Savitch's Theorem

Theorem 25 (Savitch (1970))

REACHABILITY $\in \operatorname{SPACE}\left(\log ^{2} n\right)$.

- Let $G(V, E)$ be a graph with n nodes.
- For $i \geq 0$, let

$$
\operatorname{PATH}(x, y, i)
$$

mean there is a path from node x to node y of length at most 2^{i}.

- There is a path from x to y if and only if

$$
\operatorname{PATH}(x, y,\lceil\log n\rceil)
$$

holds.

The Proof (continued)

- For $i>0, \operatorname{PATH}(x, y, i)$ if and only if there exists a z such that $\operatorname{PATH}(x, z, i-1)$ and $\operatorname{PATH}(z, y, i-1)$.
- For $\operatorname{PATH}(x, y, 0)$, check the input graph or if $x=y$.
- Compute $\operatorname{PATH}(x, y,\lceil\log n\rceil)$ with a depth-first search on a graph with nodes $(x, y, z, i) \mathrm{s}$ (see next page). ${ }^{\text {a }}$
- Like stacks in recursive calls, we keep only the current path of $(x, y, i) \mathrm{s}$.
- The space requirement is proportional to the depth of the tree $(\lceil\log n\rceil)$ times the size of the items stored at each node.

[^0]The Proof (continued): Algorithm for $\operatorname{PATH}(x, y, i)$
1: if $i=0$ then
2: if $x=y$ or $(x, y) \in E$ then
3: return true;
4: else
5: return false;
6: end if
7: else
8: \quad for $z=1,2, \ldots, n$ do
9: if $\operatorname{PATH}(x, z, i-1)$ and $\operatorname{PATH}(z, y, i-1)$ then
10: return true;
11: end if
12: end for
13: return false;
14: end if

The Proof (continued)

The Proof (concluded)

- Depth is $\lceil\log n\rceil$, and each node (x, y, z, i) needs space $O(\log n)$.
- The total space is $O\left(\log ^{2} n\right)$.

The Relation between Nondeterministic Space and Deterministic Space Only Quadratic

Corollary 26 Let $f(n) \geq \log n$ be proper. Then

$$
\operatorname{NSPACE}(f(n)) \subseteq \operatorname{SPACE}\left(f^{2}(n)\right) .
$$

- Apply Savitch's proof to the configuration graph of the NTM on the input.
- From p. 242, the configuration graph has $O\left(c^{f(n)}\right)$ nodes; hence each node takes space $O(f(n))$.
- But if we construct explicitly the whole graph before applying Savitch's theorem, we get $O\left(c^{f(n)}\right)$ space!

The Proof (continued)

- The way out is not to generate the graph at all.
- Instead, keep the graph implicit.
- In fact, we check node connectedness only when $i=0$ on p. 250 , by examining the input string G.
- There, given configurations x and y, we go over the Turing machine's program to determine if there is an instruction that can turn x into y in one step. ${ }^{\text {a }}$

[^1]
The Proof (concluded)

- The z variable in the algorithm on p. 250 simply runs through all possible valid configurations.
- Let $z=0,1, \ldots, O\left(c^{f(n)}\right)$.
- Make sure z is a valid configuration before using it in the recursive calls. ${ }^{a}$
- Each z has length $O(f(n))$ by Eq. (2) on p. 242.
- So each node needs space $O(f(n))$.
- The depth of the recursive call on p. 250 is $O\left(\log c^{f(n)}\right)$, which is $O(f(n))$.
- The total space is therefore $O\left(f^{2}(n)\right)$.
${ }^{\text {a }}$ Thanks to a lively class discussion on October 13, 2004.

Implications of Savitch's Theorem

- $\operatorname{PSPACE}=$ NPSPACE .
- Nondeterminism is less powerful with respect to space.
- Nondeterminism may be very powerful with respect to time as it is not known if $\mathrm{P}=\mathrm{NP}$.

Nondeterministic Space Is Closed under Complement

- Closure under complement is trivially true for deterministic complexity classes (p. 227).
- It is known that ${ }^{\text {a }}$

$$
\begin{equation*}
\operatorname{coNSPACE}(f(n))=\operatorname{NSPACE}(f(n)) \tag{3}
\end{equation*}
$$

- So

$$
\begin{aligned}
\operatorname{coNL} & =\mathrm{NL} \\
\text { coNPSPACE } & =\text { NPSPACE. }
\end{aligned}
$$

- But it is not known whether coNP $=$ NP.

