The Density Attack for PRIMES All numbers < nWitnesses to compositeness of *n*

The Density Attack for PRIMES

```
1: Pick k \in \{1, ..., n\} randomly;
```

2: if $k \mid n$ and $k \neq 1$ and $k \neq n$ then

3: **return** "n is composite";

4: **else**

5: **return** "*n* is (probably) a prime";

6: end if

The Density Attack for PRIMES (continued)

- It works, but does it work well?
- The ratio of numbers $\leq n$ relatively prime to n (the white ring) is

$$\frac{\phi(n)}{n}$$
.

• When n = pq, where p and q are distinct primes,

$$\frac{\phi(n)}{n} = \frac{pq - p - q + 1}{pq} > 1 - \frac{1}{q} - \frac{1}{p}.$$

The Density Attack for PRIMES (concluded)

- So the ratio of numbers $\leq n$ not relatively prime to n (the grey area) is <(1/q)+(1/p).
 - The "density attack" has probability about $2/\sqrt{n}$ of factoring n=pq when $p\sim q=O(\sqrt{n})$.
 - The "density attack" to factor n = pq hence takes $\Omega(\sqrt{n})$ steps on average when $p \sim q = O(\sqrt{n})$.
 - This running time is exponential: $\Omega(2^{0.5 \log_2 n})$.

The Chinese Remainder Theorem

- Let $n = n_1 n_2 \cdots n_k$, where n_i are pairwise relatively prime.
- For any integers a_1, a_2, \ldots, a_k , the set of simultaneous equations

$$x = a_1 \mod n_1,$$

$$x = a_2 \mod n_2,$$

$$\vdots$$

$$x = a_k \mod n_k,$$

has a unique solution modulo n for the unknown x.

Fermat's "Little" Theorem^a

Lemma 56 For all 0 < a < p, $a^{p-1} = 1 \mod p$.

- Recall $\Phi(p) = \{1, 2, \dots, p-1\}.$
- Consider $a\Phi(p) = \{am \mod p : m \in \Phi(p)\}.$
- $a\Phi(p) = \Phi(p)$.
 - $-a\Phi(p)\subseteq\Phi(p)$ as a remainder must be between 1 and p-1.
 - Suppose $am \equiv am' \mod p$ for m > m', where $m, m' \in \Phi(p)$.
 - That means $a(m m') = 0 \mod p$, and p divides a or m m', which is impossible.

^aPierre de Fermat (1601–1665).

The Proof (concluded)

- Multiply all the numbers in $\Phi(p)$ to yield (p-1)!.
- Multiply all the numbers in $a\Phi(p)$ to yield $a^{p-1}(p-1)!$.
- As $a\Phi(p) = \Phi(p)$, we have

$$a^{p-1}(p-1)! \equiv (p-1)! \mod p.$$

• Finally, $a^{p-1} = 1 \mod p$ because $p \not \mid (p-1)!$.

The Fermat-Euler Theorem^a

Corollary 57 For all $a \in \Phi(n)$, $a^{\phi(n)} = 1 \mod n$.

- The proof is similar to that of Lemma 56 (p. 473).
- Consider $a\Phi(n) = \{am \mod n : m \in \Phi(n)\}.$
- $a\Phi(n) = \Phi(n)$.
 - $-a\Phi(n)\subseteq\Phi(n)$ as a remainder must be between 0 and n-1 and relatively prime to n.
 - Suppose $am \equiv am' \mod n$ for m' < m < n, where $m, m' \in \Phi(n)$.
 - That means $a(m-m')=0 \mod n$, and n divides a or m-m', which is impossible.

^aProof by Mr. Wei-Cheng Cheng (R93922108, D95922011) on November 24, 2004.

The Proof (concluded)^a

- Multiply all the numbers in $\Phi(n)$ to yield $\prod_{m \in \Phi(n)} m$.
- Multiply all the numbers in $a\Phi(n)$ to yield $a^{\phi(n)} \prod_{m \in \Phi(n)} m$.
- As $a\Phi(n) = \Phi(n)$,

$$\prod_{m \in \Phi(n)} m \equiv a^{\phi(n)} \left(\prod_{m \in \Phi(n)} m \right) \bmod n.$$

• Finally, $a^{\phi(n)} = 1 \mod n$ because $n \not \mid \prod_{m \in \Phi(n)} m$.

