Zero-Knowledge Proof of 3 Colorability ${ }^{\text {a }}$

1: for $i=1,2, \ldots,|E|^{2}$ do
2: \quad Peggy chooses a random permutation π of the 3-coloring ϕ;
3: Peggy samples encryption schemes randomly, commits ${ }^{\text {b }}$ them, and sends $\pi(\phi(1)), \pi(\phi(2)), \ldots, \pi(\phi(|V|))$ encrypted to Victor;
4: Victor chooses at random an edge $e \in E$ and sends it to Peggy for the coloring of the endpoints of e;
5: \quad if $e=(u, v) \in E$ then
6: Peggy reveals the colors $\pi(\phi(u))$ and $\pi(\phi(v))$ and "proves"
that they correspond to their encryptions;
7: else
8: Peggy stops;
9: end if
${ }^{\text {a }}$ Goldreich, Micali, and Wigderson (1986).
${ }^{\mathrm{b}}$ Contributed by Mr. Ren-Shuo Liu (D98922016) on December 22, 2009.

10: if the "proof" provided in Line 6 is not valid then
11: \quad Victor rejects and stops;
12: end if
13: if $\pi(\phi(u))=\pi(\phi(v))$ or $\pi(\phi(u)), \pi(\phi(v)) \notin\{1,2,3\}$ then
14: Victor rejects and stops;
15: end if
16: end for
17: Victor accepts;

Analysis

- If the graph is 3-colorable and both Peggy and Victor follow the protocol, then Victor always accepts.
- Suppose the graph is not 3-colorable and Victor follows the protocol.
- Let e be an edge that is not colored legally.
- Victor will pick it with probability $1 / m$, where $m=|E|$.
- Then however Peggy plays, Victor will accept with probability $\leq 1-(1 / m)$ per round.

Analysis (concluded)

- So Victor will accept with probability at most

$$
\left(1-m^{-1}\right)^{m^{2}} \leq e^{-m} .
$$

- Thus the protocol is valid.
- This protocol yields no knowledge to Victor as all he gets is a bunch of random pairs.
- The proof that the protocol is zero-knowledge to any verifier is intricate.

Comments

- Each $\pi(\phi(i))$ is encrypted by a different cryptosystem in Line 3 . ${ }^{\text {a }}$
- Otherwise, all the colors will be revealed in Line 6.
- Each edge e must be picked randomly. ${ }^{\text {b }}$
- Otherwise, Peggy will know Victor's game plan and plot accordingly.

[^0]
Approximability

All science is dominated by the idea of approximation.

- Bertrand Russell (1872-1970)

> Just because the problem is NP-complete does not mean that you should not try to solve it. - Stephen Cook (2002)

Tackling Intractable Problems

- Many important problems are NP-complete or worse.
- Heuristics have been developed to attack them.
- They are approximation algorithms.
- How good are the approximations?
- We are looking for theoretically guaranteed bounds, not "empirical" bounds.
- Are there NP problems that cannot be approximated well (assuming NP $\neq \mathrm{P}$)?
- Are there NP problems that cannot be approximated at all (assuming NP $\neq \mathrm{P}$)?

Some Definitions

- Given an optimization problem, each problem instance x has a set of feasible solutions $F(x)$.
- Each feasible solution $s \in F(x)$ has a cost $c(s) \in \mathbb{Z}^{+}$.
- Here, cost refers to the quality of the feasible solution, not the time required to obtain it.
- It is our objective function, e.g., total distance, number of satisfied expressions, or cut size.

Some Definitions (concluded)

- The optimum cost is

$$
\operatorname{OPT}(x)=\min _{s \in F(x)} c(s)
$$

for a minimization problem.

- It is

$$
\operatorname{OPT}(x)=\max _{s \in F(x)} c(s)
$$

for a maximization problem.

