Theory of Computation

Midterm Examination on December 16, 2014
Fall Semester, 2014
Problem 1 (25 points) Let $G(V, E)$ be a directed graph with vertices V and edges E, and $|V|$ be the number of vertices in G. HAMILTONIAN CYCLE asks if there is a cycle through a graph G which visits each vertex exactly once. It is known that HAMILTONIAN CYCLE is NP-complete. BIGCYCLE asks if G has a cycle of length equal or larger than $|V| / 2$. Reduce HAMILTONIAN CYCLE to BIGCYCLE.

Ans: Let N be an NTM which decides BIGCYCLE. Construct an NTM M which decides HAMILTONIAN CYCLE as follows:

1: On input $G(V, E)$ with $|V|$.
2: Add exactly $|V|$ isolated vertices to G to obtain G^{\prime}.
3: Run $\mathrm{N}\left(G^{\prime}\right)$.
4: If N accepts, halt and accept.
5: Otherwise, halt and reject.
Clearly $G \in$ HAMILTONIAN CYCLE if and only if $G^{\prime} \in$ BIGCYCLE. M clearly runs in polynomial time. It completes the proof.

Problem 2 (25 points) Let a, b, n, m be any odd integers. Show that if $\operatorname{gcd}(a b, n m)=1$, then $\left(a b^{2} \mid n m^{2}\right)=(a \mid n) . \quad($ Recall that $(a b \mid m)=(a \mid m)(b \mid m)$ when $\operatorname{gcd}(a b, m)=1$ and $(a \mid n m)=(a \mid n)(a \mid m)$ when $\operatorname{gcd}(a, n m)=1$.)

Ans:

$$
\begin{aligned}
\left(a b^{2} \mid n m^{2}\right) & =\left(a \mid n m^{2}\right)\left(b^{2} \mid n m^{2}\right) \\
& =(a \mid n)\left(a \mid m^{2}\right)\left(b \mid n m^{2}\right)\left(b \mid n m^{2}\right) \\
& =(a \mid n)(a \mid m)(a \mid m)\left(b \mid n m^{2}\right)^{2} \\
& =(a \mid n)(a \mid m)^{2} \\
& =(a \mid n) .
\end{aligned}
$$

Problem 3 (25 points) Show that if 3-SAT has uniform polynomial circuits, then $\mathrm{NP}=\mathrm{coNP}$.

Ans: By Theorem 74 (see p. 613 in the slides), 3-SAT is then in P. As 3-SAT is NP-complete, by Corollary 29 (see p. 292 in the slides) $\mathrm{P}=\mathrm{NP}=\mathrm{coNP}$.

Problem 4 (25 points) Show that RP is closed under union. (This means that $L_{1} \cup L_{2} \in \mathrm{RP}$ if $L_{1} \in \mathrm{RP}$ and $L_{2} \in \mathrm{RP}$. Recall that the error probability does not have to be exactly $1 / 2$; any constant will do.)

Ans: Let L_{1} and $L_{2} \in \mathrm{RP}$ be decided by polynomial-time Monte Carlo TMs N_{1} and N_{2}, respectively. Note that for $i=1,2$, and $\epsilon_{i}=1 / 2, \operatorname{Pr}\left(N_{i}(x)=1 \mid\right.$ $\left.x \in L_{i}\right) \geq 1-\epsilon_{i}$ and $\operatorname{Pr}\left(N_{i}(x)=1 \mid x \notin L_{i}\right)=0$.

To show that RP is closed under union, let TM N_{\cup} simulate N_{1} and N_{2} with independent coin flips on input $x . \quad N_{\cup}(x)=1$ if N_{1} or N_{2} accepts x; otherwise, $N_{\cup}(x)=0$. Now we prove that N_{\cup} decides $L_{1} \cup L_{2}$ with one-sided error probability $\epsilon=\epsilon_{1} \epsilon_{2}$. Note that $0<\epsilon \leq 1$. Assume $x \in L_{1} \cup L_{2}$. Then

$$
\begin{aligned}
\operatorname{Pr}\left(N_{\cup}(x)=1\right) & =1-\operatorname{Pr}\left(N_{\cup}(x)=0\right) \\
& =1-\operatorname{Pr}\left(N_{1}(x)=0\right) \times \operatorname{Pr}\left(N_{2}(x)=0\right) \\
& \geq 1-\epsilon_{1} \epsilon_{2} \\
& =1-\epsilon .
\end{aligned}
$$

Hence $\epsilon=\frac{1}{4}$. Now assume $x \notin L_{1} \cup L_{2}$. This implies that $\operatorname{Pr}\left(N_{1}(x)=1\right)=$ $\operatorname{Pr}\left(N_{2}(x)=1\right)=0$. So,

$$
\begin{aligned}
\operatorname{Pr}\left(N_{\cup}(x)=1\right) & =1-\operatorname{Pr}\left(N_{\cup}(x)=0\right) \\
& =1-\operatorname{Pr}\left(N_{1}(x)=0\right) \times \operatorname{Pr}\left(N_{2}(x)=0\right) \\
& =1-\left(1-\operatorname{Pr}\left(N_{1}(x)=1\right)\right) \times\left(1-\operatorname{Pr}\left(N_{2}(x)=1\right)\right) \\
& =0 .
\end{aligned}
$$

Clearly, $L_{1} \cup L_{2} \in \mathrm{RP}$, and the claim holds.

