Public-Key Cryptography ${ }^{\text {a }}$

- Suppose only d is private to Bob, whereas e is public knowledge.
- Bob generates the (e, d) pair and publishes e.
- Anybody like Alice can send $E(e, x)$ to Bob.
- Knowing d, Bob can recover x by $D(d, E(e, x))=x$.
- The assumptions are complexity-theoretic.
- It is computationally difficult to compute d from e.
- It is computationally difficult to compute x from y without knowing d.

[^0]
Whitfield Diffie (1944-)

Martin Hellman (1945-)

Complexity Issues

- Given y and x, it is easy to verify whether $E(e, x)=y$.
- Hence one can always guess an x and verify.
- Cracking a public-key cryptosystem is thus in NP.
- A necessary condition for the existence of secure public-key cryptosystems is $\mathrm{P} \neq \mathrm{NP}$.
- But more is needed than $\mathrm{P} \neq \mathrm{NP}$.
- For instance, it is not sufficient that D is hard to compute in the worst case.
- It should be hard in "most" or "average" cases.

One-Way Functions

A function f is a one-way function if the following hold. ${ }^{\text {a }}$

1. f is one-to-one.
2. For all $x \in \Sigma^{*},|x|^{1 / k} \leq|f(x)| \leq|x|^{k}$ for some $k>0$.

- f is said to be honest.

3. f can be computed in polynomial time.
4. f^{-1} cannot be computed in polynomial time.

- Exhaustive search works, but it must be slow.
${ }^{\text {a }}$ Diffie and Hellman (1976); Boppana and Lagarias (1986); Grollmann and Selman (1988); Ko (1985); Ko, Long, and Du (1986); Watanabe (1985); Young (1983).

Existence of One-Way Functions

- Even if $\mathrm{P} \neq \mathrm{NP}$, there is no guarantee that one-way functions exist.
- No functions have been proved to be one-way.
- Is breaking glass a one-way function?

Candidates of One-Way Functions

- Modular exponentiation $f(x)=g^{x} \bmod p$, where g is a primitive root of p.
- Discrete logarithm is hard. ${ }^{a}$
- The RSA ${ }^{\mathrm{b}}$ function $f(x)=x^{e} \bmod p q$ for an odd e relatively prime to $\phi(p q)$.
- Breaking the RSA function is hard.

[^1]Candidates of One-Way Functions (concluded)

- Modular squaring $f(x)=x^{2} \bmod p q$.
- Determining if a number with a Jacobi symbol 1 is a quadratic residue is hard - the quadratic residuacity assumption (QRA). ${ }^{\text {a }}$

[^2]
The RSA Function

- Let p, q be two distinct primes.
- The RSA function is $x^{e} \bmod p q$ for an odd e relatively prime to $\phi(p q)$.
- By Lemma 53 (p. 466),

$$
\begin{equation*}
\phi(p q)=p q\left(1-\frac{1}{p}\right)\left(1-\frac{1}{q}\right)=p q-p-q+1 \tag{15}
\end{equation*}
$$

- As $\operatorname{gcd}(e, \phi(p q))=1$, there is a d such that

$$
e d \equiv 1 \bmod \phi(p q)
$$

which can be found by the Euclidean algorithm. ${ }^{\text {a }}$
${ }^{\text {a }}$ One can think of d as e^{-1}.

A Public-Key Cryptosystem Based on RSA

- Bob generates p and q.
- Bob publishes $p q$ and the encryption key e, a number relatively prime to $\phi(p q)$.
- The encryption function is $y=x^{e} \bmod p q$.
- Bob calculates $\phi(p q)$ by Eq. (15) (p. 640).
- Bob then calculates d such that $e d=1+k \phi(p q)$ for some $k \in \mathbb{Z}$.
- The decryption function is $y^{d} \bmod p q$.
- It works because $y^{d}=x^{e d}=x^{1+k \phi(p q)}=x \bmod p q$ by the Fermat-Euler theorem when $\operatorname{gcd}(x, p q)=1$ (p. 477).

