Savitch's Theorem

```
Theorem 25 (Savitch (1970))
```

```
REACHABILITY \in SPACE(\log^2 n).
```

- Let G(V, E) be a graph with n nodes.
- For $i \ge 0$, let

```
PATH(x, y, i)
```

mean there is a path from node x to node y of length at most 2^i .

• There is a path from x to y if and only if

```
PATH(x, y, \lceil \log n \rceil)
```

holds.

The Proof (continued)

- For i > 0, PATH(x, y, i) if and only if there exists a z such that PATH(x, z, i 1) and PATH(z, y, i 1).
- For PATH(x, y, 0), check the input graph or if x = y.
- Compute $PATH(x, y, \lceil \log n \rceil)$ with a depth-first search on a graph with nodes (x, y, z, i)s (see next page).^a
- Like stacks in recursive calls, we keep only the current path of (x, y, i)s.
- The space requirement is proportional to the depth of the tree ([log n]) times the size of the items stored at each node.

^aContributed by Mr. Chuan-Yao Tan on October 11, 2011.

The Proof (continued): Algorithm for PATH(x, y, i)1: **if** i = 0 **then** if x = y or $(x, y) \in E$ then 2: return true; 3: else 4: 5: return false; end if 6: 7: else for z = 1, 2, ..., n do 8: if PATH(x, z, i-1) and PATH(z, y, i-1) then 9: return true; 10: end if 11: end for 12:return false; 13:14: end if

The Proof (concluded)

- Depth is $\lceil \log n \rceil$, and each node (x, y, z, i) needs space $O(\log n)$.
- The total space is $O(\log^2 n)$.

The Relation between Nondeterministic Space and Deterministic Space Only Quadratic

Corollary 26 Let $f(n) \ge \log n$ be proper. Then

 $NSPACE(f(n)) \subseteq SPACE(f^2(n)).$

- Apply Savitch's proof to the configuration graph of the NTM on the input.
- From p. 242, the configuration graph has $O(c^{f(n)})$ nodes; hence each node takes space O(f(n)).
- But if we construct *explicitly* the whole graph before applying Savitch's theorem, we get $O(c^{f(n)})$ space!

The Proof (continued)

- The way out is *not* to generate the graph at all.
- Instead, keep the graph implicit.
- In fact, we check node connectedness only when i = 0 on p. 250, by examining the input string G.
- There, given configurations x and y, we go over the Turing machine's program to determine if there is an instruction that can turn x into y in one step.^a

^aThanks to a lively class discussion on October 15, 2003.

The Proof (concluded)

- The z variable in the algorithm on p. 250 simply runs through all possible valid configurations.
 - Let $z = 0, 1, \dots, O(c^{f(n)})$.
 - Make sure z is a valid configuration before using it in the recursive calls.^a
- Each z has length O(f(n)) by Eq. (2) on p. 242.
- So each node needs space O(f(n)).
- The depth of the recursive call on p. 250 is $O(\log c^{f(n)})$, which is O(f(n)).
- The total space is therefore $O(f^2(n))$.

^aThanks to a lively class discussion on October 13, 2004.

Implications of Savitch's Theorem

- PSPACE = NPSPACE.
- Nondeterminism is less powerful with respect to space.
- Nondeterminism may be very powerful with respect to time as it is not known if P = NP.

Nondeterministic Space Is Closed under Complement

- Closure under complement is trivially true for deterministic complexity classes (p. 227).
- It is known that^a

$$coNSPACE(f(n)) = NSPACE(f(n)).$$
 (3)

• So

coNL = NL,coNPSPACE = NPSPACE.

• But it is not known whether coNP = NP.

^aSzelepscényi (1987) and Immerman (1988).

Reductions and Completeness

It is unworthy of excellent men to lose hours like slaves in the labor of computation. — Gottfried Wilhelm von Leibniz (1646–1716)

Degrees of Difficulty

- When is a problem more difficult than another?
- B reduces to A if there is a transformation R which for every input x of B yields an input R(x) of A.^a
 - The answer to x for B is the same as the answer to R(x) for A.
 - R is easy to compute.
- We say problem A is at least as hard as^b problem B if B reduces to A.

^aSee also p. 164.

^bOr simply "harder than" for brevity.

Degrees of Difficulty (concluded)

- This makes intuitive sense: If A is able to solve your problem B after only a little bit of work of R, then A must be at least as hard.
 - If A is easy to solve, it combined with R (which is also easy) would make B easy to solve, too.^a
 - So if B is hard to solve, A must be hard (if not harder), too!

^aThanks to a lively class discussion on October 13, 2009.