[^2]
Reductions and Completeness

It is unworthy of excellent men to lose hours like slaves in the labor of computation.
— Gottfried Wilhelm von Leibniz (1646-1716)

Degrees of Difficulty

- When is a problem more difficult than another?
- B reduces to A if there is a transformation R which for every input x of B yields an input $R(x)$ of A . ${ }^{a}$
- The answer to x for B is the same as the answer to $R(x)$ for A.
$-R$ is easy to compute.
- We say problem A is at least as hard as ${ }^{\text {b }}$ problem B if B reduces to A.

[^3]
Reduction

Solving problem B by calling the algorithm for problem A once and without further processing its answer.

Degrees of Difficulty (concluded)

- This makes intuitive sense: If A is able to solve your problem B after only a little bit of work of R, then A must be at least as hard.
- If A is easy to solve, it combined with R (which is also easy) would make B easy to solve, too. ${ }^{\text {a }}$
- So if B is hard to solve, A must be hard (if not harder), too!
${ }^{\text {a }}$ Thanks to a lively class discussion on October 13, 2009.

Comments ${ }^{\text {a }}$

- Suppose B reduces to A via a transformation R.
- The input x is an instance of B .
- The output $R(x)$ is an instance of A.
- $R(x)$ may not span all possible instances of $\mathrm{A} .{ }^{\mathrm{b}}$
- Some instances of A may never appear in the range of R.
- But x must be a general instance for B.

[^4]
Is "Reduction" a Confusing Choice of Word?a

- If B reduces to A, doesn't that intuitively make A smaller and simpler?
- Sometimes, we say, "B can be reduced to A."
- But our definition means just the opposite.
- Our definition says in this case B is a special case of A.
- Hence A is harder.

[^5]
Reduction between Languages

- Language L_{1} is reducible to L_{2} if there is a function R computable by a deterministic TM in space $O(\log n)$.
- Furthermore, for all inputs $x, x \in L_{1}$ if and only if $R(x) \in L_{2}$.
- R is said to be a (Karp) reduction from L_{1} to L_{2}.

Reduction between Languages (concluded)

- Note that by Theorem 24 (p. 239), R runs in polynomial time.
- In most cases, a polynomial-time R suffices for proofs. ${ }^{\text {a }}$
- Suppose R is a reduction from L_{1} to L_{2}.
- Then solving " $R(x) \in L_{2}$?" is an algorithm for solving $" x \in L_{1}$?" ${ }^{\mathrm{b}}$

[^6]
A Paradox?

- Degree of difficulty is not defined in terms of absolute complexity.
- So a language $\mathrm{B} \in \operatorname{TIME}\left(n^{99}\right)$ may be "easier" than a language $\mathrm{A} \in \operatorname{TIME}\left(n^{3}\right)$.
- Again, this happens when B is reducible to A .
- But isn't this a contradiction if the best algorithm for B requires n^{99} steps?
- That is, how can a problem requiring n^{99} steps be reducible to a problem solvable in n^{3} steps?

Paradox Resolved

- The so-called contradiction does not hold.
- Suppose we solve the problem " $x \in \mathrm{~B}$?" via " $R(x) \in \mathrm{A}$?"
- We must consider the time spent by $R(x)$ and its length | $R(x) \mid$:
- Because $R(x)$ (not $x)$ is solved by A.

HAMILTONIAN PATH

- A Hamiltonian path of a graph is a path that visits every node of the graph exactly once.
- Suppose graph G has n nodes: $1,2, \ldots, n$.
- A Hamiltonian path can be expressed as a permutation π of $\{1,2, \ldots, n\}$ such that $-\pi(i)=j$ means the i th position is occupied by node j. $-(\pi(i), \pi(i+1)) \in G$ for $i=1,2, \ldots, n-1$.
- hamiltonian path asks if a graph has a Hamiltonian path.

Reduction of HAMILTONIAN PATH to SAT

- Given a graph G, we shall construct a CNF $R(G)$ such that $R(G)$ is satisfiable iff G has a Hamiltonian path.
- $R(G)$ has n^{2} boolean variables $x_{i j}, 1 \leq i, j \leq n$.
- $x_{i j}$ means
"the i th position in the Hamiltonian path is occupied by node j."
- Our reduction will produce clauses.

The Clauses of $R(G)$ and Their Intended Meanings

1. Each node j must appear in the path.

- $x_{1 j} \vee x_{2 j} \vee \cdots \vee x_{n j}$ for each j.

2. No node j appears twice in the path.

- $\neg x_{i j} \vee \neg x_{k j}\left(\equiv \neg\left(x_{i j} \wedge x_{k j}\right)\right)$ for all i, j, k with $i \neq k$.

3. Every position i on the path must be occupied.

- $x_{i 1} \vee x_{i 2} \vee \cdots \vee x_{i n}$ for each i.