^aSome typographical errors corrected by Mr. Jung-Ying Chen (D95723006) on November 18, 2008.

An Example

• As $12 = 2^2 \times 3$,

$$\phi(12) = 12 \times \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) = 4.$$

- In fact, $\Phi(12) = \{1, 5, 7, 11\}.$
- For example,

$$5^4 = 625 = 1 \mod 12$$
.

Exponents

- The **exponent** of $m \in \Phi(p)$ is the least $k \in \mathbb{Z}^+$ such that $m^k = 1 \mod p$.
- Every residue $s \in \Phi(p)$ has an exponent.
 - $-1, s, s^2, s^3, \ldots$ eventually repeats itself modulo p, say $s^i \equiv s^j \mod p$, which means $s^{j-i} = 1 \mod p$.
- If the exponent of m is k and $m^{\ell} = 1 \mod p$, then $k | \ell$.
 - Otherwise, $\ell = qk + a$ for 0 < a < k, and $m^{\ell} \equiv m^{qk+a} \equiv m^a \equiv 1 \mod p$, a contradiction.

Lemma 58 Any nonzero polynomial of degree k has at most k distinct roots modulo p.

Exponents and Primitive Roots

- From Fermat's "little" theorem, all exponents divide p-1.
- A primitive root of p is thus a number with exponent p-1.
- Let R(k) denote the total number of residues in $\Phi(p) = \{1, 2, ..., p-1\}$ that have exponent k.
- We already knew that R(k) = 0 for $k \not | (p-1)$.
- So

$$\sum_{k|(p-1)} R(k) = p - 1$$

as every number has an exponent.

Size of R(k)

• Any $a \in \Phi(p)$ of exponent k satisfies

$$x^k = 1 \mod p$$
.

- Hence there are at most k residues of exponent k, i.e., $R(k) \le k$, by Lemma 58 (p. 478).
- Let s be a residue of exponent k.
- $1, s, s^2, \ldots, s^{k-1}$ are distinct modulo p.
 - Otherwise, $s^i \equiv s^j \mod p$ with i < j.
 - Then $s^{j-i} = 1 \mod p$ with j i < k, a contradiction.
- As all these k distinct numbers satisfy $x^k = 1 \mod p$, they comprise all the solutions of $x^k = 1 \mod p$.

Size of R(k) (continued)

- But do all of them have exponent k (i.e., R(k) = k)?
- And if not (i.e., R(k) < k), how many of them do?
- Pick s^{ℓ} , where $\ell < k$.
- Suppose $\ell \notin \Phi(k)$ with $gcd(\ell, k) = d > 1$.
- Then

$$(s^{\ell})^{k/d} = (s^k)^{\ell/d} = 1 \mod p.$$

- Therefore, s^{ℓ} has exponent at most k/d < k.
- So s^{ℓ} has exponent k only if $\ell \in \Phi(k)$.
- We conclude that

$$R(k) \le \phi(k)$$
.

Size of R(k) (concluded)

• Because all p-1 residues have an exponent,

$$p - 1 = \sum_{k|(p-1)} R(k) \le \sum_{k|(p-1)} \phi(k) = p - 1$$

by Lemma 55 (p. 465).

• Hence

$$R(k) = \begin{cases} \phi(k) & \text{when } k | (p-1) \\ 0 & \text{otherwise} \end{cases}$$

- In particular, $R(p-1) = \phi(p-1) > 0$, and p has at least one primitive root.
- This proves one direction of Theorem 50 (p. 451).

A Few Calculations

- Let p = 13.
- From p. 475, we know $\phi(p-1) = 4$.
- Hence R(12) = 4.
- Indeed, there are 4 primitive roots of p.
- As

$$\Phi(p-1) = \{1, 5, 7, 11\},\$$

the primitive roots are

$$g^1, g^5, g^7, g^{11},$$

where g is any primitive root.

