
Comments on RP

• In analogy to Proposition 36 (p. 326), a “yes” instance

of an RP problem has many certificates (witnesses).

• There are no false positives.

• If we associate nondeterministic steps with flipping fair

coins, then we can cast RP in the language of

probability.

– If x ∈ L, then N(x) halts with “yes” with probability

at least 0.5 .

– If x ̸∈ L, then N(x) halts with “no.”
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Comments on RP (concluded)

• The probability of false negatives is ϵ ≤ 0.5.

• But any constant between 0 and 1 can replace 0.5.

– Repeat the algorithm k = ⌈− 1
log2 ϵ⌉ times and answer

“no” only if all runs answer “no.”

– The probability of false negatives becomes ϵk ≤ 0.5.

• In fact, ϵ can be arbitrarily close to 1 as long as it is at

most 1− 1/q(n) for some polynomial q(n).

– − 1
log2 ϵ = O( 1

1−ϵ ) = O(q(n)).
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Where RP Fits

• P ⊆ RP ⊆ NP.

– A deterministic TM is like a Monte Carlo TM except

that all the coin flips are ignored.

– A Monte Carlo TM is an NTM with extra demands

on the number of accepting paths.

• compositeness ∈ RP;a primes ∈ coRP;

primes ∈ RP.b

– In fact, primes ∈ P.c

• RP ∪ coRP is an alternative “plausible” notion of

efficient computation.
aRabin (1976) and Solovay and Strassen (1977).
bAdleman and Huang (1987).
cAgrawal, Kayal, and Saxena (2002).
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ZPPa (Zero Probabilistic Polynomial)

• The class ZPP is defined as RP ∩ coRP.

• A language in ZPP has two Monte Carlo algorithms, one

with no false positives and the other with no false

negatives.

• If we repeatedly run both Monte Carlo algorithms,

eventually one definite answer will come (unlike RP).

– A positive answer from the one without false

positives.

– A negative answer from the one without false

negatives.

aGill (1977).
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The ZPP Algorithm (Las Vegas)

1: {Suppose L ∈ ZPP.}
2: {N1 has no false positives, and N2 has no false

negatives.}
3: while true do

4: if N1(x) = “yes” then

5: return “yes”;

6: end if

7: if N2(x) = “no” then

8: return “no”;

9: end if

10: end while
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ZPP (concluded)

• The expected running time for the correct answer to

emerge is polynomial.

– The probability that a run of the 2 algorithms does

not generate a definite answer is 0.5 (why?).

– Let p(n) be the running time of each run of the

while-loop.

– The expected running time for a definite answer is

∞∑
i=1

0.5iip(n) = 2p(n).

• Essentially, ZPP is the class of problems that can be

solved, without errors, in expected polynomial time.
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Large Deviations

• Suppose you have a biased coin.

• One side has probability 0.5 + ϵ to appear and the other

0.5− ϵ, for some 0 < ϵ < 0.5.

• But you do not know which is which.

• How to decide which side is the more likely side—with

high confidence?

• Answer: Flip the coin many times and pick the side that

appeared the most times.

• Question: Can you quantify the confidence?
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The Chernoff Bounda

Theorem 69 (Chernoff (1952)) Suppose x1, x2, . . . , xn

are independent random variables taking the values 1 and 0

with probabilities p and 1− p, respectively. Let X =
∑n

i=1 xi.

Then for all 0 ≤ θ ≤ 1,

prob[X ≥ (1 + θ) pn ] ≤ e−θ2pn/3.

• The probability that the deviate of a binomial

random variable from its expected value

E[X ] = E

[
n∑

i=1

xi

]
= pn

decreases exponentially with the deviation.
aHerman Chernoff (1923–). The bound is asymptotically optimal.
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The Proof

• Let t be any positive real number.

• Then

prob[X ≥ (1 + θ) pn ] = prob[ etX ≥ et(1+θ) pn ].