The "Security" of the RSA Function

- Factoring $p q$ or calculating d from $(e, p q)$ seems hard.
- See also p. 473.
- Breaking the last bit of RSA is as hard as breaking the RSA. ${ }^{\text {a }}$
- Recommended RSA key sizes: ${ }^{\text {b }}$
- 1024 bits up to 2010.
- 2048 bits up to 2030 .
- 3072 bits up to 2031 and beyond.

[^3]
The "Security" of the RSA Function (continued)

- Recall that problem A is "harder than" problem B if solving A results in solving B.
- Factorization is "harder than" breaking the RSA.
- It is not hard to show that calculating Euler's phi function ${ }^{\text {a }}$ is "harder than" breaking the RSA.
- Factorization is "harder than" calculating Euler's phi function (see Lemma 53 on p. 466).
- So factorization is harder than calculating Euler's phi function, which is harder than breaking the RSA.

[^4]
The "Security" of the RSA Function (concluded)

- Factorization cannot be NP-hard unless NP $=$ coNP. ${ }^{\text {a }}$
- So breaking the RSA is unlikely to imply $\mathrm{P}=\mathrm{NP}$.
- RSA was alleged to have received 10 million US dollars from the government to promote an unsecure software! ${ }^{\text {b }}$

[^5]
Adi Shamir, Ron Rivest, and Leonard Adleman

Ron Rivest ${ }^{\text {a }}$ (1947-)

${ }^{\text {a }}$ Turing Award (2002).

Adi Shamir ${ }^{\text {a }}$ (1952-)

${ }^{\text {a }}$ Turing Award (2002).

The Secret-Key Agreement Problem

- Exchanging messages securely using a private-key cryptosystem requires Alice and Bob possessing the same key (p. 631).
- How can they agree on the same secret key when the channel is insecure?
- This is called the secret-key agreement problem.
- It was solved by Diffie and Hellman (1976) using one-way functions.

The Diffie-Hellman Secret-Key Agreement Protocol

1: Alice and Bob agree on a large prime p and a primitive root g of $p ;\{p$ and g are public. $\}$
2: Alice chooses a large number a at random;
3: Alice computes $\alpha=g^{a} \bmod p$;
4: Bob chooses a large number b at random;
5: Bob computes $\beta=g^{b} \bmod p$;
6: Alice sends α to Bob, and Bob sends β to Alice;
7: Alice computes her key $\beta^{a} \bmod p$;
8: Bob computes his key $\alpha^{b} \bmod p$;

Analysis

- The keys computed by Alice and Bob are identical as

$$
\beta^{a}=g^{b a}=g^{a b}=\alpha^{b} \bmod p .
$$

- To compute the common key from p, g, α, β is known as the Diffie-Hellman problem.
- It is conjectured to be hard.
- If discrete logarithm is easy, then one can solve the Diffie-Hellman problem.
- Because a and b can then be obtained by Eve.
- But the other direction is still open.

A Parallel History

- Diffie and Hellman's solution to the secret-key agreement problem led to public-key cryptography.
- At around the same time (or earlier) in Britain, the RSA public-key cryptosystem was invented first before the Diffie-Hellman secret-key agreement scheme was.
- Ellis, Cocks, and Williamson of the Communications Electronics Security Group of the British Government Communications Head Quarters (GCHQ).

Is a forged signature the same sort of thing as a genuine signature, or is it a different sort of thing?