The Other Direction of Theorem 50 (p. 451)

- We show p is a prime if there is a number r such that
 - 1. $r^{p-1} = 1 \mod p$, and
 - 2. $r^{(p-1)/q} \neq 1 \mod p$ for all prime divisors q of p-1.
- Suppose p is not a prime.
- We proceed to show that no primitive roots exist.
- Suppose $r^{p-1} = 1 \mod p$ (note $\gcd(r, p) = 1$).
- We will show that the 2nd condition must be violated.

The Proof (continued)

- So we proceed to show $r^{(p-1)/q} = 1 \mod p$ for some prime divisor q of p-1.
- $r^{\phi(p)} = 1 \mod p$ by the Fernat-Euler theorem (p. 475).
- Because p is not a prime, $\phi(p) .$
- Let k be the smallest integer such that $r^k = 1 \mod p$.
- With the 1st condition, it is easy to show that k | (p-1) (similar to p. 478).
- Note that $k \mid \phi(p)$ (p. 478).
- As $k \le \phi(p)$, k .

The Proof (concluded)

- Let q be a prime divisor of (p-1)/k > 1.
- Then k|(p-1)/q.
- By the definition of k,

$$r^{(p-1)/q} = 1 \bmod p.$$

• But this violates the 2nd condition.

Function Problems

- Decision problems are yes/no problems (SAT, TSP (D), etc.).
- Function problems require a solution (a satisfying truth assignment, a best TSP tour, etc.).
- Optimization problems are clearly function problems.
- What is the relation between function and decision problems?
- Which one is harder?

Function Problems Cannot Be Easier than Decision Problems

- If we know how to generate a solution, we can solve the corresponding decision problem.
 - If you can find a satisfying truth assignment efficiently, then SAT is in P.
 - If you can find the best TSP tour efficiently, then TSP
 (D) is in P.
- But decision problems can be as hard as the corresponding function problems.

FSAT

- FSAT is this function problem:
 - Let $\phi(x_1, x_2, \dots, x_n)$ be a boolean expression.
 - If ϕ is satisfiable, then return a satisfying truth assignment.
 - Otherwise, return "no."
- We next show that if $SAT \in P$, then FSAT has a polynomial-time algorithm.
- SAT is a subroutine (black box) that returns "yes" or "no" on the satisfiability of the input.

An Algorithm for FSAT Using SAT

```
1: t := \epsilon; {Truth assignment.}
 2: if \phi \in SAT then
     for i = 1, 2, ..., n do
 4: if \phi[x_i = \text{true}] \in SAT then
 5: t := t \cup \{x_i = \mathtt{true}\};
 6: \phi := \phi[x_i = \mathtt{true}];
 7: else
 8: t := t \cup \{x_i = \mathtt{false}\};
    \phi := \phi[x_i = \mathtt{false}];
 9:
     end if
10:
       end for
11:
12:
       return t;
13: else
       return "no";
15: end if
```

Analysis

- If sat can be solved in polynomial time, so can fsat.
 - There are $\leq n+1$ calls to the algorithm for SAT.^a
 - Boolean expressions shorter than ϕ are used in each call to the algorithm for SAT.
- Hence SAT and FSAT are equally hard (or easy).
- Note that this reduction from FSAT to SAT is not a Karp reduction (recall p. 265).
- Instead, it calls SAT multiple times as a subroutine and moves on SAT's outputs.

^aContributed by Ms. Eva Ou (R93922132) on November 24, 2004.

TSP and TSP (D) Revisited

- We are given n cities 1, 2, ..., n and integer distances $d_{ij} = d_{ji}$ between any two cities i and j.
- TSP (D) asks if there is a tour with a total distance at most B.
- TSP asks for a tour with the shortest total distance.
 - The shortest total distance is at most $\sum_{i,j} d_{ij}$.
 - * Recall that the input string contains d_{11}, \ldots, d_{nn} .
 - * Thus the shortest total distance is less than $2^{|x|}$ in magnitude, where x is the input (why?).
- We next show that if TSP $(D) \in P$, then TSP has a polynomial-time algorithm.