• Markov’s inequality (p. 525) generalized to real-valued

random variables says that

prob
[
etX ≥ kE[ etX ]

]
≤ 1/k.

• With k = et(1+θ) pn/E[ etX ], we have

prob[X ≥ (1 + θ) pn ] ≤ e−t(1+θ) pnE[ etX ].
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The Proof (continued)

• Because X =
∑n

i=1 xi and xi’s are independent,

E[ etX ] = (E[ etx1 ])n = [ 1 + p(et − 1) ]n.

• Substituting, we obtain

prob[X ≥ (1 + θ) pn ] ≤ e−t(1+θ) pn[ 1 + p(et − 1) ]n

≤ e−t(1+θ) pnepn(e
t−1)

as (1 + a)n ≤ ean for all a > 0.
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The Proof (concluded)

• With the choice of t = ln(1 + θ), the above becomes

prob[X ≥ (1 + θ) pn ] ≤ epn[ θ−(1+θ) ln(1+θ) ].

• The exponent expands to

−θ2

2
+

θ3

6
− θ4

12
+ · · ·

for 0 ≤ θ ≤ 1.

• But it is less than

−θ2

2
+

θ3

6
≤ θ2

(
−1

2
+

θ

6

)
≤ θ2

(
−1

2
+

1

6

)
= −θ2

3
.
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Power of the Majority Rule

From prob[X ≤ (1− θ) pn ] ≤ e−θ2pn/2 (prove it):

Corollary 70 If p = (1/2) + ϵ for some 0 ≤ ϵ ≤ 1/2, then

prob

[
n∑

i=1

xi ≤ n/2

]
≤ e−ϵ2n/2.

• The textbook’s corollary to Lemma 11.9 seems

incorrect.a

• Our original problem (p. 587) hence demands, e.g.,

n ≈ 1.4k/ϵ2 independent coin flips to guarantee making

an error with probability ≤ 2−k with the majority rule.

aSee Dubhashi and Panconesi (2012) for many Chernoff-type bounds.
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BPPa (Bounded Probabilistic Polynomial)

• The class BPP contains all languages L for which there

is a precise polynomial-time NTM N such that:

– If x ∈ L, then at least 3/4 of the computation paths

of N on x lead to “yes.”

– If x ̸∈ L, then at least 3/4 of the computation paths

of N on x lead to “no.”

• So N accepts or rejects by a clear majority.

aGill (1977).
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Magic 3/4?

• The number 3/4 bounds the probability (ratio) of a

right answer away from 1/2.

• Any constant strictly between 1/2 and 1 can be used

without affecting the class BPP.

• In fact, as with RP,

1

2
+

1

q(n)

for any polynomial q(n) can replace 3/4 (p. 582).

• The next algorithm shows why.
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The Majority Vote Algorithm

Suppose L is decided by N by majority (1/2) + ϵ.

1: for i = 1, 2, . . . , 2k + 1 do

2: Run N on input x;

3: end for

4: if “yes” is the majority answer then

5: “yes”;

6: else

7: “no”;

8: end if

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 595



Analysis

• The running time remains polynomial: 2k + 1 times N ’s

running time.

• By Corollary 70 (p. 592), the probability of a false

answer is at most e−ϵ2k.

• By taking k = ⌈ 2/ϵ2 ⌉, the error probability is at most

1/4.

• Even if ϵ is any inverse polynomial, k remains a

polynomial in n.
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Aspects of BPP

• BPP is the most comprehensive yet plausible notion of

efficient computation.

– If a problem is in BPP, we take it to mean that the

problem can be solved efficiently.

– In this aspect, BPP has effectively replaced P.

• (RP ∪ coRP) ⊆ (NP ∪ coNP).

• (RP ∪ coRP) ⊆ BPP.

• Whether BPP ⊆ (NP ∪ coNP) is unknown.

• But it is unlikely that NP ⊆ BPP (see p. 614 and

p. 615).
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coBPP

• The definition of BPP is symmetric: acceptance by clear

majority and rejection by clear majority.