- Gilbert Ryle (1900-1976), The Concept of Mind (1949)
"Katherine, I gave him the code. He verified the code."
"But did you verify him?"
- The Numbers Station (2013)

Digital Signatures ${ }^{\text {a }}$

- Alice wants to send Bob a signed document x.
- The signature must unmistakably identifies the sender.
- Both Alice and Bob have public and private keys

$$
e_{\mathrm{Alice}}, e_{\mathrm{Bob}}, d_{\mathrm{Alice}}, d_{\mathrm{Bob}}
$$

- Every cryptosystem guarantees $D(d, E(e, x))=x$.
- Assume the cryptosystem also satisfies the commutative property

$$
\begin{equation*}
E(e, D(d, x))=D(d, E(e, x)) \tag{16}
\end{equation*}
$$

- E.g., the RSA system satisfies it as $\left(x^{d}\right)^{e}=\left(x^{e}\right)^{d}$.

[^6]
Digital Signatures Based on Public-Key Systems

- Alice signs x as

$$
\left(x, D\left(d_{\text {Alice }}, x\right)\right) .
$$

- Bob receives (x, y) and verifies the signature by checking

$$
E\left(e_{\text {Alice }}, y\right)=E\left(e_{\text {Alice }}, D\left(d_{\text {Alice }}, x\right)\right)=x
$$

based on Eq. (16).

- The claim of authenticity is founded on the difficulty of inverting $E_{\text {Alice }}$ without knowing the key $d_{\text {Alice }}$.

Probabilistic Encryptiona

- A deterministic cryptosystem can be broken if the plaintext has a distribution that favors the "easy" cases.
- The ability to forge signatures on even a vanishingly small fraction of strings of some length is a security weakness if those strings were the probable ones!
- A scheme may also "leak" partial information.
- Parity of the plaintext, e.g.
- The first solution to the problems of skewed distribution and partial information was based on the QRA.

[^7]
Shafi Goldwasser ${ }^{\text {a }}$ (1958-)

${ }^{\text {a }}$ Turing Award (2013).

Silvio Micalia ${ }^{\text {a }}$ (1954-)

${ }^{\text {a }}$ Turing Award (2013).

Goldwasser and Micali

A Useful Lemma

Lemma 76 Let $n=p q$ be a product of two distinct primes. Then a number $y \in Z_{n}^{*}$ is a quadratic residue modulo n if and only if $(y \mid p)=(y \mid q)=1$.

- The "only if" part:
- Let x be a solution to $x^{2}=y \bmod p q$.
- Then $x^{2}=y \bmod p$ and $x^{2}=y \bmod q$ also hold.
- Hence y is a quadratic modulo p and a quadratic residue modulo q.

The Proof (concluded)

- The "if" part:
- Let $a_{1}^{2}=y \bmod p$ and $a_{2}^{2}=y \bmod q$.
- Solve

$$
\begin{aligned}
x & =a_{1} \bmod p \\
x & =a_{2} \bmod q
\end{aligned}
$$

for x with the Chinese remainder theorem.

- As $x^{2}=y \bmod p, x^{2}=y \bmod q$, and $\operatorname{gcd}(p, q)=1$, we must have $x^{2}=y \bmod p q$.

The Jacobi Symbol and Quadratic Residuacity Test

- The Legendre symbol can be used as a test for quadratic residuacity by Lemma 63 (p. 547).
- Lemma 76 (p. 659) says this is not the case with the Jacobi symbol in general.
- Suppose $n=p q$ is a product of two distinct primes.
- A number $y \in Z_{n}^{*}$ with Jacobi symbol $(y \mid p q)=1$ may be a quadratic nonresidue modulo n when

$$
(y \mid p)=(y \mid q)=-1
$$

because $(y \mid p q)=(y \mid p)(y \mid q)$.

The Setup

- Bob publishes $n=p q$, a product of two distinct primes, and a quadratic nonresidue y with Jacobi symbol 1.
- Bob keeps secret the factorization of n.
- Alice wants to send bit string $b_{1} b_{2} \cdots b_{k}$ to Bob.
- Alice encrypts the bits by choosing a random quadratic residue modulo n if b_{i} is 1 and a random quadratic nonresidue (with Jacobi symbol 1) otherwise.
- So a sequence of residues and nonresidues are sent.
- Knowing the factorization of n, Bob can efficiently test quadratic residuacity and thus read the message.