An Algorithm for TSP Using TSP (D)

- 1: Perform a binary search over interval $[0, 2^{|x|}]$ by calling TSP (D) to obtain the shortest distance, C;
- 2: **for** $i, j = 1, 2, \dots, n$ **do**
- 3: Call TSP (D) with B = C and $d_{ij} = C + 1$;
- 4: **if** "no" **then**
- 5: Restore d_{ij} to old value; {Edge [i, j] is critical.}
- 6: end if
- 7: end for
- 8: **return** the tour with edges whose $d_{ij} \leq C$;

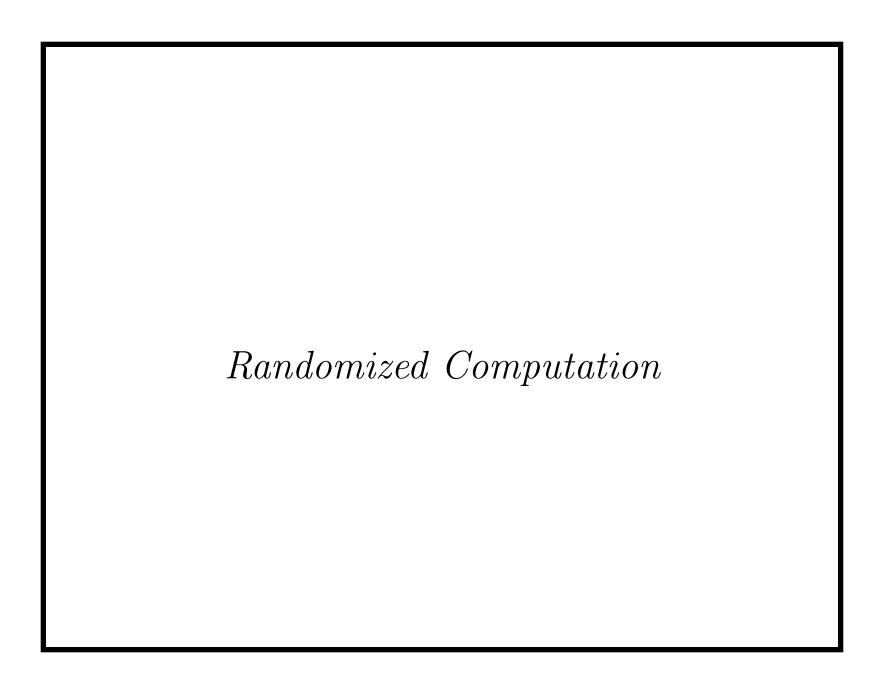
Analysis

- An edge that is not on any optimal tour will be eliminated, with its d_{ij} set to C+1.
- In fact, an edge which is not on *all* remaining optimal tours will also be eliminated.
- So the algorithm ends with n edges which are not eliminated (why?).
- This is true even if there are multiple optimal tours!^a

^aThanks to a lively class discussion on November 12, 2013.

Analysis (concluded)

- There are $O(|x|+n^2)$ calls to the algorithm for TSP (D).
- Each call has an input length of O(|x|).
- So if TSP (D) can be solved in polynomial time, so can TSP.
- Hence TSP (D) and TSP are equally hard (or easy).



I know that half my advertising works,

I just don't know which half.

— John Wanamaker

I know that half my advertising is a waste of money,
I just don't know which half!

— McGraw-Hill ad.

Randomized Algorithms^a

- Randomized algorithms flip unbiased coins.
- There are important problems for which there are no known efficient *deterministic* algorithms but for which very efficient randomized algorithms exist.
 - Extraction of square roots, for instance.
- \bullet There are problems where randomization is *necessary*.
 - Secure protocols.
- Randomized version can be more efficient.
 - Parallel algorithm for maximal independent set.^b

^aRabin (1976); Solovay and Strassen (1977).

^b "Maximal" (a local maximum) not "maximum" (a global maximum).

"Four Most Important Randomized Algorithms" a

- 1. Primality testing.^b
- 2. Graph connectivity using random walks.^c
- 3. Polynomial identity testing.^d
- 4. Algorithms for approximate counting.^e

^aTrevisan (2006).

^bRabin (1976); Solovay and Strassen (1977).