4. No two nodes j and k occupy the same position in the path.

- $\neg x_{i j} \vee \neg x_{i k}\left(\equiv \neg\left(x_{i j} \wedge x_{i k}\right)\right)$ for all i, j, k with $j \neq k$.

5. Nonadjacent nodes i and j cannot be adjacent in the path.

- $\neg x_{k i} \vee \neg x_{k+1, j}$ for all $(i, j) \notin G$ and $k=1,2, \ldots, n-1$.

The Proof

- $R(G)$ contains $O\left(n^{3}\right)$ clauses.
- $R(G)$ can be computed efficiently (simple exercise).
- Suppose $T \models R(G)$.
- From the 1 st and 2 nd types of clauses, for each node j there is a unique position i such that $T \models x_{i j}$.
- From the 3 rd and 4 th types of clauses, for each position i there is a unique node j such that $T \models x_{i j}$.
- So there is a permutation π of the nodes such that $\pi(i)=j$ if and only if $T \models x_{i j}$.

The Proof (concluded)

- The 5 th type of clauses furthermore guarantee that $(\pi(1), \pi(2), \ldots, \pi(n))$ is a Hamiltonian path.
- Conversely, suppose G has a Hamiltonian path

$$
(\pi(1), \pi(2), \ldots, \pi(n)),
$$

where π is a permutation.

- Clearly, the truth assignment

$$
T\left(x_{i j}\right)=\text { true if and only if } \pi(i)=j
$$

satisfies all clauses of $R(G)$.

A Comment ${ }^{\text {a }}$

- An answer to "Is $R(G)$ satisfiable?" does answer "Is G Hamiltonian?"
- But a positive answer does not give a Hamiltonian path for G.
- Providing a witness is not a requirement of reduction.
- A positive answer to "Is $R(G)$ satisfiable?" plus a satisfying truth assignment does provide us with a Hamiltonian path for G.

[^7]
Reduction of REACHABILITY to CIRCUIT VALUE

- Note that both problems are in P.
- Given a graph $G=(V, E)$, we shall construct a variable-free circuit $R(G)$.
- The output of $R(G)$ is true if and only if there is a path from node 1 to node n in G.
- Idea: the Floyd-Warshall algorithm.

The Gates

- The gates are
- $g_{i j k}$ with $1 \leq i, j \leq n$ and $0 \leq k \leq n$.
- $h_{i j k}$ with $1 \leq i, j, k \leq n$.
- $g_{i j k}$: There is a path from node i to node j without passing through a node bigger than k.
- $h_{i j k}$: There is a path from node i to node j passing through k but not any node bigger than k.
- Input gate $g_{i j 0}=$ true if and only if $i=j$ or $(i, j) \in E$.

The Construction

- $h_{i j k}$ is an AND gate with predecessors $g_{i, k, k-1}$ and $g_{k, j, k-1}$, where $k=1,2, \ldots, n$.
- $g_{i j k}$ is an OR gate with predecessors $g_{i, j, k-1}$ and $h_{i, j, k}$, where $k=1,2, \ldots, n$.
- $g_{1 n n}$ is the output gate.
- Interestingly, $R(G)$ uses no \neg gates.
- It is a monotone circuit.

Reduction of CIRCUIT SAT to SAT

- Given a circuit C, we will construct a boolean expression $R(C)$ such that $R(C)$ is satisfiable iff C is. $-R(C)$ will turn out to be a CNF.
- $R(C)$ is basically a depth- 2 circuit; furthermore, each gate has out-degree 1.
- The variables of $R(C)$ are those of C plus g for each gate g of C.
- The g 's propagate the truth values for the CNF.
- Each gate of C will be turned into equivalent clauses.
- Recall that clauses are \wedge ed together by definition.

The Clauses of $R(C)$

g is a variable gate x : Add clauses $(\neg g \vee x)$ and $(g \vee \neg x)$.

- Meaning: $g \Leftrightarrow x$.
g is a true gate: Add clause (g).
- Meaning: g must be true to make $R(C)$ true.
g is a false gate: Add clause $(\neg g)$.
- Meaning: g must be false to make $R(C)$ true.
g is a \neg gate with predecessor gate h : Add clauses $(\neg g \vee \neg h)$ and $(g \vee h)$.
- Meaning: $g \Leftrightarrow \neg h$.

The Clauses of $R(C)$ (concluded)

g is a \vee gate with predecessor gates h and h^{\prime} : Add clauses $(\neg h \vee g),\left(\neg h^{\prime} \vee g\right)$, and $\left(h \vee h^{\prime} \vee \neg g\right)$.

