Theory of Computation

Homework 4

Due: 2014/12/09
Problem 1 Show that validity is coNP-complete.
Proof: To show that validity is coNP-complete, it needs to show that validity \in coNP and L can be reduced to validity for all $L \in$ coNP.

First, we can construct a TM which verifies the input x, and accepts if $x \in$ validity. Obviously, it takes polynomial time. So, validity \in coNP.

Next, we show that L can be reduced to validity for all $L \in$ coNP. It is known that $S A T$ is NP-complete. By Proposition 49 (See p. 444 in the slides.), $\overline{S A T}$ is coNPcomplete. So, it suffices to show that $\overline{S A T}$ can be reduced to validity. Let N be an NTM which decides VALIDITY. Construct an NTM M which decides $\overline{S A T}$ as follows:

1: On input x, let $x^{\prime}=\neg x$.
2: Run $\mathrm{N}\left(x^{\prime}\right)$
3: If N accepts, halt and accept.
4: Otherwise, halt and reject.
M clearly runs in polynomial time. It completes the proof.

Problem 2 Recall that the Jacobi symbol is given by $(a \mid m)=\prod_{i}^{k}\left(a \mid p_{i}\right)$ for any odd integer $m=p_{1} p_{2} \ldots p_{k}, m>1$, and $\operatorname{gcd}(a, m)=1$. Show that $(-1 \mid m)=(-1)^{(m-1) / 2}$ for any odd integer m. (You may use the Legendre symbol $(a \mid p)=a^{\frac{p-1}{2}}$ for any odd prime p and $a \neq 0 \bmod p$.)

Proof: Let n be an odd integer. Define

$$
\begin{equation*}
f(n)=\frac{n-1}{2} \bmod 2 . \tag{1}
\end{equation*}
$$

Then we have

$$
f(n)=\left\{\begin{array}{lll}
0, & \text { if } n \equiv 1 & \bmod 4 \tag{2}\\
1, & \text { if } n \equiv 3 & \bmod 4
\end{array}\right.
$$

Moreover, for all odd integers a and b,

$$
\begin{align*}
f(a b)-f(a)-f(b) & =\frac{a b-1-a+1-b+1}{2} \tag{3}\\
& =\frac{(a-1)(b-1)}{2} \tag{4}\\
& \equiv 0 \bmod 2 \tag{5}
\end{align*}
$$

So, when a and b are odd primes, we have

$$
\begin{align*}
(-1 \mid a b) & =(-1 \mid a)(-1 \mid b) \tag{6}\\
& =(-1)^{f(a)}(-1)^{f(b)} \tag{7}\\
& =(-1)^{f(a)+f(b)} \tag{8}\\
& =(-1)^{f(a b)} \tag{9}
\end{align*}
$$

Assume that $m=p_{1} p_{2} p_{3} \cdots p_{k}$ where p_{i} s are odd primes but not necessarily distinct. Thus,

$$
\begin{align*}
(-1 \mid m) & =\left(-1 \mid p_{1}\right)\left(-1 \mid p_{2}\right)\left(-1 \mid p_{3}\right) \cdots\left(-1 \mid p_{k}\right) \tag{10}\\
& =(-1)^{f\left(p_{1}\right)}(-1)^{f\left(p_{1}\right)}(-1)^{f\left(p_{3}\right)} \cdots(-1)^{f\left(p_{k}\right)} \tag{11}\\
& =(-1)^{f\left(p_{1}\right)+f\left(p_{2}\right)+f\left(p_{3}\right)+\cdots+f\left(p_{k}\right)} \tag{12}\\
& =(-1)^{f\left(p_{1} p_{2} p_{3} \cdots p_{k}\right)} \tag{13}\\
& =(-1)^{f(m)} \tag{14}\\
& =(-1)^{\frac{m-1}{2}} . \tag{15}
\end{align*}
$$