• An algorithm for L ∈ BPP becomes one for L̄ by

reversing the answer.

• So L̄ ∈ BPP and BPP ⊆ coBPP.

• Similarly coBPP ⊆ BPP.

• Hence BPP = coBPP.

• This approach does not work for RP.a

aIt did not work for NP either.
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BPP and coBPP
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BPP and P

Theorem 71 (Nisan and Wigderson (1994)) If every

language in BPP only needs a pseudorandom generator

which stretches a random seed of logarithmic length, then

BPP = P.

• We only need to show BPP ⊆ P.

• Run the BPP algorithm for each of the seeds.

– There are only 2O(logn) = O(nc) seeds, a polynomial

• Accept if and only if at least 3/4 of the outcomes is a

“yes.”

• The running time is clearly deterministically polynomial.
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“The Good, the Bad, and the Ugly”

BPP
P


ZPP


RP
coRP


NP
coNP
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Circuit Complexity

• Circuit complexity is based on boolean circuits instead

of Turing machines.

• A boolean circuit with n inputs computes a boolean

function of n variables.

• Now, identify true/1 with “yes” and false/0 with “no.”

• Then a boolean circuit with n inputs accepts certain

strings in { 0, 1 }n.

• To relate circuits with an arbitrary language, we need

one circuit for each possible input length n.
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Formal Definitions

• The size of a circuit is the number of gates in it.

• A family of circuits is an infinite sequence

C = (C0, C1, . . .) of boolean circuits, where Cn has n

boolean inputs.

• For input x ∈ {0, 1}∗, C| x | outputs 1 if and only if

x ∈ L.

• In other words,

Cn accepts L ∩ {0, 1}n.
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Formal Definitions (concluded)

• L ⊆ {0, 1}∗ has polynomial circuits if there is a family

of circuits C such that:

– The size of Cn is at most p(n) for some fixed

polynomial p.

– Cn accepts L ∩ {0, 1}n.
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Exponential Circuits Suffice for All Languages

• Theorem 16 (p. 211) implies that there are languages

that cannot be solved by circuits of size 2n/(2n).

• But exponential circuits can solve all problems,

decidable or otherwise!
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Exponential Circuits Suffice for All Languages
(continued)

Proposition 72 All decision problems (decidable or

otherwise) can be solved by a circuit of size 2n+2.

• We will show that for any language L ⊆ {0, 1}∗,
L ∩ {0, 1}n can be decided by a circuit of size 2n+2.

• Define boolean function f : {0, 1}n → {0, 1}, where

f(x1x2 · · ·xn) =

 1 x1x2 · · ·xn ∈ L,

0 x1x2 · · ·xn ̸∈ L.
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The Proof (concluded)

• Clearly, any circuit that implements f decides

L ∩ {0, 1}n.

• Now,

f(x1x2 · · ·xn) = (x1 ∧ f(1x2 · · ·xn)) ∨ (¬x1 ∧ f(0x2 · · ·xn)).

• The circuit size s(n) for f(x1x2 · · ·xn) hence satisfies

s(n) = 4 + 2s(n− 1)

with s(1) = 1.

• Solve it to obtain s(n) = 5× 2n−1 − 4 ≤ 2n+2.
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The Circuit Complexity of P

Proposition 73 All languages in P have polynomial

circuits.

• Let L ∈ P be decided by a TM in time p(n).

• By Corollary 33 (p. 312), there is a circuit with

O(p(n)2) gates that accepts L ∩ {0, 1}n.

• The size of the circuit depends only on L and the length

of the input.

• The size of the circuit is polynomial in n.
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Polynomial Circuits vs. P

• Is the converse of Proposition 73 true?

– Do polynomial circuits accept only languages in P?

• No.

• Polynomial circuits can accept undecidable languages!
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Languages That Polynomial Circuits Accept

• Let L ⊆ {0, 1}∗ be an undecidable language.

• Let U = {1n : the binary expansion of n is in L}.a

– For example, 111111 ∈ U if 1012 ∈ L.