Approximation Algorithms

- Let (polynomial-time) algorithm M on x returns a feasible solution.
- M is an ϵ-approximation algorithm, where $\epsilon \geq 0$, if for all x,

$$
\frac{|c(M(x))-\operatorname{OPT}(x)|}{\max (\operatorname{OPT}(x), c(M(x)))} \leq \epsilon
$$

- For a minimization problem,

$$
\frac{c(M(x))-\min _{s \in F(x)} c(s)}{c(M(x))} \leq \epsilon
$$

- For a maximization problem,

$$
\begin{equation*}
\frac{\max _{s \in F(x)} c(s)-c(M(x))}{\max _{s \in F(x)} c(s)} \leq \epsilon \tag{17}
\end{equation*}
$$

Lower and Upper Bounds

- For a minimization problem,

$$
\min _{s \in F(x)} c(s) \leq c(M(x)) \leq \frac{\min _{s \in F(x)} c(s)}{1-\epsilon} .
$$

- For a maximization problem,

$$
\begin{equation*}
(1-\epsilon) \times \max _{s \in F(x)} c(s) \leq c(M(x)) \leq \max _{s \in F(x)} c(s) . \tag{18}
\end{equation*}
$$

Range Bounds

- ϵ ranges between 0 (best) and 1 (worst).
- For minimization problems, an ϵ-approximation algorithm returns solutions within

$$
\left[\mathrm{OPT}, \frac{\mathrm{OPT}}{1-\epsilon}\right] .
$$

- For maximization problems, an ϵ-approximation algorithm returns solutions within

$$
[(1-\epsilon) \times \mathrm{OPT}, \mathrm{OPT}]
$$

Approximation Thresholds

- For each NP-complete optimization problem, we shall be interested in determining the smallest ϵ for which there is a polynomial-time ϵ-approximation algorithm.
- But sometimes ϵ has no minimum value.
- The approximation threshold is the greatest lower bound of all $\epsilon \geq 0$ such that there is a polynomial-time ϵ-approximation algorithm.
- By a standard theorem in real analysis, such a threshold must exist. ${ }^{\text {a }}$

[^1]
Approximation Thresholds (concluded)

- The approximation threshold of an optimization problem can be anywhere between 0 (approximation to any desired degree) and 1 (no approximation is possible).
- If $\mathrm{P}=\mathrm{NP}$, then all optimization problems in $N P$ have an approximation threshold of 0 .
- So we assume $\mathrm{P} \neq \mathrm{NP}$ for the rest of the discussion.

Approximation Ratio

- ϵ-approximation algorithms can also be defined via approximation ratio: ${ }^{\text {a }}$

$$
\frac{c(M(x))}{\operatorname{OPT}(x)}
$$

- For a minimization problem, the approximation ratio is

$$
\begin{equation*}
1 \leq \frac{c(M(x))}{\min _{s \in F(x)} c(s)} \leq \frac{1}{1-\epsilon} \tag{19}
\end{equation*}
$$

- For a maximization problem, the approximation ratio is

$$
1-\epsilon \leq \frac{c(M(x))}{\max _{s \in F(x)} c(s)} \leq 1
$$

[^2]
NODE COVER

- NODE COVER seeks the smallest $C \subseteq V$ in graph $G=(V, E)$ such that for each edge in E, at least one of its endpoints is in C.
- A heuristic to obtain a good node cover is to iteratively move a node with the highest degree to the cover.
- This turns out to produce an approximation ratio of ${ }^{\text {a }}$

$$
\frac{c(M(x))}{\operatorname{OPT}(x)}=\Theta(\log n)
$$

- So it is not an ϵ-approximation algorithm for any constant $\epsilon<1$ according to Eq. (19).

[^3]
A 0.5-Approximation Algorithm ${ }^{\text {a }}$

1: $C:=\emptyset$;
2: while $E \neq \emptyset$ do
3: \quad Delete an arbitrary edge $\{u, v\}$ from E;
4: \quad Add u and v to C; \{Add 2 nodes to C each time.\}
5: \quad Delete edges incident with u or v from E;
6: end while
7: return C;
${ }^{\mathrm{a}}$ Johnson (1974).

Analysis

- It is easy to see that C is a node cover.
- C contains $|C| / 2$ edges. ${ }^{\text {a }}$
- No two edges of C share a node. ${ }^{\mathrm{b}}$
- Any node cover must contain at least one node from each of these edges.
- If there is an edge in C both of whose ends are outside the cover, then that cover will not be a valid cover.

[^4]

Analysis (concluded)

- This means that opt $(G) \geq|C| / 2$.
- So the approximation ratio

$$
\frac{|C|}{\operatorname{OPT}(G)} \leq 2 .
$$

- So we have a 0.5 -approximation algorithm.
- The approximation threshold is therefore ≤ 0.5.

