Theory of Computation

Midterm Examination on December 16, 2014 Fall Semester, 2014

Problem 1 (25 points) Let G(V, E) be a directed graph with vertices V and edges E, and |V| be the number of vertices in G. HAMILTONIAN CYCLE asks if there is a cycle through a graph G which visits each vertex exactly once. It is known that HAMILTONIAN CYCLE is NP-complete. BIGCYCLE asks if G has a cycle of length equal or larger than |V|/2. Reduce HAMILTONIAN CYCLE to BIGCYCLE.

Ans: Let N be an NTM which decides BIGCYCLE. Construct an NTM M which decides HAMILTONIAN CYCLE as follows:

- 1: On input G(V, E) with |V|.
- 2: Add exactly |V| isolated vertices to G to obtain G'.
- 3: Run N(G').
- 4: If N accepts, halt and accept.
- 5: Otherwise, halt and reject.

Clearly $G \in$ HAMILTONIAN CYCLE if and only if $G' \in$ BIGCYCLE. M clearly runs in polynomial time. It completes the proof.

Problem 2 (25 points) Let a, b, n, m be any odd integers. Show that if gcd(ab, nm) = 1, then $(ab^2|nm^2) = (a|n)$. (Recall that (ab|m) = (a|m)(b|m) when gcd(ab, m) = 1 and (a|nm) = (a|n)(a|m) when gcd(a, nm) = 1.)

Ans:

$$(ab^{2}|nm^{2}) = (a|nm^{2})(b^{2}|nm^{2})$$

= $(a|n)(a|m^{2})(b|nm^{2})(b|nm^{2})$
= $(a|n)(a|m)(a|m)(b|nm^{2})^{2}$
= $(a|n)(a|m)^{2}$
= $(a|n).$

Problem 3 (25 points) Show that if 3-SAT has uniform polynomial circuits, then NP = coNP.

Ans: By Theorem 74 (see p. 613 in the slides), 3-SAT is then in P. As 3-SAT is NP-complete, by Corollary 29 (see p. 292 in the slides) P = NP = coNP.

Problem 4 (25 points) Show that RP is closed under union. (This means that $L_1 \cup L_2 \in \text{RP}$ if $L_1 \in \text{RP}$ and $L_2 \in \text{RP}$. Recall that the error probability does not have to be exactly 1/2; any constant will do.)

Ans: Let L_1 and $L_2 \in \mathbb{RP}$ be decided by polynomial-time Monte Carlo TMs N_1 and N_2 , respectively. Note that for i = 1, 2, and $\epsilon_i = 1/2$, $\mathbf{Pr}(N_i(x) = 1 \mid x \in L_i) \ge 1 - \epsilon_i$ and $\mathbf{Pr}(N_i(x) = 1 \mid x \notin L_i) = 0$.

To show that RP is closed under union, let TM N_{\cup} simulate N_1 and N_2 with independent coin flips on input x. $N_{\cup}(x) = 1$ if N_1 or N_2 accepts x; otherwise, $N_{\cup}(x) = 0$. Now we prove that N_{\cup} decides $L_1 \cup L_2$ with one-sided error probability $\epsilon = \epsilon_1 \epsilon_2$. Note that $0 < \epsilon \leq 1$. Assume $x \in L_1 \cup L_2$. Then

$$\mathbf{Pr}(N_{\cup}(x) = 1) = 1 - \mathbf{Pr}(N_{\cup}(x) = 0)$$

= 1 - \mathbf{Pr}(N_1(x) = 0) \times \mathbf{Pr}(N_2(x) = 0)
\ge 1 - \epsilon_1\epsilon_2
= 1 - \epsilon.

Hence $\epsilon = \frac{1}{4}$. Now assume $x \notin L_1 \cup L_2$. This implies that $\mathbf{Pr}(N_1(x) = 1) = \mathbf{Pr}(N_2(x) = 1) = 0$. So,

$$\mathbf{Pr}(N_{\cup}(x) = 1) = 1 - \mathbf{Pr}(N_{\cup}(x) = 0)$$

= 1 - \mathbf{Pr}(N_1(x) = 0) \times \mathbf{Pr}(N_2(x) = 0)
= 1 - (1 - \mathbf{Pr}(N_1(x) = 1)) \times (1 - \mathbf{Pr}(N_2(x) = 1))
= 0.

Clearly, $L_1 \cup L_2 \in \mathbb{RP}$, and the claim holds.