^cAleliunas, Karp, Lipton, Lovász, and Rackoff (1979).

^dSchwartz (1980); Zippel (1979).

^eSinclair and Jerrum (1989).

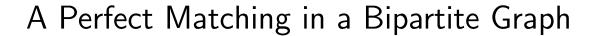
Bipartite Perfect Matching

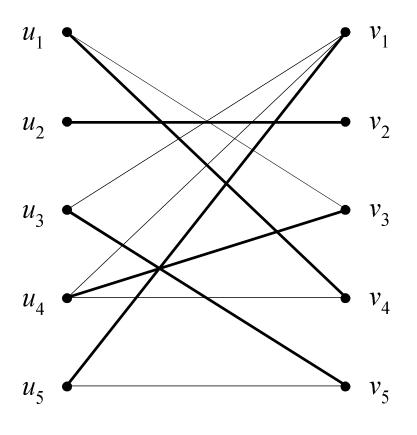
- We are given a **bipartite graph** G = (U, V, E).
 - $U = \{u_1, u_2, \dots, u_n\}.$
 - $V = \{v_1, v_2, \dots, v_n\}.$
 - $-E \subseteq U \times V.$
- We are asked if there is a **perfect matching**.
 - A permutation π of $\{1, 2, ..., n\}$ such that

$$(u_i, v_{\pi(i)}) \in E$$

for all
$$i \in \{1, 2, ..., n\}$$
.

• A perfect matching contains n edges.





Symbolic Determinants

- We are given a bipartite graph G.
- Construct the $n \times n$ matrix A^G whose (i, j)th entry A^G_{ij} is a symbolic variable x_{ij} if $(u_i, v_j) \in E$ and 0 otherwise:

$$A_{ij}^{G} = \begin{cases} x_{ij}, & \text{if } (u_i, v_j) \in E, \\ 0, & \text{othersie.} \end{cases}$$

Symbolic Determinants (continued)

• The matrix for the bipartite graph G on p. 501 is

$$A^{G} = \begin{bmatrix} 0 & 0 & x_{13} & x_{14} & 0 \\ 0 & x_{22} & 0 & 0 & 0 \\ x_{31} & 0 & 0 & 0 & x_{35} \\ x_{41} & 0 & x_{43} & x_{44} & 0 \\ x_{51} & 0 & 0 & 0 & x_{55} \end{bmatrix}.$$
 (7)

^aThe idea is similar to the Tanner graph in coding theory by Tanner (1981).

Symbolic Determinants (concluded)

• The **determinant** of A^G is

$$\det(A^G) = \sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^n A_{i,\pi(i)}^G.$$
 (8)

- $-\pi$ ranges over all permutations of n elements.
- $-\operatorname{sgn}(\pi)$ is 1 if π is the product of an even number of transpositions and -1 otherwise.
- Equivalently, $\operatorname{sgn}(\pi) = 1$ if the number of (i, j)s such that i < j and $\pi(i) > \pi(j)$ is even.^a
- $\det(A^G)$ contains n! terms, many of which may be 0s.

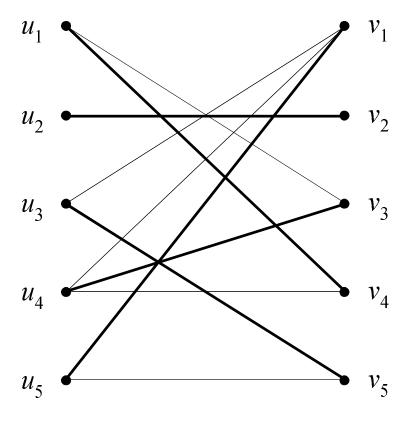
^aContributed by Mr. Hwan-Jeu Yu (D95922028) on May 1, 2008.

Determinant and Bipartite Perfect Matching

- In $\sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} A_{i,\pi(i)}^{G}$, note the following:
 - Each summand corresponds to a possible perfect matching π .
 - All of the nonzero summands $\prod_{i=1}^{n} A_{i,\pi(i)}^{G}$ are distinct monomials and will not cancel.
- $det(A^G)$ is essentially an exhaustive enumeration.

