 2^{-p} (k-1)^n$ false positives.

- We prove this claim in stages.
- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ introduces no false positives.
 - If $X_i \cup Y_j$ is a clique, both X_i and Y_j must be cliques, making both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return true.
- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \leq \ell\})$ introduces no additional false positives because we are testing fewer sets for cliqueness.

Proof of Lemma 86 (concluded)

- $|\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell\}| \le M^2$.
- Each plucking reduces the number of sets by p-1.
- So pluck $(X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \leq \ell)$ involves $\leq M^2/(p-1)$ pluckings.
- Each plucking introduces at most $2^{-p}(k-1)^n$ false positives by the proof of Lemma 84 (p. 783).
- The desired upper bound is


$$[M^{2}/(p-1)] 2^{-p}(k-1)^{n} \le M^{2}2^{-p}(k-1)^{n}.$$

The Number of False Negatives

Lemma 87 The approximate AND introduces at most $M^2\binom{n-\ell-1}{k-\ell-1}$ false negatives.

- We again prove this claim in stages.
- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ introduces no false negatives.
 - Suppose both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ accept a positive example with a clique of size k.
 - This clique must contain an $X_i \in \mathcal{X}$ and a $Y_j \in \mathcal{Y}$.

 * This is why both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return true.
 - As this clique also contains $X_i \cup Y_j$, the new circuit returns true.

Proof of Lemma 87 (continued)

- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \leq \ell\})$ introduces $\leq M^2\binom{n-\ell-1}{k-\ell-1}$ false negatives.
 - Deletion of set $Z = X_i \cup Y_j$ larger than ℓ introduces false negatives only if Z is part of a clique.
 - There are $\binom{n-|Z|}{k-|Z|}$ such cliques.
 - * It is the number of positive examples whose clique contains Z.
 - $-\binom{n-|Z|}{k-|Z|} \le \binom{n-\ell-1}{k-\ell-1} \text{ as } |Z| > \ell.$
 - There are at most M^2 such Zs.

Proof of Lemma 87 (concluded)

- Plucking introduces no false negatives.
 - Recall that if $CC(\mathcal{Z})$ is true, then $CC(\operatorname{pluck}(\mathcal{Z}))$ must be true (p. 781).

Two Summarizing Lemmas

From Lemmas 84 (p. 783) and 86 (p. 792), we have:

Lemma 88 Each approximation step introduces at most $M^2 2^{-p} (k-1)^n$ false positives.

From Lemmas 85 (p. 788) and 87 (p. 794), we have:

Lemma 89 Each approximation step introduces at most $M^2\binom{n-\ell-1}{k-\ell-1}$ false negatives.

The Proof (continued)

- The above two lemmas show that each approximation step introduces "few" false positives and false negatives.
- We next show that the resulting crude circuit has "a lot" of false positives or false negatives.

The Final Crude Circuit

Lemma 90 Every final crude circuit is:

- 1. Identically false—thus wrong on all positive examples.
- 2. Or outputs true on at least half of the negative examples.
- Suppose it is not identically false.
- By construction, it accepts at least those graphs that have a clique on some set X of nodes, with $|X| \leq \ell$, which at $n^{1/8}$ is less than $k = n^{1/4}$.
- The proof of Lemma 84 (p. 783ff) shows that at least half of the colorings assign different colors to nodes in X.
- ullet So half of the negative examples have a clique in X and are accepted.

The Proof (continued)

- Recall the constants on p. 777: $k = n^{1/4}$, $\ell = n^{1/8}$, $p = n^{1/8} \log n$, $M = (p-1)^{\ell} \ell! < n^{(1/3)n^{1/8}}$ for large n.
- Suppose the final crude circuit is identically false.
 - By Lemma 89 (p. 798), each approximation step introduces at most $M^2\binom{n-\ell-1}{k-\ell-1}$ false negatives.
 - There are $\binom{n}{k}$ positive examples.
 - The original monotone circuit for $CLIQUE_{n,k}$ has at least

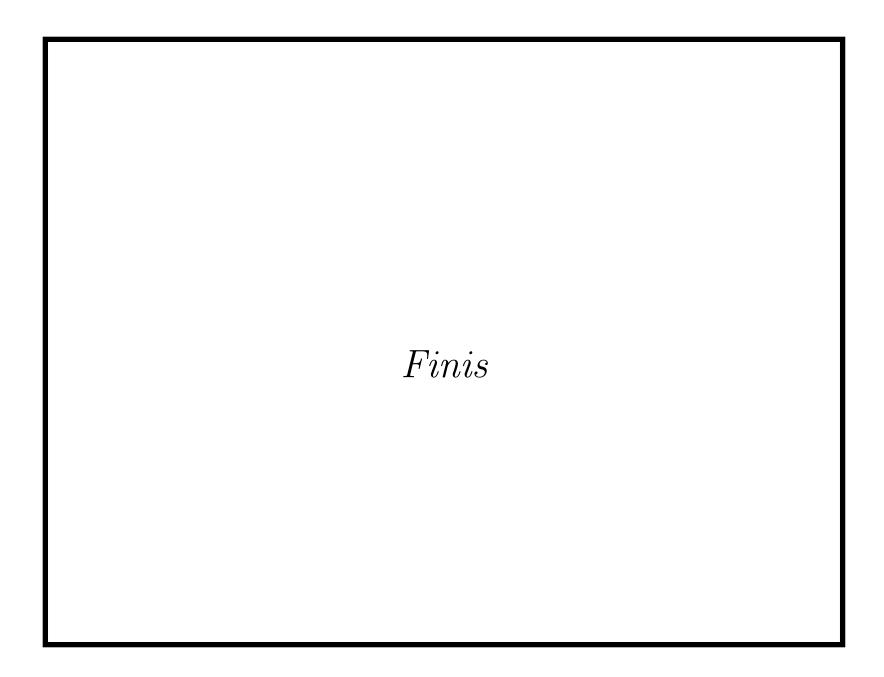
$$\frac{\binom{n}{k}}{M^2\binom{n-\ell-1}{k-\ell-1}} \ge \frac{1}{M^2} \left(\frac{n-\ell}{k}\right)^{\ell} \ge n^{(1/12)n^{1/8}}$$

gates for large n.

The Proof (concluded)

- Suppose the final crude circuit is not identically false.
 - Lemma 90 (p. 800) says that there are at least $(k-1)^n/2$ false positives.
 - By Lemma 88 (p. 798), each approximation step introduces at most $M^2 2^{-p} (k-1)^n$ false positives
 - The original monotone circuit for $CLIQUE_{n,k}$ has at least

$$\frac{(k-1)^n/2}{M^2 2^{-p} (k-1)^n} = \frac{2^{p-1}}{M^2} \ge n^{(1/3)n^{1/8}}$$


gates.

Alexander Razborov (1963–)

$P \neq NP \text{ Proved}$?

- Razborov's theorem says that there is a monotone language in NP that has no polynomial monotone circuits.
- If we can prove that all monotone languages in P have polynomial monotone circuits, then $P \neq NP$.
- But Razborov proved in 1985 that some monotone languages in P have no polynomial monotone circuits!

