${\rm KNAPSACK}\ \mbox{Is NP-Complete}^{\rm a}$

- KNAPSACK \in NP: Guess an S and check the constraints.
- We shall reduce EXACT COVER BY 3-SETS to KNAPSACK, in which $v_i = w_i$ for all *i* and K = W.
- The simplified KNAPSACK now asks if a subset of v_1, v_2, \ldots, v_n adds up to exactly K.^b

- Picture yourself as a radio DJ.

^aKarp (1972). ^bThis problem is called SUBSET SUM.

- The primary differences between the two problems are:^a
 - Sets vs. numbers.
 - Union vs. addition.
- We are given a family $F = \{S_1, S_2, \dots, S_n\}$ of size-3 subsets of $U = \{1, 2, \dots, 3m\}$.
- EXACT COVER BY 3-SETS asks if there are m disjoint sets in F that cover the set U.

^aThanks to a lively class discussion on November 16, 2010.

- Think of a set as a bit vector in $\{0,1\}^{3m}$.
 - Assume m = 3.
 - 110010000 means the set $\{1, 2, 5\}$.
 - 001100010 means the set $\{3, 4, 8\}$.
- Assume there are n = 5 size-3 subsets in F.
- Our goal is

$$\overbrace{11\cdots 1}^{3m}$$

- A bit vector can also be seen as a binary *number*.
- Set union resembles addition:

001100010 + 110010000 111110010

which denotes the set $\{1, 2, 3, 4, 5, 8\}$, as desired.

• Trouble occurs when there is *carry*:

01000000

+ 01000000

10000000

which denotes the set $\{1\}$, not the desired $\{2\}$.

• Or consider

001100010 + 001110000 011010010

which denotes the set $\{2, 3, 5, 8\}$, not the desired $\{3, 4, 5, 8\}$.^a

^aCorrected by Mr. Chihwei Lin (D97922003) on January 21, 2010.

- Carry may also lead to a situation where we obtain our solution $1 1 \cdots 1$ with more than m sets in F.
- For example,

 $\begin{array}{r} 000100010\\ 001110000\\ 101100000\\ + 000001101\\ \hline 11111111\end{array}$

• But the correct answer, $\{1, 3, 4, 5, 6, 7, 8, 9\}$, is *not* an exact cover.

- And it uses 4 sets instead of the required $m = 3.^{a}$
- To fix this problem, we enlarge the base just enough so that there are no carries.^b
- Because there are n vectors in total, we change the base from 2 to n + 1.

^aThanks to a lively class discussion on November 20, 2002. ^bYou cannot map \cup to \vee because KNAPSACK requires +.

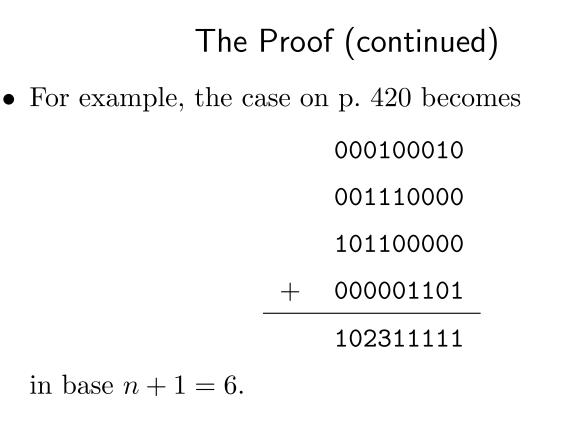
• Set v_i to be the integer corresponding to the bit vector encoding S_i in base n + 1:

$$v_i = \sum_{j \in S_i} 1 \times (n+1)^{3m-j}$$
 (4)

• Set

$$K = \sum_{j=0}^{3m-1} 1 \times (n+1)^j = \overbrace{11\cdots 1}^{3m}$$
 (base $n+1$).

• Now in base n + 1, if there is a set S such that $\sum_{i \in S} v_i = \overbrace{11 \cdots 1}^{3m}$, then every position must be contributed by exactly one v_i and |S| = m.



• It does not meet the goal.