The 0.5 Bound Is Tight for the Algorithm ${ }^{\text {a }}$

[^5]
Remarks

- The approximation threshold is at least ${ }^{\text {a }}$

$$
1-(10 \sqrt{5}-21)^{-1} \approx 0.2651
$$

- The approximation threshold is 0.5 if one assumes the unique games conjecture. ${ }^{\text {b }}$
- This ratio 0.5 is also the lower bound for any "greedy" algorithms. ${ }^{\text {c }}$

[^6]
Maximum Satisfiability

- Given a set of clauses, mAXSAT seeks the truth assignment that satisfies the most.
- MAX2SAT is already NP-complete (p. 345), so MAXSAT is NP-complete.
- Consider the more general k-maxgsat for constant k.
- Let $\Phi=\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{m}\right\}$ be a set of boolean expressions in n variables.
- Each ϕ_{i} is a general expression involving k variables.
- k-MAXGSAT seeks the truth assignment that satisfies the most expressions.

A Probabilistic Interpretation of an Algorithm

- Each ϕ_{i} involves exactly k variables and is satisfied by s_{i} of the 2^{k} truth assignments.
- A random truth assignment $\in\{0,1\}^{n}$ satisfies ϕ_{i} with probability $p\left(\phi_{i}\right)=s_{i} / 2^{k}$.
$-p\left(\phi_{i}\right)$ is easy to calculate as k is a constant.
- Hence a random truth assignment satisfies an average of

$$
p(\Phi)=\sum_{i=1}^{m} p\left(\phi_{i}\right)
$$

expressions ϕ_{i}.

The Search Procedure

- Clearly

$$
p(\Phi)=\frac{1}{2}\left\{p\left(\Phi\left[x_{1}=\text { true }\right]\right)+p\left(\Phi\left[x_{1}=\text { false }\right]\right)\right\}
$$

- Select the $t_{1} \in\{$ true, false $\}$ such that $p\left(\Phi\left[x_{1}=t_{1}\right]\right)$ is the larger one.
- Note that $p\left(\Phi\left[x_{1}=t_{1}\right]\right) \geq p(\Phi)$.
- Repeat the procedure with expression $\Phi\left[x_{1}=t_{1}\right]$ until all variables x_{i} have been given truth values t_{i} and all ϕ_{i} are either true or false.

The Search Procedure (continued)

- By our hill-climbing procedure,

$$
\begin{aligned}
& p(\Phi) \\
\leq & p\left(\Phi\left[x_{1}=t_{1}\right]\right) \\
\leq & p\left(\Phi\left[x_{1}=t_{1}, x_{2}=t_{2}\right]\right) \\
\leq & \cdots \\
\leq & p\left(\Phi\left[x_{1}=t_{1}, x_{2}=t_{2}, \ldots, x_{n}=t_{n}\right]\right)
\end{aligned}
$$

- So at least $p(\Phi)$ expressions are satisfied by truth assignment $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$.

The Search Procedure (concluded)

- Note that the algorithm is deterministic!
- It is called the method of conditional expectations. ${ }^{\text {a }}$

[^7]
Approximation Analysis

- The optimum is at most the number of satisfiable ϕ_{i}-i.e., those with $p\left(\phi_{i}\right)>0$.
- Hence the ratio of algorithm's output vs. the optimum is ${ }^{a}$

$$
\geq \frac{p(\Phi)}{\sum_{p\left(\phi_{i}\right)>0} 1}=\frac{\sum_{i} p\left(\phi_{i}\right)}{\sum_{p\left(\phi_{i}\right)>0} 1} \geq \min _{p\left(\phi_{i}\right)>0} p\left(\phi_{i}\right)
$$

- So this is a polynomial-time ϵ-approximation algorithm with $\epsilon=1-\min _{p\left(\phi_{i}\right)>0} p\left(\phi_{i}\right)$.
- Because $p\left(\phi_{i}\right) \geq 2^{-k}$, the heuristic is a polynomial-time ϵ-approximation algorithm with $\epsilon=1-2^{-k}$.
${ }^{\text {a Recall that }}\left(\sum_{i} a_{i}\right) /\left(\sum_{i} b_{i}\right) \geq \min _{i} a_{i} / b_{i}$.