- Meaning: $g \Leftrightarrow\left(h \vee h^{\prime}\right)$.
g is a \wedge gate with predecessor gates h and h^{\prime} : Add clauses $(\neg g \vee h),\left(\neg g \vee h^{\prime}\right)$, and $\left(\neg h \vee \neg h^{\prime} \vee g\right)$.
- Meaning: $g \Leftrightarrow\left(h \wedge h^{\prime}\right)$.
g is the output gate: Add clause (g).
- Meaning: g must be true to make $R(C)$ true.

Note: If gate g feeds gates h_{1}, h_{2}, \ldots, then variable g appears in the clauses for h_{1}, h_{2}, \ldots in $R(C)$.

An Example

$$
\left(h_{1} \Leftrightarrow x_{1}\right) \wedge\left(h_{2} \Leftrightarrow x_{2}\right) \wedge\left(h_{3} \Leftrightarrow x_{3}\right) \wedge\left(h_{4} \Leftrightarrow x_{4}\right)
$$

$$
\wedge\left[g_{1} \Leftrightarrow\left(h_{1} \wedge h_{2}\right)\right] \wedge\left[g_{2} \Leftrightarrow\left(h_{3} \vee h_{4}\right)\right]
$$

$$
\wedge\left[g_{3} \Leftrightarrow\left(g_{1} \wedge g_{2}\right)\right] \wedge\left(g_{4} \Leftrightarrow \neg g_{2}\right)
$$

$$
\wedge\left[g_{5} \Leftrightarrow\left(g_{3} \vee g_{4}\right)\right] \wedge g_{5} .
$$

An Example (concluded)

- In general, the result is a CNF.
- The CNF has size proportional to the circuit's number of gates.
- The CNF adds new variables to the circuit's original input variables.
- Had we used the idea on p. 209 for the reduction, the resulting formula may have an exponential length because of the copying. ${ }^{\text {a }}$

[^8]
Composition of Reductions

Proposition 27 If R_{12} is a reduction from L_{1} to L_{2} and R_{23} is a reduction from L_{2} to L_{3}, then the composition $R_{12} \circ R_{23}$ is a reduction from L_{1} to L_{3}.

- So reducibility is transitive.

Completeness ${ }^{a}$

- As reducibility is transitive, problems can be ordered with respect to their difficulty.
- Is there a maximal element (the hardest problem)?
- It is not obvious that there should be a maximal element.
- Many infinite structures (such as integers and real numbers) do not have maximal elements.
- Hence it may surprise you that most of the complexity classes that we have seen so far have maximal elements.
${ }^{\mathrm{a}}$ Cook (1971) and Levin (1973).

Completeness (concluded)

- Let \mathcal{C} be a complexity class and $L \in \mathcal{C}$.
- L is \mathcal{C}-complete if every $L^{\prime} \in \mathcal{C}$ can be reduced to L.
- Most complexity classes we have seen so far have complete problems!
- Complete problems capture the difficulty of a class because they are the hardest problems in the class.

Hardness

- Let \mathcal{C} be a complexity class.
- L is \mathcal{C}-hard if every $L^{\prime} \in \mathcal{C}$ can be reduced to L.
- It is not required that $L \in \mathcal{C}$.
- If L is \mathcal{C}-hard, then by definition, every \mathcal{C}-complete problem can be reduced to $L .^{\text {a }}$

[^9]Illustration of Completeness and Hardness

Closedness under Reductions

- A class \mathcal{C} is closed under reductions if whenever L is reducible to L^{\prime} and $L^{\prime} \in \mathcal{C}$, then $L \in \mathcal{C}$.
- It is easy to show that P, NP, coNP, L, NL, PSPACE, and EXP are all closed under reductions.

Complete Problems and Complexity Classes

Proposition 28 Let \mathcal{C}^{\prime} and \mathcal{C} be two complexity classes such that $\mathcal{C}^{\prime} \subseteq \mathcal{C}$. Assume \mathcal{C}^{\prime} is closed under reductions and L is \mathcal{C}-complete. Then $\mathcal{C}=\mathcal{C}^{\prime}$ if and only if $L \in \mathcal{C}^{\prime}$.

- Suppose $L \in \mathcal{C}^{\prime}$ first.
- Every language $A \in \mathcal{C}$ reduces to $L \in \mathcal{C}^{\prime}$.
- Because \mathcal{C}^{\prime} is closed under reductions, $A \in \mathcal{C}^{\prime}$.
- Hence $\mathcal{C} \subseteq \mathcal{C}^{\prime}$.
- As $\mathcal{C}^{\prime} \subseteq \mathcal{C}$, we conclude that $\mathcal{C}=\mathcal{C}^{\prime}$.