The Protocol for Alice

1: for $i=1,2, \ldots, k$ do
2: \quad Pick $r \in Z_{n}^{*}$ randomly;
3: if $b_{i}=1$ then
4: \quad Send $r^{2} \bmod n$; $\{$ Jacobi symbol is 1.$\}$
5: else
6: \quad Send $r^{2} y \bmod n ;\{$ Jacobi symbol is still 1.\}
7: end if
8: end for

The Protocol for Bob
1: for $i=1,2, \ldots, k$ do
2: Receive r;
3: \quad if $(r \mid p)=1$ and $(r \mid q)=1$ then
4: $\quad b_{i}:=1$;
5: else
6: $\quad b_{i}:=0 ;$
7: end if
8: end for

Semantic Security

- This encryption scheme is probabilistic.
- There are a large number of different encryptions of a given message.
- One is chosen at random by the sender to represent the message.
- This scheme is both polynomially secure and semantically secure.

What Is a Proof?

- A proof convinces a party of a certain claim.
-" $x^{n}+y^{n} \neq z^{n}$ for all $x, y, z \in \mathbb{Z}^{+}$and $n>2$."
- "Graph G is Hamiltonian."
- " $x^{p}=x \bmod p$ for prime p and $p \nmid x$."
- In mathematics, a proof is a fixed sequence of theorems.
- Think of it as a written examination.
- We will extend a proof to cover a proof process by which the validity of the assertion is established.
- Recall a job interview or an oral examination.

Prover and Verifier

- There are two parties to a proof.
- The prover (Peggy).
- The verifier (Victor).
- Given an assertion, the prover's goal is to convince the verifier of its validity (completeness).
- The verifier's objective is to accept only correct assertions (soundness).
- The verifier usually has an easier job than the prover.
- The setup is very much like the Turing test. ${ }^{\text {a }}$
${ }^{\text {a }}$ Turing (1950).

Interactive Proof Systems

- An interactive proof for a language L is a sequence of questions and answers between the two parties.
- At the end of the interaction, the verifier decides whether the claim is true or false.
- The verifier must be a probabilistic polynomial-time algorithm.
- The prover runs an exponential-time algorithm. ${ }^{\text {a }}$
- If the prover is not more powerful than the verifier, no interaction is needed!

[^8]
Interactive Proof Systems (concluded)

- The system decides L if the following two conditions hold for any common input x.
- If $x \in L$, then the probability that x is accepted by the verifier is at least $1-2^{-|x|}$.
- If $x \notin L$, then the probability that x is accepted by the verifier with any prover replacing the original prover is at most $2^{-|x|}$.
- Neither the number of rounds nor the lengths of the messages can be more than a polynomial of $|x|$.

IP ${ }^{\text {a }}$

- IP is the class of all languages decided by an interactive proof system.
- When $x \in L$, the completeness condition can be modified to require that the verifier accepts with certainty without affecting IP. ${ }^{\text {b }}$
- Similar things cannot be said of the soundness condition when $x \notin L$.
- Verifier's coin flips can be public. ${ }^{\text {c }}$
${ }^{\text {a }}$ Goldwasser, Micali, and Rackoff (1985).
${ }^{\mathrm{b}}$ Goldreich, Mansour, and Sipser (1987).
${ }^{\text {c }}$ Goldwasser and Sipser (1989).