Back to maxsat

- In maxsat, the ϕ_{i} 's are clauses (like $x \vee y \vee \neg z$).
- Hence $p\left(\phi_{i}\right) \geq 1 / 2$, which happens when ϕ_{i} contains a single literal.
- And the heuristic becomes a polynomial-time ϵ-approximation algorithm with $\epsilon=1 / 2$. $^{\text {a }}$
- Suppose we set each boolean variable to true with probability $(\sqrt{5}-1) / 2$, the golden ratio.
- Then follow through the method of conditional expectations to derandomize it.
- We will obtain a $[(3-\sqrt{5})] / 2$-approximation algorithm, where $[(3-\sqrt{5})] / 2 \approx 0.382 .{ }^{\text {b }}$

[^8]
Back to MAXSAT (concluded)

- If the clauses have k distinct literals,

$$
p\left(\phi_{i}\right)=1-2^{-k} .
$$

- And the heuristic becomes a polynomial-time ϵ-approximation algorithm with $\epsilon=2^{-k}$.
- This is the best possible for $k \geq 3$ unless $\mathrm{P}=\mathrm{NP}$.

max Cut Revisited

- MAX CUT seeks to partition the nodes of graph $G=(V, E)$ into $(S, V-S)$ so that there are as many edges as possible between S and $V-S$.
- It is NP-complete. ${ }^{\text {a }}$
- Local search starts from a feasible solution and performs "local" improvements until none are possible.
- Next we present a local-search algorithm for max cut.

[^9]
A 0.5-Approximation Algorithm for MAX CUT

1: $S:=\emptyset$;
2: while $\exists v \in V$ whose switching sides results in a larger cut do
3: \quad Switch the side of v;
4: end while
5: return S;

- A 0.12-approximation algorithm exists. ${ }^{\text {a }}$
- 0.059-approximation algorithms do not exist unless NP = ZPP.

[^10]

Analysis (continued)

- Partition $V=V_{1} \cup V_{2} \cup V_{3} \cup V_{4}$, where
- Our algorithm returns $\left(V_{1} \cup V_{2}, V_{3} \cup V_{4}\right)$.
- The optimum cut is $\left(V_{1} \cup V_{3}, V_{2} \cup V_{4}\right)$.
- Let $e_{i j}$ be the number of edges between V_{i} and V_{j}.
- Our algorithm returns a cut of size

$$
e_{13}+e_{14}+e_{23}+e_{24}
$$

- The optimum cut size is

$$
e_{12}+e_{34}+e_{14}+e_{23}
$$

Analysis (continued)

- For each node $v \in V_{1}$, its edges to $V_{1} \cup V_{2}$ are outnumbered by those to $V_{3} \cup V_{4}$.
- Otherwise, v would have been moved to $V_{3} \cup V_{4}$ to improve the cut.
- Considering all nodes in V_{1} together, we have

$$
2 e_{11}+e_{12} \leq e_{13}+e_{14}
$$

- It is $2 e_{11}$ is because each edge in V_{1} is counted twice.
- The above inequality implies

$$
e_{12} \leq e_{13}+e_{14}
$$

Analysis (concluded)

- Similarly,

$$
\begin{aligned}
e_{12} & \leq e_{23}+e_{24} \\
e_{34} & \leq e_{23}+e_{13} \\
e_{34} & \leq e_{14}+e_{24}
\end{aligned}
$$

- Add all four inequalities, divide both sides by 2 , and add the inequality $e_{14}+e_{23} \leq e_{14}+e_{23}+e_{13}+e_{24}$ to obtain

$$
e_{12}+e_{34}+e_{14}+e_{23} \leq 2\left(e_{13}+e_{14}+e_{23}+e_{24}\right)
$$

- The above says our solution is at least half the optimum.

Approximability, Unapproximability, and Between

- KNAPSACK, NODE COVER, MAXSAT, and MAX CUT have approximation thresholds less than 1.
- KNAPSACK has a threshold of 0 (p. 736).
- But node cover (p. 714) and maxsat have a threshold larger than 0 .
- The situation is maximally pessimistic for TSP, which cannot be approximated (p. 734).
- The approximation threshold of TSP is 1. * The threshold is $1 / 3$ if TSP satisfies the triangular inequality.
- The same holds for Independent set (see the textbook).

Unapproximability of $\mathrm{TSP}^{\mathrm{a}}$

Theorem 78 The approximation threshold of TSP is 1 unless $P=N P$.