- Suppose F admits an exact cover, say $\{S_1, S_2, \ldots, S_m\}$.
- Then picking $S = \{1, 2, ..., m\}$ clearly results in

$$v_1 + v_2 + \dots + v_m = \overbrace{11\cdots 1}^{3m}.$$

- It is important to note that the meaning of addition (+) is independent of the base.^a
 - It is just regular addition.
 - But an S_i may give rise to different integer v_i 's in Eq. (4) on p. 422 under different bases.

^aContributed by Mr. Kuan-Yu Chen (**R92922047**) on November 3, 2004.

The Proof (concluded)

• On the other hand, suppose there exists an S such that

$$\sum_{i \in S} v_i = \overbrace{1 \ 1 \ \cdots \ 1}^{3m}$$

in base n+1.

• The no-carry property implies that |S| = m and

$$\{S_i : i \in S\}$$

is an exact cover.

An Example

• Let $m = 3, U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, and

 $S_{1} = \{1, 3, 4\},$ $S_{2} = \{2, 3, 4\},$ $S_{3} = \{2, 5, 6\},$ $S_{4} = \{6, 7, 8\},$ $S_{5} = \{7, 8, 9\}.$

• Note that n = 5, as there are 5 S_i 's.

An Example (continued)

• Our reduction produces

$$K = \sum_{j=0}^{3\times 3-1} 6^{j} = \overbrace{11\cdots 1}^{3\times 3} \text{ (base 6)} = 2015539,$$

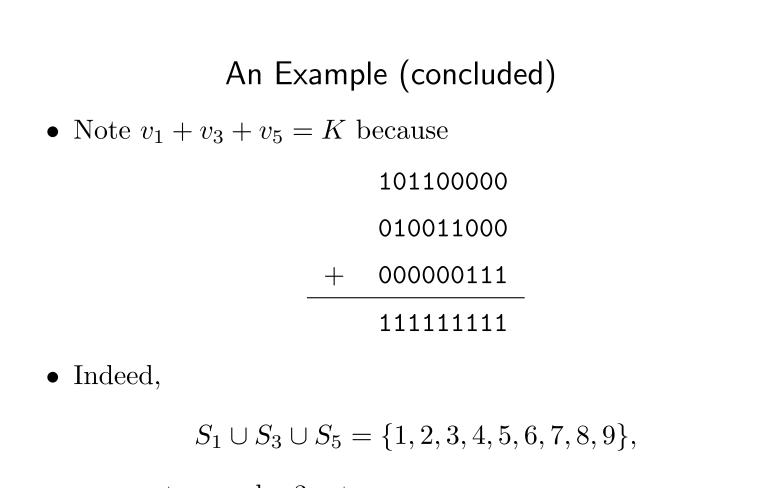
$$v_{1} = 101100000 = 1734048,$$

$$v_{2} = 011100000 = 334368,$$

$$v_{3} = 010011000 = 281448,$$

$$v_{4} = 000001110 = 258,$$

$$v_{5} = 000000111 = 43.$$



an exact cover by 3-sets.

BIN PACKING

- We are given N positive integers a_1, a_2, \ldots, a_N , an integer C (the capacity), and an integer B (the number of bins).
- BIN PACKING asks if these numbers can be partitioned into B subsets, each of which has total sum at most C.
- Think of packing bags at the check-out counter.

Theorem 47 BIN PACKING is NP-complete.

BIN PACKING (concluded)

- But suppose a_1, a_2, \ldots, a_N are randomly distributed between 0 and 1.
- Let *B* be the smallest number of unit-capacity bins capable of holding them.
- Then B can differ from its average by more than t with probability at most $2e^{-2t^2/N}$.^a

^aDubhashi and Panconesi (2012).

INTEGER PROGRAMMING

- INTEGER PROGRAMMING asks whether a system of linear inequalities with integer coefficients has an integer solution.
- In contrast, LINEAR PROGRAMMING asks whether a system of linear inequalities with integer coefficients has a *rational* solution.