• U is also undecidable (prove it).

• U ∩ {1}n can be accepted by the trivial circuit Cn that

outputs 1 if 1n ∈ U and outputs 0 if 1n ̸∈ U .b

• The family of circuits (C0, C1, . . .) is polynomial in size.

aAssume n’s leading bit is always 1 without loss of generality.
bWe may not know which is the case for general n.
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A Patch

• Despite the simplicity of a circuit, the previous

discussions imply the following:

– Circuits are not a realistic model of computation.

– Polynomial circuits are not a plausible notion of

efficient computation.

• What is missing?

• The effective and efficient constructibility of

C0, C1, . . . .
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Uniformity

• A family (C0, C1, . . .) of circuits is uniform if there is a

logn-space bounded TM which on input 1n outputs Cn.

– Note that n is the length of the input to Cn.

– Circuits now cannot accept undecidable languages

(why?).

– The circuit family on p. 610 is not constructible by a

single Turing machine (algorithm).

• A language has uniformly polynomial circuits if

there is a uniform family of polynomial circuits that

decide it.
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Uniformly Polynomial Circuits and P

Theorem 74 L ∈ P if and only if L has uniformly

polynomial circuits.

• One direction was proved in Proposition 73 (p. 608).

• Now suppose L has uniformly polynomial circuits.

• A TM decides x ∈ L in polynomial time as follows:

– Calculate n = |x |.
– Generate Cn in log n space, hence polynomial time.

– Evaluate the circuit with input x in polynomial time.

• Therefore L ∈ P.
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Relation to P vs. NP

• Theorem 74 implies that P ̸= NP if and only if

NP-complete problems have no uniformly polynomial

circuits.

• A stronger conjecture: NP-complete problems have no

polynomial circuits, uniformly or not.

• The above is currently the preferred approach to proving

the P ̸= NP conjecture—without success so far.
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BPP’s Circuit Complexity

Theorem 75 (Adleman (1978)) All languages in BPP

have polynomial circuits.

• Our proof will be nonconstructive in that only the

existence of the desired circuits is shown.

– Recall our proof of Theorem 16 (p. 211).

– Something exists if its probability of existence is

nonzero.

• It is not known how to efficiently generate circuit Cn.

– If the construction of Cn can be made efficient, then

P = BPP, an unlikely result.

• This result answers the question on p. 520 with a “yes.”
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The Proof

• Let L ∈ BPP be decided by a precise polynomial-time

NTM N by clear majority.

• We shall prove that L has polynomial circuits C0, C1, . . ..

– These deterministic circuits cannot make mistakes.

• Suppose N runs in time p(n), where p(n) is a

polynomial.

• Let An = {a1, a2, . . . , am}, where ai ∈ {0, 1}p(n).

• Each ai ∈ An represents a sequence of nondeterministic

choices (i.e., a computation path) for N .

• Pick m = 12(n+ 1).
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The Proof (continued)

• Let x be an input with |x | = n.

• Circuit Cn simulates N on x with each sequence of

choices in An and then takes the majority of the m

outcomes.a

• As N with ai is a polynomial-time deterministic TM, it

can be simulated by polynomial circuits of size O(p(n)2).

– See the proof of Proposition 73 (p. 608).

• The size of Cn is therefore O(mp(n)2) = O(np(n)2).

– This is a polynomial.
aAs m is even, there may be no clear majority. Still, the probability

of that happening is very small and does not materially affect our general

conclusion. Thanks to a lively class discussion on December 14, 2010.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 617



The Circuit
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The Proof (continued)

• We now confirm the existence of an An making Cn

correct on all n-bit inputs.

• Call ai bad if it leads N to an error (a false positive or a

false negative).

• Select An uniformly randomly.

• For each x ∈ {0, 1}n, 1/4 of the computations of N are

erroneous.