Proposition 59 (Edmonds (1967)) G has a perfect matching if and only if $det(A^G)$ is not identically zero.

Perfect Matching and Determinant (p. 501)



Perfect Matching and Determinant (concluded)

• The matrix is (p. 503)

$$A^{G} = \begin{bmatrix} 0 & 0 & x_{13} & x_{14} & 0 \\ 0 & x_{22} & 0 & 0 & 0 \\ x_{31} & 0 & 0 & 0 & x_{35} \\ x_{41} & 0 & x_{43} & x_{44} & 0 \\ \hline x_{51} & 0 & 0 & 0 & x_{55} \end{bmatrix}$$

- $\det(A^G) = -x_{14}x_{22}x_{35}x_{43}x_{51} + x_{13}x_{22}x_{35}x_{44}x_{51} + x_{14}x_{22}x_{31}x_{43}x_{55} x_{13}x_{22}x_{31}x_{44}x_{55}.$
- Each nonzero term denotes a perfect matching, and vice versa.

How To Test If a Polynomial Is Identically Zero?

- $det(A^G)$ is a polynomial in n^2 variables.
- There are exponentially many terms in $\det(A^G)$.
- Expanding the determinant polynomial is not feasible.
 - Too many terms.
- If $det(A^G) \equiv 0$, then it remains zero if we substitute arbitrary integers for the variables x_{11}, \ldots, x_{nn} .
- When $det(A^G) \not\equiv 0$, what is the likelihood of obtaining a zero?

Number of Roots of a Polynomial

Lemma 60 (Schwartz (1980)) Let $p(x_1, x_2, ..., x_m) \not\equiv 0$ be a polynomial in m variables each of degree at most d. Let $M \in \mathbb{Z}^+$. Then the number of m-tuples

$$(x_1, x_2, \dots, x_m) \in \{0, 1, \dots, M-1\}^m$$

such that $p(x_1, x_2, \dots, x_m) = 0$ is

$$\leq mdM^{m-1}$$
.

• By induction on m (consult the textbook).

Density Attack

• The density of roots in the domain is at most

$$\frac{mdM^{m-1}}{M^m} = \frac{md}{M}. (9)$$

- So suppose $p(x_1, x_2, \ldots, x_m) \not\equiv 0$.
- Then a random

$$(x_1, x_2, \dots, x_m) \in \{0, 1, \dots, M-1\}^m$$

has a probability of $\leq md/M$ of being a root of p.

- Note that M is under our control!
 - One can raise M to lower the error probability, e.g.

Density Attack (concluded)

Here is a sampling algorithm to test if $p(x_1, x_2, ..., x_m) \not\equiv 0$.

- 1: Choose i_1, \ldots, i_m from $\{0, 1, \ldots, M-1\}$ randomly;
- 2: **if** $p(i_1, i_2, ..., i_m) \neq 0$ **then**
- 3: **return** "p is not identically zero";
- 4: **else**
- 5: **return** "p is (probably) identically zero";
- 6: end if

Analysis

- If $p(x_1, x_2, ..., x_m) \equiv 0$, the algorithm will always be correct as $p(i_1, i_2, ..., i_m) = 0$.
- Suppose $p(x_1, x_2, \dots, x_m) \not\equiv 0$.
 - The algorithm will answer incorrectly with probability at most md/M by Eq. (9) on p. 510.
- We next return to the original problem of bipartite perfect matching.