The Relations of IP with Other Classes

- $N P \subseteq I P$.
- IP becomes NP when the verifier is deterministic and there is only one round of interaction. ${ }^{\text {a }}$
- $\mathrm{BPP} \subseteq \mathrm{IP}$.
- IP becomes BPP when the verifier ignores the prover's messages.
- IP actually coincides with PSPACE. ${ }^{\text {b }}$

[^9]
Graph Isomorphism

- $V_{1}=V_{2}=\{1,2, \ldots, n\}$.
- Graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorphic if there exists a permutation π on $\{1,2, \ldots, n\}$ so that $(u, v) \in E_{1} \Leftrightarrow(\pi(u), \pi(v)) \in E_{2}$.
- The task is to answer if $G_{1} \cong G_{2}$.
- No known polynomial-time algorithms.
- The problem is in NP (hence IP).
- It is not likely to be NP-complete. ${ }^{\text {a }}$
${ }^{\text {a }}$ Schöning (1987).

GRAPH NONISOMORPHISM

- $V_{1}=V_{2}=\{1,2, \ldots, n\}$.
- Graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are nonisomorphic if there exist no permutations π on $\{1,2, \ldots, n\}$ so that $(u, v) \in E_{1} \Leftrightarrow(\pi(u), \pi(v)) \in E_{2}$.
- The task is to answer if $G_{1} \not \neq G_{2}$.
- Again, no known polynomial-time algorithms.
- It is in coNP, but how about NP or BPP?
- It is not likely to be coNP-complete.
- Surprisingly, GRAPH NONISOMORPHISM \in IP. ${ }^{\text {a }}$
${ }^{\text {a }}$ Goldreich, Micali, and Wigderson (1986).

A 2-Round Algorithm

1: Victor selects a random $i \in\{1,2\}$;
2: Victor selects a random permutation π on $\{1,2, \ldots, n\}$;
3: Victor applies π on graph G_{i} to obtain graph H;
4: Victor sends $\left(G_{1}, H\right)$ to Peggy;
5: if $G_{1} \cong H$ then
6: Peggy sends $j=1$ to Victor;
7: else
8: Peggy sends $j=2$ to Victor;
9: end if
10: if $j=i$ then
11: Victor accepts;
12: else
13: Victor rejects;
14: end if

Analysis

- Victor runs in probabilistic polynomial time.
- Suppose $G_{1} \not \not 二 G_{2}$.
- Peggy is able to tell which G_{i} is isomorphic to H, so $j=i$.
- So Victor always accepts.
- Suppose $G_{1} \cong G_{2}$.
- No matter which i is picked by Victor, Peggy or any prover sees 2 identical graphs.
- Peggy or any prover with exponential power has only probability one half of guessing i correctly.
- So Victor erroneously accepts with probability $1 / 2$.
- Repeat the algorithm to obtain the desired probabilities.

Knowledge in Proofs

- Suppose I know a satisfying assignment to a satisfiable boolean expression.
- I can convince Alice of this by giving her the assignment.
- But then I give her more knowledge than is necessary.
- Alice can claim that she found the assignment!
- Login authentication faces essentially the same issue.
- See
www.wired.com/wired/archive/1.05/atm_pr.html for a famous ATM fraud in the U.S.

Knowledge in Proofs (concluded)

- Suppose I always give Alice random bits.
- Alice extracts no knowledge from me by any measure, but I prove nothing.
- Question 1: Can we design a protocol to convince Alice (the knowledge) of a secret without revealing anything extra?
- Question 2: How to define this idea rigorously?

Zero Knowledge Proofs ${ }^{\text {a }}$

An interactive proof protocol (P, V) for language L has the perfect zero-knowledge property if:

- For every verifier V^{\prime}, there is an algorithm M with expected polynomial running time.
- M on any input $x \in L$ generates the same probability distribution as the one that can be observed on the communication channel of $\left(P, V^{\prime}\right)$ on input x.

[^10]
Comments

- Zero knowledge is a property of the prover.
- It is the robustness of the prover against attempts of the verifier to extract knowledge via interaction.
- The verifier may deviate arbitrarily (but in polynomial time) from the predetermined program.
- A verifier cannot use the transcript of the interaction to convince a third-party of the validity of the claim.
- The proof is hence not transferable.