- Suppose there is a polynomial-time ϵ-approximation algorithm for TSP for some $\epsilon<1$.
- We shall construct a polynomial-time algorithm to solve the NP-complete hamiltonian cycle.
- Given any graph $G=(V, E)$, construct a TSP with $|V|$ cities with distances

$$
d_{i j}=\left\{\begin{array}{cl}
1, & \text { if }\{i, j\} \in E \\
\frac{|V|}{1-\epsilon}, & \text { otherwise }
\end{array}\right.
$$

[^11]
The Proof (concluded)

- Run the alleged approximation algorithm on this TSP.
- Suppose a tour of cost $|V|$ is returned.
- This tour must be a Hamiltonian cycle.
- Suppose a tour that includes an edge of length $\frac{|V|}{1-\epsilon}$ is returned.
- The total length of this tour is $>\frac{|V|}{1-\epsilon}$.
- Because the algorithm is ϵ-approximate, the optimum is at least $1-\epsilon$ times the returned tour's length.
- The optimum tour has a cost exceeding $|V|$.
- Hence G has no Hamiltonian cycles.

KNAPSACK Has an Approximation Threshold of Zero ${ }^{\text {a }}$
Theorem 79 For any ϵ, there is a polynomial-time ϵ-approximation algorithm for KNAPSACK.

- We have n weights $w_{1}, w_{2}, \ldots, w_{n} \in \mathbb{Z}^{+}$, a weight limit W, and n values $v_{1}, v_{2}, \ldots, v_{n} \in \mathbb{Z}^{+}$. ${ }^{\text {b }}$
- We must find an $S \subseteq\{1,2, \ldots, n\}$ such that $\sum_{i \in S} w_{i} \leq W$ and $\sum_{i \in S} v_{i}$ is the largest possible.

[^12]
The Proof (continued)

- Let

$$
V=\max \left\{v_{1}, v_{2}, \ldots, v_{n}\right\}
$$

- Clearly, $\sum_{i \in S} v_{i} \leq n V$.
- Let $0 \leq i \leq n$ and $0 \leq v \leq n V$.
- $W(i, v)$ is the minimum weight attainable by selecting only from the first i items and with a total value of v.
- It is an $(n+1) \times(n V+1)$ table.
- Set $W(0, v)=\infty$ for $v \in\{1,2, \ldots, n V\}$ and $W(i, 0)=0$ for $i=0,1, \ldots, n$. ${ }^{\text {a }}$

[^13]
The Proof (continued)

- Then, for $0 \leq i<n$,

$$
W(i+1, v)=\min \left\{W(i, v), W\left(i, v-v_{i+1}\right)+w_{i+1}\right\} .
$$

- Finally, pick the largest v such that $W(n, v) \leq W$. ${ }^{\text {a }}$
- The running time is $O\left(n^{2} V\right)$, not polynomial time.
- Key idea: Limit the number of precision bits.
${ }^{\text {a }}$ Lawler (1979).

The Proof (continued)

- Define

$$
v_{i}^{\prime}=2^{b}\left\lfloor\frac{v_{i}}{2^{b}}\right\rfloor .
$$

- This is equivalent to zeroing each v_{i} 's last b bits.
- Call the original instance

$$
x=\left(w_{1}, \ldots, w_{n}, W, v_{1}, \ldots, v_{n}\right) .
$$

- Call the approximate instance

$$
x^{\prime}=\left(w_{1}, \ldots, w_{n}, W, v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right) .
$$

The Proof (continued)

- Solving x^{\prime} takes time $O\left(n^{2} V / 2^{b}\right)$.
- The algorithm only performs subtractions on the v_{i}-related values.
- So the b last bits can be removed from the calculations.
- That is, use $v_{i}^{\prime \prime}=\left\lfloor\frac{v_{i}}{2^{\natural}}\right\rfloor$ and $V=\max \left(v_{1}^{\prime \prime}, v_{2}^{\prime \prime}, \ldots, v_{n}^{\prime \prime}\right)$ in the calculations.
- Then multiply the returned value by 2^{b}.
- It is an $(n+1) \times(n V+1) / 2^{b}$ table.

