
Savitch’s Theorem

Theorem 25 (Savitch (1970))

reachability ∈ SPACE(log2 n).

• Let G(V,E) be a graph with n nodes.

• For i ≥ 0, let

PATH(x, y, i)

mean there is a path from node x to node y of length at

most 2i.

• There is a path from x to y if and only if

PATH(x, y, ⌈log n⌉)

holds.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 248

The Proof (continued)

• For i > 0, PATH(x, y, i) if and only if there exists a z

such that PATH(x, z, i− 1) and PATH(z, y, i− 1).

• For PATH(x, y, 0), check the input graph or if x = y.

• Compute PATH(x, y, ⌈log n⌉) with a depth-first search

on a graph with nodes (x, y, z, i)s (see next page).a

• Like stacks in recursive calls, we keep only the current

path of (x, y, i)s.

• The space requirement is proportional to the depth of

the tree (⌈log n⌉) times the size of the items stored at

each node.
aContributed by Mr. Chuan-Yao Tan on October 11, 2011.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 249

The Proof (continued): Algorithm for PATH(x, y, i)
1: if i = 0 then

2: if x = y or (x, y) ∈ E then

3: return true;

4: else

5: return false;

6: end if

7: else

8: for z = 1, 2, . . . , n do

9: if PATH(x, z, i− 1) and PATH(z, y, i− 1) then

10: return true;

11: end if

12: end for

13: return false;

14: end if

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 250

The Proof (continued)

3$7+�[�\�ORJ�Q�

3$7+�[�]�ORJ�Q��� 3$7+�]�\�ORJ�Q���

Ø\HVÙ
ØQRÙ

ØQRÙ

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 251

The Proof (concluded)

• Depth is ⌈log n⌉, and each node (x, y, z, i) needs space

O(log n).

• The total space is O(log2 n).

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 252

The Relation between Nondeterministic Space and
Deterministic Space Only Quadratic

Corollary 26 Let f(n) ≥ log n be proper. Then

NSPACE(f(n)) ⊆ SPACE(f2(n)).

• Apply Savitch’s proof to the configuration graph of the

NTM on the input.

• From p. 242, the configuration graph has O(cf(n))

nodes; hence each node takes space O(f(n)).

• But if we construct explicitly the whole graph before

applying Savitch’s theorem, we get O(cf(n)) space!

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 253

The Proof (continued)

• The way out is not to generate the graph at all.

• Instead, keep the graph implicit.

• In fact, we check node connectedness only when i = 0 on

p. 250, by examining the input string G.

• There, given configurations x and y, we go over the

Turing machine’s program to determine if there is an

instruction that can turn x into y in one step.a

aThanks to a lively class discussion on October 15, 2003.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 254

The Proof (concluded)

• The z variable in the algorithm on p. 250 simply runs

through all possible valid configurations.

– Let z = 0, 1, . . . , O(cf(n)).

– Make sure z is a valid configuration before using it in

the recursive calls.a

• Each z has length O(f(n)) by Eq. (2) on p. 242.

• So each node needs space O(f(n)).

• The depth of the recursive call on p. 250 is O(log cf(n)),

which is O(f(n)).

• The total space is therefore O(f2(n)).

aThanks to a lively class discussion on October 13, 2004.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 255

Implications of Savitch’s Theorem

• PSPACE = NPSPACE.

• Nondeterminism is less powerful with respect to space.

• Nondeterminism may be very powerful with respect to

time as it is not known if P = NP.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 256

Nondeterministic Space Is Closed under Complement

• Closure under complement is trivially true for

deterministic complexity classes (p. 227).

• It is known thata

coNSPACE(f(n)) = NSPACE(f(n)). (3)

• So

coNL = NL,

coNPSPACE = NPSPACE.

• But it is not known whether coNP = NP.

aSzelepscényi (1987) and Immerman (1988).

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 257

Reductions and Completeness

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 258

It is unworthy of excellent men

to lose hours like slaves in the labor of

computation.

— Gottfried Wilhelm von Leibniz (1646–1716)

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 259

Degrees of Difficulty

• When is a problem more difficult than another?

• B reduces to A if there is a transformation R which for

every input x of B yields an input R(x) of A.a

– The answer to x for B is the same as the answer to

R(x) for A.

– R is easy to compute.

• We say problem A is at least as hard asb problem B if B

reduces to A.

aSee also p. 164.
bOr simply “harder than” for brevity.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 260

Reduction

x yes/noR(x)
R

algorithm
for A

Solving problem B by calling the algorithm for problem A

once and without further processing its answer.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 261

Degrees of Difficulty (concluded)

• This makes intuitive sense: If A is able to solve your

problem B after only a little bit of work of R, then A

must be at least as hard.