INTEGER PROGRAMMING Is NP-Complete^a

- SET COVERING can be expressed by the inequalities $Ax \ge \vec{1}, \sum_{i=1}^{n} x_i \le B, \ 0 \le x_i \le 1$, where
 - $-x_i$ is one if and only if S_i is in the cover.
 - A is the matrix whose columns are the bit vectors of the sets S_1, S_2, \ldots
 - $-\vec{1}$ is the vector of 1s.
 - The operations in Ax are standard matrix operations.
- This shows integer programming is NP-hard.
- Many NP-complete problems can be expressed as an INTEGER PROGRAMMING problem.

^aKarp (1972).

Easier or Harder $?^{\rm a}$

- Adding restrictions on the allowable *problem instances* will not make a problem harder.
 - We are now solving a subset of problem instances or special cases.
 - The INDEPENDENT SET proof (p. 361) and the KNAPSACK proof (p. 414).
 - SAT to 2SAT (easier by p. 342).
 - CIRCUIT VALUE to MONOTONE CIRCUIT VALUE (equally hard by p. 314).

^aThanks to a lively class discussion on October 29, 2003.

Easier or Harder? (concluded)

- Adding restrictions on the allowable *solutions* (the solution space) may make a problem harder, equally hard, or easier.
- It is problem dependent.
 - MIN CUT to BISECTION WIDTH (harder by p. 389).
 - LINEAR PROGRAMMING to INTEGER PROGRAMMING (harder by p. 431).
 - SAT to NAESAT (equally hard by p. 355) and MAX CUT to MAX BISECTION (equally hard by p. 387).
 - 3-COLORING to 2-COLORING (easier by p. 398).

coNP and Function Problems

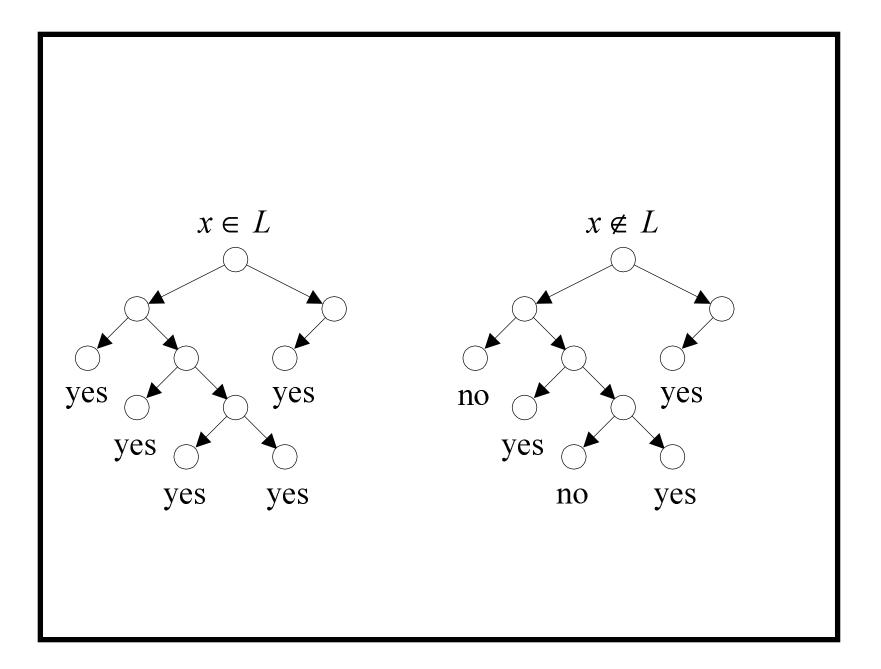
coNP

- NP is the class of problems that have succinct certificates (recall Proposition 36 on p. 326).
- By definition, coNP is the class of problems whose complement is in NP.
- coNP is therefore the class of problems that have succinct disqualifications:
 - A "no" instance of a problem in coNP possesses a short proof of its being a "no" instance.
 - Only "no" instances have such proofs.

coNP (continued)

- Suppose L is a coNP problem.
- There exists a polynomial-time nondeterministic algorithm *M* such that:
 - If $x \in L$, then M(x) = "yes" for all computation paths.
 - If $x \notin L$, then M(x) = "no" for some computation path.
- Note that if we swap "yes" and "no" of M, the new algorithm M' decides L

