Theory of Computation

homework 2 Due: 10/21/2014

Problem 1 Show that if L_1 and L_2 are recursively enumerable languages, then so is $L_1 \cup L_2$.

Ans: Since L_1 and L_2 are RE languages, there must be a TM M_1 accepting L_1 and a TM M_2 accepting L_2 . Now we construct another TM M' that simulates M_1 and M_2 in an interleaving style. Make M' accept if M_1 or M_2 accepts. Now,

- if $x \in L_1$, $M'(x) = M_1(x) =$ "yes",
- if $x \in L_2$, $M'(x) = M_2(x) =$ "yes",
- if $x \notin L_1 \cup L_2$, $M'(x) = \nearrow$.

So M' accepts $L_1 \cup L_2$ and $L_1 \cup L_2$ is recursively enumerable.

Problem 2 Show that the language

$$A = \{ (M; x) \mid M(x) = "Yes" \}$$

is undecidable.

Ans: Suppose A is recursive. Then there exists a TM M_A that decides A such that

- $M_A(M; x) =$ "Yes", if $(M; x) \in A$,
- $M_A(M; x) =$ "No", if $(M; x) \notin A$.

Consider the program D(M) that calls M_A :

1: if $M_A(M; M) =$ "Yes" then

$$2: \quad D(M) = \text{``No''};$$

3: else

4: D(M) = "Yes";

5: end if

Now, consider D(D):

- D(D) = "No", if $M_A(D; D) =$ "Yes".
- D(D) = "Yes", if $M_A(D; D) =$ "No".

Note that, however, $M_A(D; D) =$ "Yes" implies D(D) = "Yes" because $(D; D) \in A$. Similarly, $M_A(D; D) =$ "No" implies $D(D) \neq$ "Yes" because $(D; D) \notin A$. As contradiction follows in both cases, A is undecidable.