$\mathsf{Comments}^{\mathrm{a}}$

- Suppose B reduces to A via a transformation R.
- The input x is an instance of B.
- The output R(x) is an instance of A.
- R(x) may not span all possible instances of A.^b
 - Some instances of A may never appear in the range of R.
- But x must be a general instance for B.

^aContributed by Mr. Ming-Feng Tsai (D92922003) on October 29, 2003.

 ${}^{\mathrm{b}}R(x)$ may not be onto; Mr. Alexandr Simak (D98922040) on October 13, 2009.

Is "Reduction" a Confusing Choice of Word?^a

• If B reduces to A, doesn't that intuitively make A smaller and simpler?

– Sometimes, we say, "B can be reduced to A."

- But our definition means just the opposite.
- Our definition says in this case B is a special case of A.
- Hence A is harder.

^aMoore and Mertens (2011).

Reduction between Languages

- Language L_1 is **reducible to** L_2 if there is a function R computable by a deterministic TM in space $O(\log n)$.
- Furthermore, for all inputs $x, x \in L_1$ if and only if $R(x) \in L_2$.
- R is said to be a (**Karp**) reduction from L_1 to L_2 .

Reduction between Languages (concluded)

- Note that by Theorem 24 (p. 239), R runs in polynomial time.
 - In most cases, a polynomial-time R suffices for proofs.^a
- Suppose R is a reduction from L_1 to L_2 .
- Then solving " $R(x) \in L_2$?" is an algorithm for solving " $x \in L_1$?"^b

^aIn fact, unless stated otherwise, we will only require that the reduction R run in polynomial time.

^bOf course, it may not be an optimal one.

A Paradox?

- Degree of difficulty is not defined in terms of *absolute* complexity.
- So a language $B \in TIME(n^{99})$ may be "easier" than a language $A \in TIME(n^3)$.
 - Again, this happens when B is reducible to A.
- But isn't this a contradiction if the best algorithm for B requires n^{99} steps?
- That is, how can a problem *requiring* n^{99} steps be reducible to a problem solvable in n^3 steps?

Paradox Resolved

- The so-called contradiction does not hold.
- Suppose we solve the problem " $x \in B$?" via " $R(x) \in A$?"
- We must consider the time spent by R(x) and its length |R(x)|:

- Because R(x) (not x) is solved by A.

HAMILTONIAN PATH

- A **Hamiltonian path** of a graph is a path that visits every node of the graph exactly once.
- Suppose graph G has n nodes: $1, 2, \ldots, n$.
- A Hamiltonian path can be expressed as a permutation π of $\{1, 2, \ldots, n\}$ such that
 - $-\pi(i) = j$ means the *i*th position is occupied by node *j*.

 $- (\pi(i), \pi(i+1)) \in G \text{ for } i = 1, 2, \dots, n-1.$

• HAMILTONIAN PATH asks if a graph has a Hamiltonian path.

Reduction of HAMILTONIAN PATH to SAT

- Given a graph G, we shall construct a CNF R(G) such that R(G) is satisfiable iff G has a Hamiltonian path.
- R(G) has n^2 boolean variables $x_{ij}, 1 \le i, j \le n$.
- x_{ij} means

"the *i*th position in the Hamiltonian path is occupied by node j."

• Our reduction will produce clauses.

The Clauses of R(G) and Their Intended Meanings

- 1. Each node j must appear in the path.
 - $x_{1j} \vee x_{2j} \vee \cdots \vee x_{nj}$ for each j.
- 2. No node j appears twice in the path.
 - $\neg x_{ij} \lor \neg x_{kj} (\equiv \neg (x_{ij} \land x_{kj}))$ for all i, j, k with $i \neq k$.
- 3. Every position i on the path must be occupied.
 - $x_{i1} \vee x_{i2} \vee \cdots \vee x_{in}$ for each *i*.
- 4. No two nodes j and k occupy the same position in the path.
 - $\neg x_{ij} \lor \neg x_{ik} (\equiv \neg (x_{ij} \land x_{ik}))$ for all i, j, k with $j \neq k$.
- 5. Nonadjacent nodes i and j cannot be adjacent in the path.
 - $\neg x_{ki} \lor \neg x_{k+1,j}$ for all $(i,j) \notin G$ and $k = 1, 2, \ldots, n-1$.

The Proof

- R(G) contains $O(n^3)$ clauses.
- R(G) can be computed efficiently (simple exercise).
- Suppose $T \models R(G)$.
- From the 1st and 2nd types of clauses, for each node j there is a unique position i such that $T \models x_{ij}$.
- From the 3rd and 4th types of clauses, for each position i there is a unique node j such that $T \models x_{ij}$.
- So there is a permutation π of the nodes such that $\pi(i) = j$ if and only if $T \models x_{ij}$.