 109).



coNP (continued)

- - 2. Prove that "no" instances possess short proofs.
 - 3. Write an algorithm for it.

coNP (concluded)

- Clearly $P \subseteq coNP$.
- It is not known if

 $\mathbf{P}=\mathbf{NP}\cap\mathbf{coNP}.$

- Contrast this with

 $\mathbf{R} = \mathbf{R}\mathbf{E} \cap \mathbf{co}\mathbf{R}\mathbf{E}$

(see Proposition 12 on p. 170).

Some coNP Problems

- Validity $\in coNP$.
 - If ϕ is not valid, it can be disqualified very succinctly: a truth assignment that does not satisfy it.
- SAT COMPLEMENT \in coNP.
 - SAT COMPLEMENT is the complement of SAT.
 - The disqualification is a truth assignment that satisfies it.
- HAMILTONIAN PATH COMPLEMENT $\in coNP$.
 - The disqualification is a Hamiltonian path.

Some coNP Problems (concluded)

- Optimal tsp $(D) \in coNP$.
 - OPTIMAL TSP (D) asks if the optimal tour has a total distance of B, where B is an input.^a
 - The disqualification is a tour with a length < B.

^aDefined by Mr. Che-Wei Chang (R95922093) on September 27, 2006.

A Nondeterministic Algorithm for ${\rm SAT}$ COMPLEMENT

 ϕ is a boolean formula with n variables.

1: for
$$i = 1, 2, ..., n$$
 do

- 2: Guess $x_i \in \{0, 1\}$; {Nondeterministic choice.}
- 3: end for
- 4: {Verification:}
- 5: **if** $\phi(x_1, x_2, \dots, x_n) = 1$ **then**
- 6: "no";
- 7: **else**
- 8: "yes";
- 9: end if

Analysis

- The algorithm decides language $\{\phi : \phi \text{ is unsatisfiable}\}.$
 - The computation tree is a complete binary tree of depth n.
 - Every computation path corresponds to a particular truth assignment out of 2^n .
 - $-\phi$ is unsatisfiable iff every truth assignment falsifies ϕ .
 - But every truth assignment falsifies ϕ iff every computation path results in "yes."

An Alternative Characterization of coNP

Proposition 48 Let $L \subseteq \Sigma^*$ be a language. Then $L \in coNP$ if and only if there is a polynomially decidable and polynomially balanced relation R such that

 $L = \{ x : \forall y (x, y) \in R \}.$

(As on p. 325, we assume $|y| \leq |x|^k$ for some k.)

- $\overline{L} = \{x : \exists y (x, y) \in \neg R\}.$
- Because $\neg R$ remains polynomially balanced, $L \in NP$ by Proposition 36 (p. 326).
- Hence $L \in \text{coNP}$ by definition.

coNP-Completeness

Proposition 49 L is NP-complete if and only if its complement $\overline{L} = \Sigma^* - L$ is coNP-complete.

Proof (\Rightarrow ; the \Leftarrow part is symmetric)

- Let $\overline{L'}$ be any coNP language.
- Hence $L' \in NP$.
- Let R be the reduction from L' to L.
- So $x \in L'$ if and only if $R(x) \in L$.
- Equivalently, $x \notin L'$ if and only if $R(x) \notin L$ (the law of transposition).

coNP Completeness (concluded)

- So $x \in \overline{L'}$ if and only if $R(x) \in \overline{L}$.
- R is a reduction from \overline{L}' to \overline{L} .
- This shows \overline{L} is coNP-hard.
- But $\bar{L} \in \text{coNP}$.
- This shows \overline{L} is coNP-complete.

Some coNP-Complete Problems

- SAT COMPLEMENT is coNP-complete.
- VALIDITY is coNP-complete.
 - $-\phi$ is valid if and only if $\neg\phi$ is not satisfiable.
 - The reduction from SAT COMPLEMENT to VALIDITY is hence easy.
- HAMILTONIAN PATH COMPLEMENT is coNP-complete.