– If A is easy to solve, it combined with R (which is

also easy) would make B easy to solve, too.a

– So if B is hard to solve, A must be hard (if not

harder), too!

aThanks to a lively class discussion on October 13, 2009.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 262

Commentsa

• Suppose B reduces to A via a transformation R.

• The input x is an instance of B.

• The output R(x) is an instance of A.

• R(x) may not span all possible instances of A.b

– Some instances of A may never appear in the range

of R.

• But x must be a general instance for B.

aContributed by Mr. Ming-Feng Tsai (D92922003) on October 29,

2003.
bR(x) may not be onto; Mr. Alexandr Simak (D98922040) on October

13, 2009.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 263

Is “Reduction” a Confusing Choice of Word?a

• If B reduces to A, doesn’t that intuitively make A

smaller and simpler?

– Sometimes, we say, “B can be reduced to A.”

• But our definition means just the opposite.

• Our definition says in this case B is a special case of A.

• Hence A is harder.

aMoore and Mertens (2011).

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 264

Reduction between Languages

• Language L1 is reducible to L2 if there is a function R

computable by a deterministic TM in space O(log n).

• Furthermore, for all inputs x, x ∈ L1 if and only if

R(x) ∈ L2.

• R is said to be a (Karp) reduction from L1 to L2.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 265

Reduction between Languages (concluded)

• Note that by Theorem 24 (p. 239), R runs in polynomial

time.

– In most cases, a polynomial-time R suffices for

proofs.a

• Suppose R is a reduction from L1 to L2.

• Then solving “R(x) ∈ L2?” is an algorithm for solving

“x ∈ L1?”
b

aIn fact, unless stated otherwise, we will only require that the reduc-

tion R run in polynomial time.
bOf course, it may not be an optimal one.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 266

A Paradox?

• Degree of difficulty is not defined in terms of absolute

complexity.

• So a language B ∈ TIME(n99) may be “easier” than a

language A ∈ TIME(n3).

– Again, this happens when B is reducible to A.

• But isn’t this a contradiction if the best algorithm for B

requires n99 steps?

• That is, how can a problem requiring n99 steps be

reducible to a problem solvable in n3 steps?

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 267

Paradox Resolved

• The so-called contradiction does not hold.

• Suppose we solve the problem “x ∈ B?” via “R(x) ∈ A?”

• We must consider the time spent by R(x) and its length

|R(x) |:
– Because R(x) (not x) is solved by A.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 268

hamiltonian path

• A Hamiltonian path of a graph is a path that visits

every node of the graph exactly once.

• Suppose graph G has n nodes: 1, 2, . . . , n.

• A Hamiltonian path can be expressed as a permutation

π of { 1, 2, . . . , n } such that

– π(i) = j means the ith position is occupied by node j.

– (π(i), π(i+ 1)) ∈ G for i = 1, 2, . . . , n− 1.

• hamiltonian path asks if a graph has a Hamiltonian

path.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 269

Reduction of hamiltonian path to sat

• Given a graph G, we shall construct a CNF R(G) such

that R(G) is satisfiable iff G has a Hamiltonian path.

• R(G) has n2 boolean variables xij , 1 ≤ i, j ≤ n.

• xij means

“the ith position in the Hamiltonian path is

occupied by node j.”

• Our reduction will produce clauses.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 270

1

2
3

4

5
6

78
9

x12 = x21 = x34 = x45 = x53 = x69 = x76 = x88 = x97 = 1;

π(1) = 2, π(2) = 1, π(3) = 4, π(4) = 5, π(5) = 3, π(6) =

9, π(7) = 6, π(8) = 8, π(9) = 7.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 271

The Clauses of R(G) and Their Intended Meanings

1. Each node j must appear in the path.

• x1j ∨ x2j ∨ · · · ∨ xnj for each j.

2. No node j appears twice in the path.

• ¬xij ∨ ¬xkj(≡ ¬(xij ∧ xkj)) for all i, j, k with i ̸= k.

3. Every position i on the path must be occupied.

• xi1 ∨ xi2 ∨ · · · ∨ xin for each i.

4. No two nodes j and k occupy the same position in the path.

• ¬xij ∨ ¬xik(≡ ¬(xij ∧ xik)) for all i, j, k with j ̸= k.

5. Nonadjacent nodes i and j cannot be adjacent in the path.

• ¬xki ∨ ¬xk+1,j for all (i, j) ̸∈ G and k = 1, 2, . . . , n− 1.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 272

The Proof

• R(G) contains O(n3) clauses.

• R(G) can be computed efficiently (simple exercise).

• Suppose T |= R(G).

• From the 1st and 2nd types of clauses, for each node j

there is a unique position i such that T |= xij .

• From the 3rd and 4th types of clauses, for each position

i there is a unique node j such that T |= xij .

• So there is a permutation π of the nodes such that

π(i) = j if and only if T |= xij .