The Proof (concluded)

- The 5th type of clauses furthermore guarantee that $(\pi(1), \pi(2), \ldots, \pi(n))$ is a Hamiltonian path.
- Conversely, suppose G has a Hamiltonian path

 $(\pi(1),\pi(2),\ldots,\pi(n)),$

where π is a permutation.

• Clearly, the truth assignment

 $T(x_{ij}) =$ true if and only if $\pi(i) = j$

satisfies all clauses of R(G).

A Comment $^{\rm a}$

- An answer to "Is R(G) satisfiable?" does answer "Is G Hamiltonian?"
- But a positive answer does not give a Hamiltonian path for G.
 - Providing a witness is not a requirement of reduction.
- A positive answer to "Is R(G) satisfiable?" plus a satisfying truth assignment does provide us with a Hamiltonian path for G.

^aContributed by Ms. Amy Liu (J94922016) on May 29, 2006.

Reduction of REACHABILITY to CIRCUIT VALUE

- Note that both problems are in P.
- Given a graph G = (V, E), we shall construct a variable-free circuit R(G).
- The output of R(G) is true if and only if there is a path from node 1 to node n in G.
- Idea: the Floyd-Warshall algorithm.

The Gates

- The gates are
 - $-g_{ijk}$ with $1 \leq i, j \leq n$ and $0 \leq k \leq n$.
 - $-h_{ijk}$ with $1 \le i, j, k \le n$.
- g_{ijk} : There is a path from node *i* to node *j* without passing through a node bigger than *k*.
- h_{ijk} : There is a path from node *i* to node *j* passing through *k* but not any node bigger than *k*.
- Input gate $g_{ij0} =$ true if and only if i = j or $(i, j) \in E$.

The Construction

- h_{ijk} is an AND gate with predecessors $g_{i,k,k-1}$ and $g_{k,j,k-1}$, where k = 1, 2, ..., n.
- g_{ijk} is an OR gate with predecessors $g_{i,j,k-1}$ and $h_{i,j,k}$, where k = 1, 2, ..., n.
- g_{1nn} is the output gate.
- Interestingly, R(G) uses no \neg gates.
 - It is a monotone circuit.

Reduction of CIRCUIT SAT to SAT

- Given a circuit C, we will construct a boolean expression R(C) such that R(C) is satisfiable iff C is.
 - R(C) will turn out to be a CNF.
 - R(C) is basically a depth-2 circuit; furthermore, each gate has out-degree 1.
- The variables of R(C) are those of C plus g for each gate g of C.
 - The g's propagate the truth values for the CNF.
- Each gate of C will be turned into equivalent clauses.
- Recall that clauses are \wedge ed together by definition.

The Clauses of R(C)

g is a variable gate x: Add clauses $(\neg g \lor x)$ and $(g \lor \neg x)$.

• Meaning: $g \Leftrightarrow x$.

g is a true gate: Add clause (g).

• Meaning: g must be true to make R(C) true.

g is a false gate: Add clause $(\neg g)$.

- Meaning: g must be false to make R(C) true.
- g is a \neg gate with predecessor gate h: Add clauses $(\neg g \lor \neg h)$ and $(g \lor h)$.
 - Meaning: $g \Leftrightarrow \neg h$.

The Clauses of R(C) (concluded)

- g is a \lor gate with predecessor gates h and h': Add clauses $(\neg h \lor g)$, $(\neg h' \lor g)$, and $(h \lor h' \lor \neg g)$.
 - Meaning: $g \Leftrightarrow (h \lor h')$.
- g is a \wedge gate with predecessor gates h and h': Add clauses $(\neg g \lor h), (\neg g \lor h'), \text{ and } (\neg h \lor \neg h' \lor g).$
 - Meaning: $g \Leftrightarrow (h \land h')$.
- g is the output gate: Add clause (g).

• Meaning: g must be true to make R(C) true.

Note: If gate g feeds gates h_1, h_2, \ldots , then variable g appears in the clauses for h_1, h_2, \ldots in R(C).

An Example (concluded)

- In general, the result is a CNF.
- The CNF has size proportional to the circuit's number of gates.
- The CNF adds new variables to the circuit's original input variables.
- Had we used the idea on p. 209 for the reduction, the resulting formula may have an exponential length because of the copying.^a

^aContributed by Mr. Ching-Hua Yu (D00921025) on October 16, 2012.

Composition of Reductions

Proposition 27 If R_{12} is a reduction from L_1 to L_2 and R_{23} is a reduction from L_2 to L_3 , then the composition $R_{12} \circ R_{23}$ is a reduction from L_1 to L_3 .

• So reducibility is transitive.