Comments (continued)

- Whatever a verifier can "learn" from the specified prover P via the communication channel could as well be computed from the verifier alone.
- The verifier does not learn anything except " $x \in L$."
- Zero-knowledge proofs yield no knowledge in the sense that they can be constructed by the verifier who believes the statement, and yet these proofs do convince him.

Comments (continued)

- The "paradox" is resolved by noting that it is not the transcript of the conversation that convinces the verifier.
- But the fact that this conversation was held "on line."
- Computational zero-knowledge proofs are based on complexity assumptions.
- M only needs to generate a distribution that is computationally indistinguishable from the verifier's view of the interaction.

Comments (concluded)

- It is known that if one-way functions exist, then zero-knowledge proofs exist for every problem in NP. ${ }^{\text {a }}$
- The verifier can be restricted to the honest one (i.e., it follows the protocol). ${ }^{\text {b }}$
- The coins can be public. ${ }^{\text {c }}$

[^11]
Are You Convinced?

- A newspaper commercial for hair-growing products for men.
- A (for all practical purposes) bald man has a full head of hair after 3 months.
- A TV commercial for weight-loss products.
- A (by any reasonable measure) overweight woman loses 10 kilograms in 10 weeks.

Quadratic Residuacity

- Let n be a product of two distinct primes.
- Assume extracting the square root of a quadratic residue modulo n is hard without knowing the factors.
- We next present a zero-knowledge proof for the input

$$
x \in Z_{n}^{*}
$$

being a quadratic residue.

Zero-Knowledge Proof of Quadratic Residuacity

1: for $m=1,2, \ldots, \log _{2} n$ do
2: \quad Peggy chooses a random $v \in Z_{n}^{*}$ and sends $y=v^{2} \bmod n$ to Victor;
3: Victor chooses a random bit i and sends it to Peggy;
4: Peggy sends $z=u^{i} v \bmod n$, where u is a square root of $x ;\left\{u^{2} \equiv x \bmod n\right.$. $\}$
5: \quad Victor checks if $z^{2} \equiv x^{i} y \bmod n$;
6: end for
7: Victor accepts x if Line 5 is confirmed every time;

A Useful Corollary of Lemma 76 (p. 659)

Corollary 77 Let $n=p q$ be a product of two distinct primes. (1) If x and y are both quadratic residues modulo n, then $x y \in Z_{n}^{*}$ is a quadratic residue modulo n. (2) If x is a quadratic residue modulo n and y is a quadratic nonresidue modulo n, then $x y \in Z_{n}^{*}$ is a quadratic nonresidue modulo n.

- Suppose x and y are both quadratic residues modulo n.
- Let $x \equiv a^{2} \bmod n$ and $y \equiv b^{2} \bmod n$.
- Now $x y$ is a quadratic residue as $x y \equiv(a b)^{2} \bmod n$.

The Proof (concluded)

- Suppose x is a quadratic residue modulo n and y is a quadratic nonresidue modulo n.
- By Lemma 76 (p. 659), $(x \mid p)=(x \mid q)=1$ but, say, $(y \mid p)=-1$.
- Now $x y$ is a quadratic nonresidue as $(x y \mid p)=-1$, again by Lemma 76 (p. 659).

Analysis

- Suppose x is a quadratic residue.
- Then x 's square root u can be computed by Peggy.
- Peggy can answer all challenges.
- Now,

$$
z^{2} \equiv\left(u^{i}\right)^{2} v^{2} \equiv\left(u^{2}\right)^{i} v^{2} \equiv x^{i} y \bmod n .
$$

- So Victor will accept x.