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 273

The Proof (concluded)

• The 5th type of clauses furthermore guarantee that

(π(1), π(2), . . . , π(n)) is a Hamiltonian path.

• Conversely, suppose G has a Hamiltonian path

(π(1), π(2), . . . , π(n)),

where π is a permutation.

• Clearly, the truth assignment

T (xij) = true if and only if π(i) = j

satisfies all clauses of R(G).

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 274

A Commenta

• An answer to “Is R(G) satisfiable?” does answer “Is G

Hamiltonian?”

• But a positive answer does not give a Hamiltonian path

for G.

– Providing a witness is not a requirement of reduction.

• A positive answer to “Is R(G) satisfiable?” plus a

satisfying truth assignment does provide us with a

Hamiltonian path for G.

aContributed by Ms. Amy Liu (J94922016) on May 29, 2006.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 275

Reduction of reachability to circuit value

• Note that both problems are in P.

• Given a graph G = (V,E), we shall construct a

variable-free circuit R(G).

• The output of R(G) is true if and only if there is a path

from node 1 to node n in G.

• Idea: the Floyd-Warshall algorithm.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 276

The Gates

• The gates are

– gijk with 1 ≤ i, j ≤ n and 0 ≤ k ≤ n.

– hijk with 1 ≤ i, j, k ≤ n.

• gijk: There is a path from node i to node j without

passing through a node bigger than k.

• hijk: There is a path from node i to node j passing

through k but not any node bigger than k.

• Input gate gij0 = true if and only if i = j or (i, j) ∈ E.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 277

The Construction

• hijk is an and gate with predecessors gi,k,k−1 and

gk,j,k−1, where k = 1, 2, . . . , n.

• gijk is an or gate with predecessors gi,j,k−1 and hi,j,k,

where k = 1, 2, . . . , n.

• g1nn is the output gate.

• Interestingly, R(G) uses no ¬ gates.

– It is a monotone circuit.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 278

Reduction of circuit sat to sat

• Given a circuit C, we will construct a boolean

expression R(C) such that R(C) is satisfiable iff C is.

– R(C) will turn out to be a CNF.

– R(C) is basically a depth-2 circuit; furthermore, each

gate has out-degree 1.

• The variables of R(C) are those of C plus g for each

gate g of C.

– The g’s propagate the truth values for the CNF.

• Each gate of C will be turned into equivalent clauses.

• Recall that clauses are ∧ed together by definition.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 279

The Clauses of R(C)

g is a variable gate x: Add clauses (¬g ∨ x) and (g ∨ ¬x).
• Meaning: g ⇔ x.

g is a true gate: Add clause (g).

• Meaning: g must be true to make R(C) true.

g is a false gate: Add clause (¬g).
• Meaning: g must be false to make R(C) true.

g is a ¬ gate with predecessor gate h: Add clauses

(¬g ∨ ¬h) and (g ∨ h).

• Meaning: g ⇔ ¬h.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 280

The Clauses of R(C) (concluded)

g is a ∨ gate with predecessor gates h and h′: Add

clauses (¬h ∨ g), (¬h′ ∨ g), and (h ∨ h′ ∨ ¬g).
• Meaning: g ⇔ (h ∨ h′).

g is a ∧ gate with predecessor gates h and h′: Add

clauses (¬g ∨ h), (¬g ∨ h′), and (¬h ∨ ¬h′ ∨ g).

• Meaning: g ⇔ (h ∧ h′).

g is the output gate: Add clause (g).

• Meaning: g must be true to make R(C) true.

Note: If gate g feeds gates h1, h2, . . ., then variable g

appears in the clauses for h1, h2, . . . in R(C).

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 281

An Example

∧

[� [� [�
∨

[�

¬∧

∨

K� K� K� K�
J� J�

J� J�
J�

(h1 ⇔ x1) ∧ (h2 ⇔ x2) ∧ (h3 ⇔ x3) ∧ (h4 ⇔ x4)

∧ [g1 ⇔ (h1 ∧ h2)] ∧ [g2 ⇔ (h3 ∨ h4)]

∧ [g3 ⇔ (g1 ∧ g2)] ∧ (g4 ⇔ ¬g2)
∧ [g5 ⇔ (g3 ∨ g4)] ∧ g5.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 282

An Example (concluded)

• In general, the result is a CNF.

• The CNF has size proportional to the circuit’s number

of gates.

• The CNF adds new variables to the circuit’s original

input variables.

• Had we used the idea on p. 209 for the reduction, the

resulting formula may have an exponential length

because of the copying.a

aContributed by Mr. Ching-Hua Yu (D00921025) on October 16, 2012.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 283

Composition of Reductions

Proposition 27 If R12 is a reduction from L1 to L2 and

R23 is a reduction from L2 to L3, then the composition

R12 ◦R23 is a reduction from L1 to L3.