$\mathsf{Completeness}^{\mathrm{a}}$

- As reducibility is transitive, problems can be ordered with respect to their difficulty.
- Is there a *maximal* element (the *hardest* problem)?
- It is not obvious that there should be a maximal element.
 - Many infinite structures (such as integers and real numbers) do not have maximal elements.
- Hence it may surprise you that most of the complexity classes that we have seen so far have maximal elements.

^aCook (1971) and Levin (1973).

Completeness (concluded)

- Let \mathcal{C} be a complexity class and $L \in \mathcal{C}$.
- L is C-complete if every $L' \in C$ can be reduced to L.
 - Most complexity classes we have seen so far have complete problems!
- Complete problems capture the difficulty of a class because they are the hardest problems in the class.

Hardness

- Let \mathcal{C} be a complexity class.
- L is C-hard if every $L' \in C$ can be reduced to L.
- It is not required that $L \in \mathcal{C}$.
- If L is C-hard, then by definition, every C-complete problem can be reduced to L.^a

^aContributed by Mr. Ming-Feng Tsai (D92922003) on October 15, 2003.

Closedness under Reductions

- A class C is **closed under reductions** if whenever L is reducible to L' and $L' \in C$, then $L \in C$.
- It is easy to show that P, NP, coNP, L, NL, PSPACE, and EXP are all closed under reductions.

Complete Problems and Complexity Classes

Proposition 28 Let C' and C be two complexity classes such that $C' \subseteq C$. Assume C' is closed under reductions and L is C-complete. Then C = C' if and only if $L \in C'$.

- Suppose $L \in \mathcal{C}'$ first.
- Every language $A \in \mathcal{C}$ reduces to $L \in \mathcal{C}'$.
- Because \mathcal{C}' is closed under reductions, $A \in \mathcal{C}'$.
- Hence $\mathcal{C} \subseteq \mathcal{C}'$.
- As $\mathcal{C}' \subseteq \mathcal{C}$, we conclude that $\mathcal{C} = \mathcal{C}'$.

The Proof (concluded)

- On the other hand, suppose $\mathcal{C} = \mathcal{C}'$.
- As L is C-complete, $L \in C$.
- Thus, trivially, $L \in \mathcal{C}'$.

Two Important Corollaries

Proposition 28 implies the following.

Corollary 29 P = NP if and only if an NP-complete problem in P.

Corollary 30 L = P if and only if a P-complete problem is in L.

Complete Problems and Complexity Classes **Proposition 31** Let C' and C be two complexity classes closed under reductions. If L is complete for both C and C', then C = C'.

- All languages $\mathcal{L} \in \mathcal{C}$ reduce to $L \in \mathcal{C}$ and $L \in \mathcal{C}'$.
- Since \mathcal{C}' is closed under reductions, $\mathcal{L} \in \mathcal{C}'$.
- Hence $\mathcal{C} \subseteq \mathcal{C}'$.
- The proof for $\mathcal{C}' \subseteq \mathcal{C}$ is symmetric.

Table of Computation

- Let $M = (K, \Sigma, \delta, s)$ be a single-string polynomial-time deterministic TM deciding L.
- Its computation on input x can be thought of as a |x|^k × |x|^k table, where |x|^k is the time bound.
 It is essentially a sequence of configurations.
- Rows correspond to time steps 0 to $|x|^k 1$.
- Columns are positions in the string of M.
- The (i, j)th table entry represents the contents of position j of the string *after* i steps of computation.

Some Conventions To Simplify the Table

- *M* halts after at most $|x|^k 2$ steps.
- Assume a large enough k to make it true for $|x| \ge 2$.
- Pad the table with \bigsqcup s so that each row has length $|x|^k$.
 - The computation will never reach the right end of the table for lack of time.
- If the cursor scans the jth position at time i when M is at state q and the symbol is σ, then the (i, j)th entry is a new symbol σ_q.

Some Conventions To Simplify the Table (continued)

- If q is "yes" or "no," simply use "yes" or "no" instead of σ_q .
- Modify M so that the cursor starts not at ▷ but at the first symbol of the input.
- The cursor never visits the leftmost ▷ by telescoping two moves of M each time the cursor is about to move to the leftmost ▷.
- So the first symbol in every row is a \triangleright and not a \triangleright_q .

Some Conventions To Simplify the Table (concluded)

- Suppose M has halted before its time bound of $|x|^k$, so that "yes" or "no" appears at a row before the last.
- Then all subsequent rows will be identical to that row.
- *M* accepts *x* if and only if the $(|x|^k 1, j)$ th entry is "yes" for some position *j*.

Comments

- Each row is essentially a configuration.
- If the input x = 010001, then the first row is

• A typical row may look like