Possible Relations between P, NP, coNP

1. P = NP = coNP.

2. NP = coNP but $P \neq NP$.

3. NP \neq coNP and P \neq NP.

• This is the current "consensus."^a

^aCarl Gauss (1777–1855), "I could easily lay down a multitude of such propositions, which one could neither prove nor dispose of."

The Primality Problem

- An integer p is **prime** if p > 1 and all positive numbers other than 1 and p itself cannot divide it.
- PRIMES asks if an integer N is a prime number.
- Dividing N by $2, 3, \ldots, \sqrt{N}$ is not efficient.
 - The length of N is only $\log N$, but $\sqrt{N} = 2^{0.5 \log N}$.
 - So it is an exponential-time algorithm.
- A polynomial-time algorithm for PRIMES was not found until 2002 by Agrawal, Kayal, and Saxena!
- Later, we will focus on efficient "probabilistic" algorithms for PRIMES (used in *Mathematica*, e.g.).

```
1: if n = a^b for some a, b > 1 then
 2:
      return "composite";
 3: end if
 4: for r = 2, 3, \ldots, n - 1 do
 5:
    if gcd(n, r) > 1 then
 6:
        return "composite";
 7:
      end if
 8:
      if r is a prime then
 9:
     Let q be the largest prime factor of r-1;
    if q \ge 4\sqrt{r} \log n and n^{(r-1)/q} \ne 1 \mod r then
10:
11:
       break; {Exit the for-loop.}
12:
        end if
13:
      end if
14: end for \{r-1 \text{ has a prime factor } q \ge 4\sqrt{r} \log n.\}
15: for a = 1, 2, ..., 2\sqrt{r} \log n do
      if (x-a)^n \neq (x^n-a) \mod (x^r-1) in Z_n[x] then
16:
17:
        return "composite";
18:
      end if
19: end for
20: return "prime"; {The only place with "prime" output.}
```

The Primality Problem (concluded)

- NP ∩ coNP is the class of problems that have succinct certificates and succinct disqualifications.
 - Each "yes" instance has a succinct certificate.
 - Each "no" instance has a succinct disqualification.
 - No instances have both.
- We will see that $PRIMES \in NP \cap coNP$.
 - In fact, $PRIMES \in P$ as mentioned earlier.

Primitive Roots in Finite Fields

Theorem 50 (Lucas and Lehmer (1927)) ^a A number p > 1 is a prime if and only if there is a number 1 < r < p such that

- 1. $r^{p-1} = 1 \mod p$, and
- 2. $r^{(p-1)/q} \neq 1 \mod p$ for all prime divisors q of p-1.
- This r is called the **primitive root** or **generator**.
- We will prove the theorem later (see pp. 464ff).

^aFrançois Edouard Anatole Lucas (1842–1891); Derrick Henry Lehmer (1905–1991).

Derrick Lehmer (1905–1991)

Pratt's Theorem

Theorem 51 (Pratt (1975)) PRIMES $\in NP \cap coNP$.

- PRIMES is in coNP because a succinct disqualification is a proper divisor.
 - A proper divisor of a number n means n is not a prime.
- Now suppose p is a prime.
- p's certificate includes the r in Theorem 50 (p. 453).
- Use recursive doubling to check if r^{p−1} = 1 mod p in time polynomial in the length of the input, log₂ p.
 r, r², r⁴, ... mod p, a total of ~ log₂ p steps.

The Proof (concluded)

- We also need all *prime* divisors of p 1: q_1, q_2, \ldots, q_k .
 - Whether r, q_1, \ldots, q_k are easy to find is irrelevant.
 - There may be multiple choices for r.
- Checking $r^{(p-1)/q_i} \neq 1 \mod p$ is also easy.
- Checking q_1, q_2, \ldots, q_k are all the divisors of p-1 is easy.
- We still need certificates for the primality of the q_i 's.
- The complete certificate is recursive and tree-like:

$$C(p) = (r; q_1, C(q_1), q_2, C(q_2), \dots, q_k, C(q_k)).$$

- We next prove that C(p) is succinct.
- As a result, C(p) can be checked in polynomial time.