The Proof (continued)

- The solution S^{\prime} is close to the optimum solution S :

$$
\sum_{i \in S^{\prime}} v_{i} \geq \sum_{i \in S^{\prime}} v_{i}^{\prime} \geq \sum_{i \in S} v_{i}^{\prime} \geq \sum_{i \in S}\left(v_{i}-2^{b}\right) \geq \sum_{i \in S} v_{i}-n 2^{b}
$$

- Hence

$$
\sum_{i \in S^{\prime}} v_{i} \geq \sum_{i \in S} v_{i}-n 2^{b}
$$

- Without loss of generality, assume $w_{i} \leq W$ for all i.
- Otherwise, item i is redundant.
- V is a lower bound on OPT.
- Picking an item with value V is a legitimate choice.

The Proof (concluded)

- The relative error from the optimum is:

$$
\frac{\sum_{i \in S} v_{i}-\sum_{i \in S^{\prime}} v_{i}}{\sum_{i \in S} v_{i}} \leq \frac{\sum_{i \in S} v_{i}-\sum_{i \in S^{\prime}} v_{i}}{V} \leq \frac{n 2^{b}}{V}
$$

- Suppose we pick $b=\left\lfloor\log _{2} \frac{\epsilon V}{n}\right\rfloor$.
- The algorithm becomes ϵ-approximate. ${ }^{\text {a }}$
- The running time is then $O\left(n^{2} V / 2^{b}\right)=O\left(n^{3} / \epsilon\right)$, a polynomial in n and $1 / \epsilon$. ${ }^{\text {b }}$

[^14]
Comments

- INDEPENDENT SET and NODE COVER are reducible to each other (Corollary 41, p. 368).
- NODE COVER has an approximation threshold at most 0.5 (p. 714).
- But independent set is unapproximable (see the textbook).
- INDEPENDENT SET limited to graphs with degree $\leq k$ is called k-DEGREE INDEPENDENT SET.
- k-DEGREE INDEPENDENT SET is approximable (see the textbook).

[^0]: ${ }^{\text {a }}$ Contributed by Ms. Yui-Huei Chang (R96922060) on May 22, 2008
 ${ }^{\mathrm{b}}$ Contributed by Mr. Chang-Rong Hung (R96922028) on May 22, 2008

[^1]: ${ }^{\text {a }}$ Bauldry (2009).

[^2]: ${ }^{\text {a }}$ Williamson and Shmoys (2011).

[^3]: ${ }^{\text {a }}$ Chvátal (1979).

[^4]: ${ }^{\text {a }}$ The edges deleted in Line 3.
 ${ }^{\mathrm{b}}$ In fact, C as a set of edges is a maximal matching.

[^5]: ${ }^{\text {a }}$ Contributed by Mr. Jenq-Chung Li (R92922087) on December 20, 2003. Recall that König's theorem says the size of a maximum matching equals that of a minimum node cover in a bipartite graph.

[^6]: ${ }^{a}$ Dinur and Safra (2002).
 ${ }^{\mathrm{b}}$ Khot and Regev (2008).
 ${ }^{\text {c }}$ Davis and Impagliazzo (2004).

[^7]: ${ }^{\text {a }}$ Erdős and Selfridge (1973); Spencer (1987).

[^8]: ${ }^{\text {a Johnson (1974). }}$
 ${ }^{\mathrm{b}}$ Lieberherr and Specker (1981).

[^9]: ${ }^{\text {a Recall p. }} 375$.

[^10]: ${ }^{\mathrm{a}}$ Goemans and Williamson (1995).

[^11]: ${ }^{\text {a }}$ Sahni and Gonzales (1976).

[^12]: ${ }^{\text {a }}$ Ibarra and Kim (1975).
 ${ }^{\mathrm{b}}$ If the values are fractional, the result is slightly messier, but the main conclusion remains correct. Contributed by Mr. Jr-Ben Tian (B89902011, R93922045) on December 29, 2004.

[^13]: ${ }^{\text {a }}$ Contributed by Mr. Ren-Shuo Liu (D98922016) and Mr. Yen-Wei Wu (D98922013) on December 28, 2009.

[^14]: ${ }^{\text {a }}$ See Eq. (17) on p. 706.
 ${ }^{\mathrm{b}}$ It hence depends on the value of $1 / \epsilon$. Thanks to a lively class discussion on December 20, 2006. If we fix ϵ and let the problem size increase, then the complexity is cubic. Contributed by Mr. Ren-Shan Luoh (D97922014) on December 23, 2008.