Analysis (continued)

- Suppose x is a quadratic nonresidue.
- Corollary 77 (p. 687) says if a is a quadratic residue, then $x a$ is a quadratic nonresidue.
- As y is a quadratic residue, $x^{i} y$ can be a quadratic residue (see Line 5) only when $i=0$.
- Peggy can answer only one of the two possible challenges, when $i=0 .{ }^{\text {a }}$
- So Peggy will be caught in any given round with probability one half.
${ }^{\text {a }}$ Line $5\left(z^{2} \equiv x^{i} y \bmod n\right)$ cannot equate a quadratic residue z^{2} with a quadratic nonresidue $x^{i} y$ when $i=1$.

Analysis (continued)

- How about the claim of zero knowledge?
- The transcript between Peggy and Victor when x is a quadratic residue can be generated without Peggy!
- Here is how.
- Suppose x is a quadratic residue. ${ }^{\text {a }}$
- In each round of interaction with Peggy, the transcript is a triplet (y, i, z).
- We present an efficient Bob that generates (y, i, z) with the same probability without accessing Peggy's power.

[^12]
Analysis (concluded)

1: Bob chooses a random $z \in Z_{n}^{*}$;
2: Bob chooses a random bit i;
3: Bob calculates $y=z^{2} x^{-i} \bmod n$; ${ }^{\text {a }}$
4: Bob writes (y, i, z) into the transcript;

Comments

- Assume x is a quadratic residue.
- For $(y, i, z), y$ is a random quadratic residue, i is a random bit, and z is a random number.
- Bob cheats because (y, i, z) is not generated in the same order as in the original transcript.
- Bob picks Peggy's answer z first.
- Bob then picks Victor's challenge i.
- Bob finally patches the transcript.

Comments (concluded)

- So it is not the transcript that convinces Victor, but that conversation with Peggy is held "on line."
- The same holds even if the transcript was generated by a cheating Victor's interaction with (honest) Peggy.
- But we skip the details.

[^0]: ${ }^{\text {a }}$ Diffie and Hellman (1976).

[^1]: ${ }^{\text {a }}$ Conjectured to be $2^{n^{\epsilon}}$ for some $\epsilon>0$ in both the worst-case sense and average sense. Doable in time $n^{O(\log n)}$ for finite fields of small characteristic (Barbulescu, et al., 2013). It is in NP in some sense (Grollmann and Selman (1988)).
 ${ }^{\mathrm{b}}$ Rivest, Shamir, and Adleman (1978).

[^2]: ${ }^{\text {a }}$ Due to Gauss.

[^3]: ${ }^{\text {a }}$ Alexi, Chor, Goldreich, and Schnorr (1988).
 ${ }^{\text {b }}$ RSA (2003). RSA was acquired by EMC in 2006 for 2.1 billion US dollars.

[^4]: ${ }^{\text {a }}$ When the input is not factorized!

[^5]: ${ }^{\text {a }}$ Brassard (1979).
 ${ }^{\mathrm{b}}$ Menn (2013).

[^6]: ${ }^{\text {a Diffie }}$ and Hellman (1976).

[^7]: ${ }^{\text {a }}$ Goldwasser and Micali (1982). This paper "laid the framework for modern cryptography" (2013).

[^8]: ${ }^{\text {a }}$ See the problem to Note 12.3 .7 on p. 296 and Proposition 19.1 on p. 475 , both of the textbook, about alternative complexity assumptions without affecting the definition. Contributed by Mr. Young-San Lin (B97902055) and Mr. Chao-Fu Yang (B97902052) on December 18, 2012.

[^9]: ${ }^{\text {a }}$ Recall Proposition 36 on p. 326.
 ${ }^{\mathrm{b}}$ Shamir (1990).

[^10]: ${ }^{\text {a }}$ Goldwasser, Micali, and Rackoff (1985).

[^11]: ${ }^{\text {a }}$ Goldreich, Micali, and Wigderson (1986).
 ${ }^{\mathrm{b}}$ Vadhan (2006).
 ${ }^{\mathrm{c}}$ Vadhan (2006).

[^12]: ${ }^{\text {a }}$ There is no zero-knowledge requirement when $x \notin L$.