The Proof (concluded)

- On the other hand, suppose $\mathcal{C}=\mathcal{C}^{\prime}$.
- As L is \mathcal{C}-complete, $L \in \mathcal{C}$.
- Thus, trivially, $L \in \mathcal{C}^{\prime}$.

Two Important Corollaries

Proposition 28 implies the following.
Corollary $29 P=N P$ if and only if an $N P$-complete problem in P.

Corollary $30 L=P$ if and only if a P-complete problem is in L.

Complete Problems and Complexity Classes

Proposition 31 Let \mathcal{C}^{\prime} and \mathcal{C} be two complexity classes closed under reductions. If L is complete for both \mathcal{C} and \mathcal{C}^{\prime}, then $\mathcal{C}=\mathcal{C}^{\prime}$.

- All languages $\mathcal{L} \in \mathcal{C}$ reduce to $L \in \mathcal{C}$ and $L \in \mathcal{C}^{\prime}$.
- Since \mathcal{C}^{\prime} is closed under reductions, $\mathcal{L} \in \mathcal{C}^{\prime}$.
- Hence $\mathcal{C} \subseteq \mathcal{C}^{\prime}$.
- The proof for $\mathcal{C}^{\prime} \subseteq \mathcal{C}$ is symmetric.

Table of Computation

- Let $M=(K, \Sigma, \delta, s)$ be a single-string polynomial-time deterministic TM deciding L.
- Its computation on input x can be thought of as a $|x|^{k} \times|x|^{k}$ table, where $|x|^{k}$ is the time bound.
- It is essentially a sequence of configurations.
- Rows correspond to time steps 0 to $|x|^{k}-1$.
- Columns are positions in the string of M.
- The (i, j) th table entry represents the contents of position j of the string after i steps of computation.

Some Conventions To Simplify the Table

- M halts after at most $|x|^{k}-2$ steps.
- Assume a large enough k to make it true for $|x| \geq 2$.
- Pad the table with $\bigsqcup \mathrm{s}$ so that each row has length $|x|^{k}$.
- The computation will never reach the right end of the table for lack of time.
- If the cursor scans the j th position at time i when M is at state q and the symbol is σ, then the (i, j) th entry is a new symbol σ_{q}.

Some Conventions To Simplify the Table (continued)

- If q is "yes" or "no," simply use "yes" or "no" instead of σ_{q}.
- Modify M so that the cursor starts not at \triangleright but at the first symbol of the input.
- The cursor never visits the leftmost \triangleright by telescoping two moves of M each time the cursor is about to move to the leftmost \triangleright.
- So the first symbol in every row is a \triangleright and not a \triangleright_{q}.

Some Conventions To Simplify the Table (concluded)

- Suppose M has halted before its time bound of $|x|^{k}$, so that "yes" or "no" appears at a row before the last.
- Then all subsequent rows will be identical to that row.
- M accepts x if and only if the $\left(|x|^{k}-1, j\right)$ th entry is "yes" for some position j.

Comments

- Each row is essentially a configuration.
- If the input $x=010001$, then the first row is

- A typical row may look like

Comments (concluded)

- The last rows must look like

- Three out of the table's 4 borders are known:

[^0]: ${ }^{\text {a }}$ Contributed by Mr. Chuan-Yao Tan on October 11, 2011.

[^1]: ${ }^{\text {a }}$ Thanks to a lively class discussion on October 15, 2003.

[^2]: ${ }^{\text {a }}$ Szelepscényi (1987) and Immerman (1988).

[^3]: ${ }^{\text {a }}$ See also p. 164.
 b Or simply "harder than" for brevity.

[^4]: ${ }^{\text {a }}$ Contributed by Mr. Ming-Feng Tsai (D92922003) on October 29, 2003.
 ${ }^{\mathrm{b}} R(x)$ may not be onto; Mr. Alexandr Simak (D98922040) on October 13, 2009.

[^5]: ${ }^{a}$ Moore and Mertens (2011).

[^6]: ${ }^{\text {a }}$ In fact, unless stated otherwise, we will only require that the reduction R run in polynomial time.
 ${ }^{\mathrm{b}}$ Of course, it may not be an optimal one.

[^7]: ${ }^{\text {a }}$ Contributed by Ms. Amy Liu (J94922016) on May 29, 2006.

[^8]: ${ }^{\text {a }}$ Contributed by Mr. Ching-Hua Yu (D00921025) on October 16, 2012.

[^9]: ${ }^{\text {a }}$ Contributed by Mr. Ming-Feng Tsai (D92922003) on October 15, 2003.