The Succinctness of the Certificate

Lemma 52 The length of C(p) is at most quadratic at $5 \log_2^2 p$.

- This claim holds when p = 2 or p = 3.
- In general, p-1 has $k \leq \log_2 p$ prime divisors $q_1 = 2, q_2, \dots, q_k$.

– Reason:

$$2^k \le \prod_{i=1}^k q_i \le p-1.$$

• Note also that, as $q_1 = 2$,

$$\prod_{i=2}^{k} q_i \le \frac{p-1}{2}.$$
(5)

The Proof (continued)

- C(p) requires:
 - -2 parentheses;
 - $-2k < 2\log_2 p$ separators (at most $2\log_2 p$ bits);

 $-r (at most log_2 p bits);$

 $-q_1 = 2$ and its certificate 1 (at most 5 bits);

$$-q_2,\ldots,q_k$$
 (at most $2\log_2 p$ bits);^a

$$- C(q_2), \ldots, C(q_k).$$

^aWhy?

The Proof (concluded)

• C(p) is succinct because, by induction,

$$\begin{aligned} |C(p)| &\leq 5 \log_2 p + 5 + 5 \sum_{i=2}^k \log_2^2 q_i \\ &\leq 5 \log_2 p + 5 + 5 \left(\sum_{i=2}^k \log_2 q_i \right)^2 \\ &\leq 5 \log_2 p + 5 + 5 \log_2^2 \frac{p-1}{2} \quad \text{by inequality (5)} \\ &< 5 \log_2 p + 5 + 5 (\log_2 p - 1)^2 \\ &= 5 \log_2^2 p + 10 - 5 \log_2 p \leq 5 \log_2^2 p \end{aligned}$$
for $p \geq 4.$

A Certificate for $23^{\rm a}$

• Note that 7 is a primitive root modulo 23 and $23 - 1 = 22 = 2 \times 11$.

• So

$$C(23) = (7; 2, C(2), 11, C(11)).$$

- Note that 2 is a primitive root modulo 11 and $11 1 = 10 = 2 \times 5$.
- So

$$C(11) = (2; 2, C(2), 5, C(5)).$$

^aThanks to a lively discussion on April 24, 2008.

A Certificate for 23 (concluded)

- Note that 2 is a primitive root modulo 5 and $5-1=4=2^2$.
- So

$$C(5) = (2; 2, C(2)).$$

• In summary,

C(23) = (7; 2, C(2), 11, (2; 2, C(2), 5, (2; 2, C(2)))).

Basic Modular Arithmetics $^{\rm a}$

- Let $m, n \in \mathbb{Z}^+$.
- $m \mid n$ means m divides n; m is n's **divisor**.
- We call the numbers 0, 1, ..., n − 1 the residue modulo n.
- The greatest common divisor of m and n is denoted gcd(m, n).
- The r in Theorem 50 (p. 453) is a primitive root of p.
- We now prove the existence of primitive roots and then Theorem 50 (p. 453).

^aCarl Friedrich Gauss.

Basic Modular Arithmetics (concluded)

• We use

 $a \equiv b \mod n$

- if $n \mid (a b)$. - So $25 \equiv 38 \mod 13$.
- We use

 $a = b \mod n$

if b is the remainder of a divided by n.

- So $25 = 12 \mod 13$.