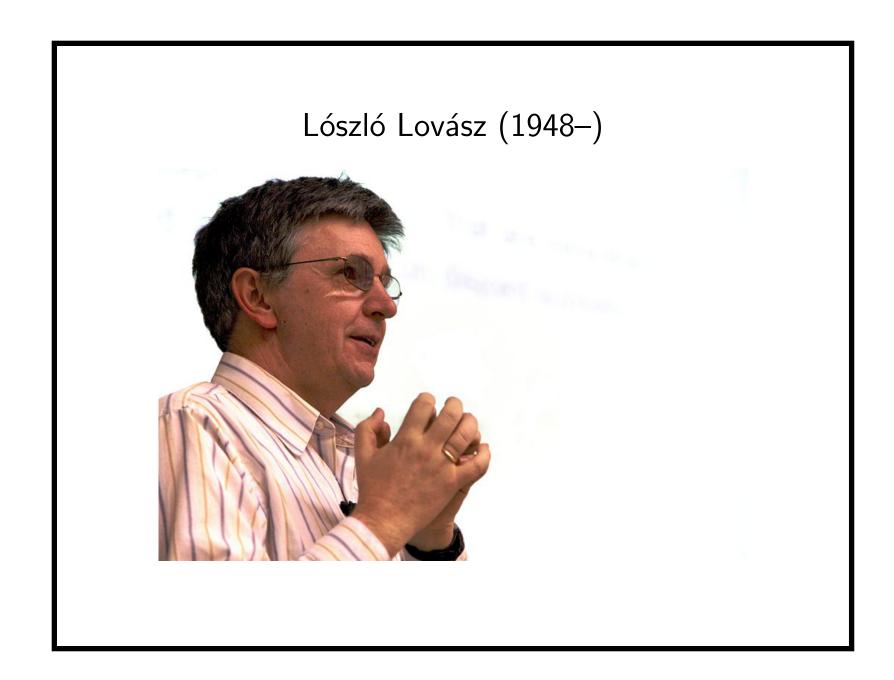
A Randomized Bipartite Perfect Matching Algorithm^a

- 1: Choose n^2 integers $i_{11}, ..., i_{nn}$ from $\{0, 1, ..., 2n^2 1\}$ randomly; $\{\text{So } M = 2n^2.\}$
- 2: Calculate $\det(A^G(i_{11},\ldots,i_{nn}))$ by Gaussian elimination;
- 3: **if** $\det(A^G(i_{11},\ldots,i_{nn})) \neq 0$ **then**
- 4: **return** "G has a perfect matching";
- 5: else
- 6: **return** "G has no perfect matchings";
- 7: end if

^aLovász (1979). According to Paul Erdős, Lovász wrote his first significant paper "at the ripe old age of 17."

Analysis

- If G has no perfect matchings, the algorithm will always be correct as $\det(A^G(i_{11},\ldots,i_{nn}))=0$.
- Suppose G has a perfect matching.
 - The algorithm will answer incorrectly with probability at most md/M = 0.5 with $m = n^2$, d = 1 and $M = 2n^2$ in Eq. (9) on p. 510.
- Run the algorithm independently k times.
- Output "G has no perfect matchings" if and only if all say "no perfect matchings."
- The error probability is now reduced to at most 2^{-k} .



Remarks^a

• Note that we are calculating

prob[algorithm answers "no" |G| has no perfect matchings], prob[algorithm answers "yes" |G| has a perfect matching].

• We are *not* calculating^b

 $\operatorname{prob}[G \text{ has no perfect matchings} | \operatorname{algorithm answers "no"}],$ $\operatorname{prob}[G \text{ has a perfect matching} | \operatorname{algorithm answers "yes"}].$

^aThanks to a lively class discussion on May 1, 2008.

^bNumerical Recipes in C (1988), "[As] we already remarked, statistics is not a branch of mathematics!"

But How Large Can $det(A^G(i_{11}, \ldots, i_{nn}))$ Be?

• It is at most

$$n! \left(2n^2\right)^n$$
.

- Stirling's formula says $n! \sim \sqrt{2\pi n} (n/e)^n$.
- Hence

$$\log_2 \det(A^G(i_{11}, \dots, i_{nn})) = O(n \log_2 n)$$

bits are sufficient for representing the determinant.

• We skip the details about how to make sure that all intermediate results are of polynomial sizes.

An Intriguing Question^a

- Is there an (i_{11}, \ldots, i_{nn}) that will always give correct answers for the algorithm on p. 513?
- A theorem on p. 612 shows that such an (i_{11}, \ldots, i_{nn}) exists!
 - Whether it can be found efficiently is another matter.
- Once (i_{11}, \ldots, i_{nn}) is available, the algorithm can be made deterministic.

^aThanks to a lively class discussion on November 24, 2004.