• Because the sequences in An are chosen randomly and

independently, the expected number of bad ai’s is m/4.a

aSo the proof will not work for NP. Contributed by Mr. Ching-Hua

Yu (D00921025) on December 11, 2012.
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The Proof (continued)

• By the Chernoff bound (p. 588), the probability that the

number of bad ai’s is m/2 or more is at most

e−m/12 < 2−(n+1).

• The error probability of using majority rule is thus

< 2−(n+1) for each x ∈ {0, 1}n.

• The probability that there is an x such that An results

in an incorrect answer is < 2n2−(n+1) = 2−1.

– Recall the union bound:

prob[A ∪B ∪ · · · ] ≤ prob[A ] + prob[B ] + · · · .

• Note that each An yields a circuit.
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The Proof (concluded)

• We just showed that at least half of them are correct.

• So with probability ≥ 0.5, a random An produces a

correct Cn for all inputs of length n.

• Because this probability exceeds 0, an An that makes

majority vote work for all inputs of length n exists.

• Hence a correct Cn exists.a

• We have used the probabilistic method.b

aQuine (1948), “To be is to be the value of a bound variable.”
bThe proof is a counting argument phrased in the probabilistic lan-

guage.
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Leonard Adlemana (1945–)

aTuring Award (2002).
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Cryptography
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Whoever wishes to keep a secret

must hide the fact that he possesses one.

— Johann Wolfgang von Goethe (1749–1832)
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Cryptography

• Alice (A) wants to send a message to Bob (B) over a

channel monitored by Eve (eavesdropper).

• The protocol should be such that the message is known

only to Alice and Bob.

• The art and science of keeping messages secure is

cryptography.

Alice -
Eve

Bob
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Encryption and Decryption

• Alice and Bob agree on two algorithms E and D—the

encryption and the decryption algorithms.

• Both E and D are known to the public in the analysis.

• Alice runs E and wants to send a message x to Bob.

• Bob operates D.

• Privacy is assured in terms of two numbers e, d, the

encryption and decryption keys.

• Alice sends y = E(e, x) to Bob, who then performs

D(d, y) = x to recover x.

• x is called plaintext, and y is called ciphertext.a

aBoth “zero” and “cipher” come from the same Arab word.
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Some Requirements

• D should be an inverse of E given e and d.

• D and E must both run in (probabilistic) polynomial

time.

• Eve should not be able to recover x from y without

knowing d.

– As D is public, d must be kept secret.

– e may or may not be a secret.
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Degrees of Security

• Perfect secrecy: After a ciphertext is intercepted by

the enemy, the a posteriori probabilities of the plaintext

that this ciphertext represents are identical to the a

priori probabilities of the same plaintext before the

interception.

– The probability that plaintext P occurs is

independent of the ciphertext C being observed.

– So knowing C yields no advantage in recovering P.

• Such systems are said to be informationally secure.

• A system is computationally secure if breaking it is

theoretically possible but computationally infeasible.
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Conditions for Perfect Secrecya

• Consider a cryptosystem where:

– The space of ciphertext is as large as that of keys.

– Every plaintext has a nonzero probability of being

used.

• It is perfectly secure if and only if the following hold.

– A key is chosen with uniform distribution.

– For each plaintext x and ciphertext y, there exists a

unique key e such that E(e, x) = y.

aShannon (1949).
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The One-Time Pada

1: Alice generates a random string r as long as x;

2: Alice sends r to Bob over a secret channel;

3: Alice sends x⊕ r to Bob over a public channel;

4: Bob receives y;

5: Bob recovers x := y ⊕ r;

aMauborgne and Vernam (1917); Shannon (1949). It was allegedly

used for the hotline between Russia and U.S.
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Analysis

• The one-time pad uses e = d = r.

• This is said to be a private-key cryptosystem.

• Knowing x and knowing r are equivalent.

• Because r is random and private, the one-time pad

achieves perfect secrecy (see also p. 629).

• The random bit string must be new for each round of

communication.

– Cryptographically strong pseudorandom

generators require exchanging only the seed once.

• But the assumption of a private channel is problematic.
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