Euler's $^{\rm a}$ Totient or Phi Function

• Let

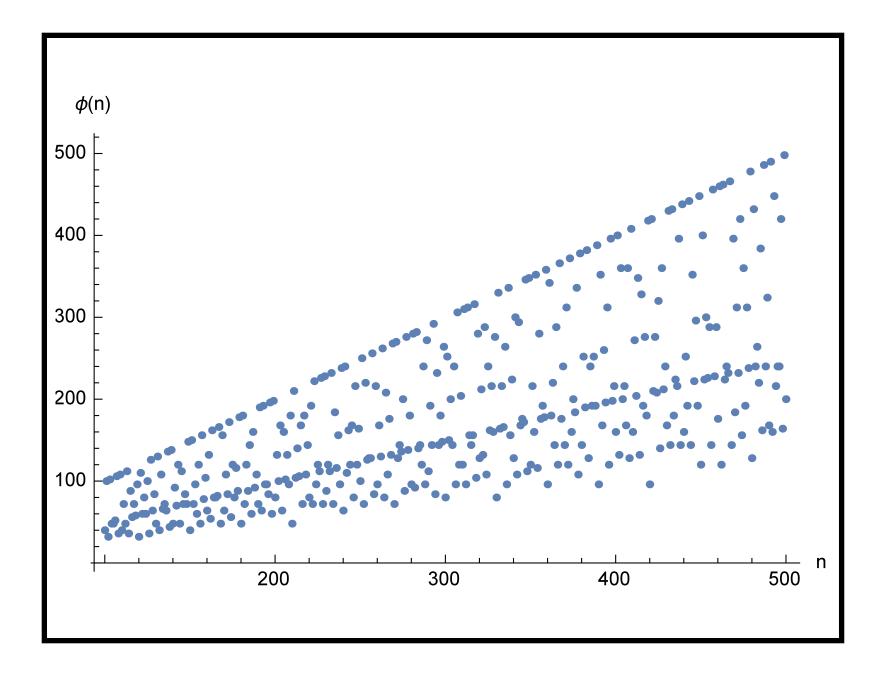
$$\Phi(n) = \{m : 1 \le m < n, \gcd(m, n) = 1\}$$

be the set of all positive integers less than n that are prime to n.^b

 $- \Phi(12) = \{1, 5, 7, 11\}.$

- Define Euler's function of n to be $\phi(n) = |\Phi(n)|$.
- $\phi(p) = p 1$ for prime p, and $\phi(1) = 1$ by convention.
- Euler's function is not expected to be easy to compute without knowing *n*'s factorization.

^aLeonhard Euler (1707–1783). ^b Z_n^* is an alternative notation.



Two Properties of Euler's Function

The inclusion-exclusion principle^a can be used to prove the following.

Lemma 53 $\phi(n) = n \prod_{p|n} (1 - \frac{1}{p}).$

• If $n = p_1^{e_1} p_2^{e_2} \cdots p_{\ell}^{e_{\ell}}$ is the prime factorization of n, then

$$\phi(n) = n \prod_{i=1}^{\ell} \left(1 - \frac{1}{p_i} \right).$$

Corollary 54 $\phi(mn) = \phi(m) \phi(n)$ if gcd(m, n) = 1.

^aConsult any textbook on discrete mathematics.

A Key Lemma

Lemma 55 $\sum_{m|n} \phi(m) = n$.

• Let $n = \prod_{i=1}^{\ell} p_i^{k_i}$ be the prime factorization of n and consider

$$\prod_{i=1}^{\ell} [\phi(1) + \phi(p_i) + \dots + \phi(p_i^{k_i})].$$
 (6)

- Equation (6) equals n because $\phi(p_i^k) = p_i^k p_i^{k-1}$ by Lemma 53 (p. 466) so $\phi(1) + \phi(p_i) + \dots + \phi(p_i^{k_i}) = p_i^{k_i}$.
- Expand Eq. (6) to yield

$$n = \sum_{k_1' \le k_1, \dots, k_\ell' \le k_\ell} \prod_{i=1}^\ell \phi(p_i^{k_i'}).$$

The Proof (concluded)

• By Corollary 54 (p. 466),

$$\prod_{i=1}^{\ell} \phi(p_i^{k'_i}) = \phi\left(\prod_{i=1}^{\ell} p_i^{k'_i}\right).$$

• So Eq. (6) becomes

$$n = \sum_{k_1' \le k_1, \dots, k_\ell' \le k_\ell} \phi\left(\prod_{i=1}^\ell p_i^{k_i'}\right).$$

- Each $\prod_{i=1}^{\ell} p_i^{k'_i}$ is a unique divisor of $n = \prod_{i=1}^{\ell} p_i^{k_i}$.
- Equation (6) becomes

$$\sum_{m|n} \phi(m).$$

Leonhard Euler (1707–1783)