• So reducibility is transitive.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 284

Completenessa

• As reducibility is transitive, problems can be ordered

with respect to their difficulty.

• Is there a maximal element (the hardest problem)?

• It is not obvious that there should be a maximal

element.

– Many infinite structures (such as integers and real

numbers) do not have maximal elements.

• Hence it may surprise you that most of the complexity

classes that we have seen so far have maximal elements.

aCook (1971) and Levin (1973).

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 285

Completeness (concluded)

• Let C be a complexity class and L ∈ C.

• L is C-complete if every L′ ∈ C can be reduced to L.

– Most complexity classes we have seen so far have

complete problems!

• Complete problems capture the difficulty of a class

because they are the hardest problems in the class.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 286

Hardness

• Let C be a complexity class.

• L is C-hard if every L′ ∈ C can be reduced to L.

• It is not required that L ∈ C.

• If L is C-hard, then by definition, every C-complete

problem can be reduced to L.a

aContributed by Mr. Ming-Feng Tsai (D92922003) on October 15,

2003.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 287

Illustration of Completeness and Hardness

A1

A2

A3

A4

L

A1

A2

A3

A4

L

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 288

Closedness under Reductions

• A class C is closed under reductions if whenever L is

reducible to L′ and L′ ∈ C, then L ∈ C.

• It is easy to show that P, NP, coNP, L, NL, PSPACE,

and EXP are all closed under reductions.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 289

Complete Problems and Complexity Classes

Proposition 28 Let C′ and C be two complexity classes

such that C′ ⊆ C. Assume C′ is closed under reductions and

L is C-complete. Then C = C′ if and only if L ∈ C′.

• Suppose L ∈ C′ first.

• Every language A ∈ C reduces to L ∈ C′.

• Because C′ is closed under reductions, A ∈ C′.

• Hence C ⊆ C′.

• As C′ ⊆ C, we conclude that C = C′.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 290

The Proof (concluded)

• On the other hand, suppose C = C′.

• As L is C-complete, L ∈ C.

• Thus, trivially, L ∈ C′.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 291

Two Important Corollaries

Proposition 28 implies the following.

Corollary 29 P = NP if and only if an NP-complete

problem in P.

Corollary 30 L = P if and only if a P-complete problem is

in L.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 292

Complete Problems and Complexity Classes

Proposition 31 Let C′ and C be two complexity classes

closed under reductions. If L is complete for both C and C′,

then C = C′.

• All languages L ∈ C reduce to L ∈ C and L ∈ C′.

• Since C′ is closed under reductions, L ∈ C′.

• Hence C ⊆ C′.

• The proof for C′ ⊆ C is symmetric.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 293

Table of Computation

• Let M = (K,Σ, δ, s) be a single-string polynomial-time

deterministic TM deciding L.

• Its computation on input x can be thought of as a

|x |k × |x |k table, where |x |k is the time bound.

– It is essentially a sequence of configurations.

• Rows correspond to time steps 0 to |x |k − 1.

• Columns are positions in the string of M .

• The (i, j)th table entry represents the contents of

position j of the string after i steps of computation.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 294

Some Conventions To Simplify the Table

• M halts after at most |x |k − 2 steps.

• Assume a large enough k to make it true for |x | ≥ 2.

• Pad the table with
⊔
s so that each row has length |x |k.

– The computation will never reach the right end of

the table for lack of time.

• If the cursor scans the jth position at time i when M is

at state q and the symbol is σ, then the (i, j)th entry is

a new symbol σq.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 295

Some Conventions To Simplify the Table (continued)

• If q is “yes” or “no,” simply use “yes” or “no” instead of

σq.

• Modify M so that the cursor starts not at � but at the

first symbol of the input.

• The cursor never visits the leftmost � by telescoping

two moves of M each time the cursor is about to move

to the leftmost �.

• So the first symbol in every row is a � and not a �q.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 296

Some Conventions To Simplify the Table (concluded)

• Suppose M has halted before its time bound of |x |k, so
that “yes” or “no” appears at a row before the last.

• Then all subsequent rows will be identical to that row.

• M accepts x if and only if the (|x |k − 1, j)th entry is

“yes” for some position j.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 297

Comments

• Each row is essentially a configuration.

• If the input x = 010001, then the first row is

| x |k︷ ︸︸ ︷
�0s10001

⊔⊔
· · ·

⊔
• A typical row may look like

| x |k︷ ︸︸ ︷
�10100q01110100

⊔⊔
· · ·

⊔

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 298

Comments (concluded)

• The last rows must look like

| x |k︷ ︸︸ ︷
� · · · “yes” · · ·

⊔
or

|x |k︷ ︸︸ ︷
� · · · “no” · · ·

⊔
• Three out of the table’s 4 borders are known:

#��D��E��F��G��H��I���#

#

�

�
�# �

...

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 299

